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Abstract

This paper presents a new speech enhancement approach originated from factor analysis (FA)
framework. FA is a data analysis model where the relevant common factors can be extracted from
observations. A factor loading matrix is found and a resulting model error is introduced for each
observation. Interestingly, FA is a subspace approach properly representing the noisy speech. This
approach partitions the space of noisy speech into a principal subspace containing clean speech and a
complimentary (minor) subspace containing the residual speech and noise. We show that FA is a
generalized data model compared to signal subspace approach. To perform FA speech enhancement,
we present a perceptual optimization procedure that minimizes the signal distortion subject to the
energies of residual speech and noise under a specified level. Importantly, we present a hypothesis
testing approach to optimally perform subspace decomposition. In the experiments, we implement
perceptual FA speech enhancement using Aurora2 corpus. We find that proposed approach achieves

desirable speech recognition rates especially when signal-to-noise ratio is lower than 5 dB.

1. Introduction

Automatic speech recognition (ASR) systems have been employed to many real-world applications.
However, ASR systems are always degraded in presence of different noisesin practical situations. To
provide good speech quality for ASR systems, the speech enhancement is an important preprocessing
procedure for noisy speech recognition. In the past decade, the researchers on speech enhancement for
robust ASR have been attracting many people working on this issue. Spectral subtraction algorithm [2]
is one of the most popular methods for speech enhancement. This algorithm has the drawbacks of
producing speech distortion and “musical noise”. The method in [11] was proposed to overcome
“musical noise” problem by using human auditory models where the perceptual effect of “musical
noise” was reduced under predefined threshold. Below the masking threshold, the residual noise
becomes inaudible by human ear. Other researchers presented subspace approaches to balance the trade
off between speech distortion and residual noise [5] [8].

The general concept of subspace approaches is originated from that the noisy speech signal can
be projected onto two subspaces; one is the signal subspace in which clean speech signal and few
noises are included, and the other is the noise subspace that only contains noise information. In [4],

Ephraim and Van Trees proposed signal subspace approach to find optimal estimator or filter by



minimizing the speech distortion subject to the constraint of residual noise kept under a threshold. This
work decomposed the noisy signal into signal subspace and noise subspace by using Karhunen-Loéve
transform (KLT). The noisy speech signal was accordingly enhanced by using inverse KLT. Rezayee
and Gazor [8] used a diagonal matrix instead of the identity matrix for finding the linear time domain
congtrained estimator of clean speech. Hu and Loizou [5] estimated the optimal filter by using common
matrix diagonalizing the covariance matrices of the clean and noise signals.

In this paper, we are presenting a FA speech enhancement using the perceptual optimization
procedure. In general, FA is a data analysis model, which is popular in societies of social science and
machine learning. FA is highly related to principal component analysis (PCA) developed for feature
dimension reduction. One magjor difference is that PCA represents the covariance or correlation matrix
using singular value decomposition (SVD), whereas FA incorporates a prior structure of the residual
terms. Also, the common factors extracted by FA model are useful to represent the correlation between
different features [1]. The full covariance matrix can be properly modeled. Although FA generative
model is new in the society of speech technology, some researchers have successfully combined FA
model and hidden Markov model (HMM) for building ASR system [9]. In this paper, we present a new
perceptual FA model and solution to speech enhancement. The noisy speech signal is decomposed into
principal factors and minor factors, or correspondingly projected onto two subspaces. The first
subspace represents the clean speech and the other subspace is aresidual subspace containing noise and
residua speech. The decomposition can be fulfilled via eigen-analysis for covariance matrix of speech
signal. However, in conventional signal subspace approach, the smaller eigenvalues were assumed to
be zero for speech enhancement. When considering FA modeling of noisy speech, the residua
covariance matrix is assumed to be a diagonal matrix, which is practical for speech enhancement in
presence of colored noise [8]. Furthermore, we exploit the hypothesis testing for finding the optimal
FA subspace decomposition. Correspondingly, the noisy speech signal can be enhanced. Experiments
on Aurora2 corpus show that the proposed FA speech enhancement approach attains good recognition

performance for different cases of signal-to-noise ratio (SNR).

2. Subspace Approaches

2.1. Signal Subspace (SS)

Signal subspace is a popular speech enhancement approach using a linear model assuming that

K-dimensional noisy observation vector Z iscorruptedin aform of
Z=Wg X +Ngg =Y +Ngg, 1)

where Wy isa KxM matrix of rank M (M < K') with column vectors consisting of bases of

a subspace of Euclidean space RX. This is a subspace of clean speech Y. X4 denotes the



coordinate vector and Ngg denotes the noise signal. This model is established assuming that noise
signal is additive and uncorrelated with clean speech. The covariance matrix of y withrank M is

given by

R, = E{yy '} =WxR,_We =W, A W, . @)

Using eigen-decomposition, we obtain eigenvector matrix W, :[\Ny'vI WyK_M] and diagonal
eigenvalue matrix A, containing K —M  zero eigenvalues. The first M eigenvectors Wy'vI

span the same subspace as the clean speech subspace, i.e. span(W) = span(\NyM ). To find the

linear filtering for speech enhancement, it is popular to optimize the perceptually meaningful criterion,
which is equivalent to minimize signal distortion while the residual noise energy is constrained under a
predefined level. After solving a constrained optimization problem, we obtain the optimal solution to

SS approach [4]
Hs =R, (R, +uR )" =W,A (A, + tW) R _W,)"W,, €)

A

where u is the Lagrange parameter. In (3), we express the linear estimator Hg using

eigen-decompositionof R, .

2.2. Factor Analysis(FA)

On the other hand, FA is a general modeling approach to express an observed data vector [1]
Z=Wg, Xgp +Npy. (4)

Here, the noisy speech signal Z is considered with a preprocessing stage of mean removal. The basic
idea of FA isto use a factor loading matrix W, and a common factor vector Xy, to represent the
observed data Z. Common factors are referred as the latent variables. The error term N, is a
specific factor representing the noise signal and/or residual speech signal. Different from principal
component analysis (PCA) developed for dimension reduction, FA aims to extract the common factors
for data modeling. Some properties have been specified to establish FA model. First, the observation,
common factor and error term are assumed to be Gaussian distributed with zero mean
E[z] = E[X, ] =E[n:, ] =0. Also, common factor and error term are uncorrelated and their

covariance matrices are diagonal, namely E[X,NL,]=0 , E[X Xt ]=1, and



E[nFAn,T:A] =V . For the case of isotropic noise, we have FA parameter ¥ = & | « » where |
isan K x K identity matrix. Typically, FA model in (4) is similar to the linear regression mode!.
However, the estimation of FA and linear regression models is quite different. In linear regression
model, only X, isunknown (W, is known), whereas in FA model neither W, nor X, are
known. We should estimate FA parameters W, , N, and later find X, . There are severa
approaches useful to estimate W[, . One approach was derived from probabilistic PCA model [3] [10]
using the maximum likelihood estimate. Nevertheless, W, can be estimated via

eigen-decomposition of covariance matrix of Z

R, =E[zz2" ]| =W, W, +¥ =W,A W, = -
MAMY2 M2, mT K-M A K—-MypsK-MT
WM AMHZAME A MT KM AK My

where W, and A, are eigenvector and eigenvalue matrices, respectively. Through eigenvalue
ordering, we obtain partitioned eigenvector matrix W, = [\NZ'VI WZK’M ] and eigenvalue matrix
A, =diag[A"} A';™]. Factor loading matrix W, isfound using principal submatrix W, and
the preceding M eigenvalues in A, . Or, we have span(W, ) =span(W," ). The covariance
matrix of error or noiseterm W is generated using minor submatrix WZK"\’I andthelast K - M
eigenvalues. Interestingly, FA parameters are estimated from two subspacesof Z € R . FA can serve
as SS approach. In what follows, we will explore the link between SS and FA for data modeling and

find the solution to FA speech enhancement.

3. FA Speech Enhancement

3.1. Relation between SSand FA

Actually, the underlying concept of FA is similar to SS. Both methods decompose the signal space into
two subspaces. Using FA model, the principal subspace span(W.,) or span(W,") is used to
represent all observed clean and noisy data. The minor subspace Span(\NZK’M ) contains the
information of residual speech and noise. However, in SS approach, the signal subspace and noise
subspace represent clean speech and noise signal, respectively. The linear models of SSin (1) and FA
in (4) look similar. Typically, FA model is desirable for modeling full covariance or correlation matrix
of observed data. After eigen-decomposition, the firss M common factors have high energy. They
are used for representing clean speech signal. The correlation between corresponding feature
components is significant. But, the last K — M common factors contain residual speech and noise
signal with small energy. In SS model, thelast K — M eigenvectors span the noise subspace. Thisis
the key difference between FA and SS models. To explain this property, let us use the same factor

loading matrix W, and common factor X, to expressthe corresponding clean speech

Y =WeaXea N5 (6)



Theterm N ::SA means the error due to residual speech. Then, the observed noisy speech has the form
s

n
Z=W_ Xps + N5, +NE, . ()

Here, the residual speech NF, and noise signa N7, are summed up to denote the error term of
noisy speech, i.e. Ny +NE, = Np, . Accordingly, the covariance matrix of noisy speech turns out

to be

Rz = E[(VVFAXFA + Ny )(VVFAXFA +nFA)T]

. ®)
=W, RXFAWFA +R + R,

. . . . rs n
Two covariance matrices R, and R, corresponding to error variables N, and Ng, are

produced, respectively. Basically, FA is ageneralized data modeling approach compared to SS.

3.2. Perceptual Criterion for Speech Enhancement

We have explained how FA is used to model noisy speech data. Under this data modeling framework,
we would like to develop speech enhancement approach. Similar to SS speech enhancement, we should
adopt an objective function to be optimized to estimate the clean speech signal §. A K x K matrix
H., servesasalinear estimator or filter for speech enhancement ¥ = H -, Z. The residua speech

signal & dueto this estimation becomes

g:y_y:(HFA_IK)y+HFAn2A:gy+gn' €)

where &y is the speech distortion and &, is the residual noise. The energies of signal distortion
and residual noise are obtained by
=2
g, = trE[s;gy] =t{(He — 1R, (Hps — | D' (10)
=2 T T
&, =trE[e &, ] =tr[H R H, . 11)
Also, from (6), we calculate the covariance matrix of clean speech Yy as
R, =W, R_W, +R,. (12)

Notably, there is an additional term in FA model due to the residual speech. When finding FA speech

enhancement solution, such generalized model should be better for estimation of clean speech. In this



study, we also take into account the auditory effects [6][7] while estimating the optimal filter. In
human’s auditory perception system, frequency masking is a phenomenon under which one sound can’t
be perceived if another sound close in frequency has a high enough level. Based on the masking effects,
the residual noise is constrained to be smaller than a masking threshold rather than subtracting all noise
in the noisy speech. Additionally, human is more sensitive to the distorted sound. There is a tradeoff
between signal distortion and residual noise. Less residual noise will causes larger signal distortion,
and the optimal filter will become an identity matrix if we enhance speech signal without distortion.
According to these two properties, we adopt perceptua criterion for FA speech enhancement. Namely,
we minimize the energy of speech distortion by considering the masking effect that the energy of
residual noise should be controlled under a specific threshold. The objective function and constraint are
given by

o =2
mine,

H FA

subject to: Enz < }/Grf, (13)

where ycﬁ denotes the permissible residual noise level, &

, isapredefined noise energy, y isan

adjustable parameter which controls the masking level and that is restricted between the range of 0 and
1. The optimum linear estimator can be solved through Lagrange optimization procedure. By

introducing the Lagrange multiplier u , we can find the solution to FA speech enhancement

H ra = (Wea RxFAWFTA + R)Wes RxFAWFTA + R+ 1R, )71- (14)

The key difference between SS solution in (3) and FA solution in (14) lies in the models of clean
speech Y in (1) and (6). Either K xM matrix Wgg or W, is not sufficient to represent clean
speech signal. With an additional residual speechterm n ::SA , We are able to achieve precise data model
contributed by the last K — M eigenvectors. If we neglect the residual speech in FA, clean speech
becomes Y =W, X, . The covariance matrix R, disappears in the solution. The FA solution is

reduced to SS solution.

3.3. Optimal Subspace Decomposition

Using either FA or SS, it is critical to determine the partition of principal factors (or signal subspace)

and minor factors (or noise subspace). This partition is controlled by the parameter of noise threshold

of . To significantly perform subspace decomposition, in this study, we employ hypothesis test

principle to estimate optimal Gf instead of empirically assigning a value using SS approach.
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Accordingly, we are not only able to determine the dimension of principal factors but aso the
parameters Gf without using the additional empirical parameter y . We are testing the null

hypothesis [1] that the last K —M eigenvalues are equal H,:4,, ; =4y., = =24, against
the alternative hypothesis H, that at least two of the last K —M eigenvalues are different.
Assuming that eigenvalues are Gaussian distributed, we can represent the likelihood under null

hypothesis as

_N(K-M) N 1 N
L(Ho)=(27) * |Ay] 2 'exp{_EZAXiA_zlAXiT}' (15)
i=1

N
where AX; = X; —X denotes the ith row of AX with ZAXiAXiT :tr[AXTAX]. A, isa

i-1
diagonal matrix with its diagonal elements equal to thelast K —M eigenvalues and N is the number

of training observations. L(H,) canbearranged as

IN(K-M) /g —% 1N
L(Ho)=(27) 2 (Hﬂ’kj 'eXp{—EZ(AXiAXiT)Azl}

k=M +1 i=1
_N(K-M)

N
- (27) 2 ﬁzkj ? .exp{—%tr[[%AXTAXjA‘zl}} . (16)

k=M +1

N

CN(K-M)[ -
=2r) 2 ( L ilkﬂ 2-exp{—%tr(A2A‘21)}

K-M k=M +1

Similarly, the likelihood under alternative hypothesisisyielded by

N(K-M) N

L(H)=(2r) 2 |A 2 -exp{—%t{% (AxiAxiT)Azl}}

N(K-M) N
=(2r) 2 ( ﬁlkj i -exp{—%tr(AzA‘zl)}

k=M +1

(17)

We evaluate the likelihood ratio ¢ of L(H,) to L(H,). The resulting test statistic ¢ has the

form of



L(H,)
L(H,)

7N(K2—M) -M % N B
(2r) KK Mk%jj } .exp{—ztr(AzAz)}

q:

(18)

(2n)N(KzM)(ﬁ+ J {';'tr(AzAg)}
I 2

K-M
( j
K Iul k=M +1

Then, the distribution of statistic —210gQ turnsouttobea y % distribution
N
K 2
14
-2logq=-2log kM1

K-M
Aj
K I'I k=M +1

:_N.|Og ( . k=M +1 JK_M
),
K-M k=M +1 i

- N {Iog T -|og[ . i?kjw} . (19

k=M +1 +

:N-{(K—M)Iog( = 2;:5 _2;;09/1}

N .{(K ~M)logZ — Zloglk} ~ X

k=M +1

Finally, we find that null hypothesis H, isrejected at asignificancelevel «a if

K
N-{(K—M)Iog)?— ZIogAk}zxja. (20)

k=M +1

In(20), A isasample mean of eigenvalues, and Vv isthe degree of freedomof y 2 distribution.



4. Experiments

4.1. Speech Database and Experimental Setup

We performed speech recognition and SNR calculation using Aurora2 database for evaluating
performance of proposed speech enhancement methods. Aurora2 database consisted of English digits
and English alphabet-sequence in the presence of additive noise and linear convolutional distortion.
There were three test setsin the corpus. Set A had four noise types (subway, babble, car and exhibition
hall) that were similar to those in the training data, and set B contained four noise types (restaurant,
street, airport and station noise) different from those in the training data. An additional convolutional
channel was used in set C. All these three test sets consisted of six SNR conditions (-5 dB, 0 dB, 5 dB,
10 dB, 15 dB and 20 dB) and clean condition. Acoustic models in clean and multi-conditional noise
conditions were estimated for comparison. There were 8,440 clean training utterances. The
multi-conditional training data consisted of the same utterances artificially added with four different
noise types (subway, babble, car and exhibition hall) in five different environmental conditions (5 dB,
10 dB, 15 dB, 20 dB and clean).

Speech features consisted of 13 MFCC coefficients and energy along with the delta and
acceleration coefficients. There were 39 features extracted for each frame. In this paper, we estimated
continuous-density hidden Markov models (HMM’s) and built the recognizer using HTK toolkit
package [12]. Some parameters were used: 1) 16 states per word; 2) 3 mixture components of Gaussian
density per state; 3) only the variances of all acoustic coefficients are used; 4) optima subspace
decomposition was done by performing hypothesis testing frame by frame and significance level «
was set to be 0.05 in multi-condition training and 0.02 in clean training. In speech enhancement

procedure, we used 40 sampling point for aframe. The filter of 40x 40 matrix was estimated. When
computing the covariance matrix, a window of 9 frames was used. The control parameter u was

dynamically specified according to the SNR measured in each frame. Larger u corresponded to

smaller residual noise and larger signal distortion. In the experiments, we preset therange 1 =0~ 4.

4.2. Evaluation of SNR Performance
In this subsection, we collected test sets containing six SNR conditions in Aurora?2 database for
evaluation of SNR’s when applying FA speech enhancement. Assuming clean speech and noise signals
are independent, SNR formulais calculated by
LIS
PRAR
SNR =10log,, =kt x100%. (21)

> (z(k) -y, (K))*

t=1 k=1

where Y is clean speech signal and Z is noisy speech signal. In Figure 1, the SNR’s defined in
Aurora2 are similar to those calculated by (21). When applying FA speech enhancement, we find that
SNR’s are significantly improved for different SNR conditions. The SNR evaluation shows that FA

9



approach does suppress the noise level. Such suppression does not assure small distortion of speech
signal itself. Namely, over suppression of noise in noisy speech will cause the series distortion of
speech signal at the same time. To verify the effectiveness of using FA approach, we further conduct

experimental comparison for the application of noisy speech recognition using Aurora 2 database.

—e— Original —=— FA Enhancement

25
20
15

SNR's calculated by formula
=
o

5
0
-5
-5dB 0dB 5dB 10dB 15dB 20dB
SNR's defined by Aurora2

Figure 1. SNR improvement using FA speech enhancement

4.3. Evaluation of Speech Recognition Perfor mance

Table 1 reports the baseline word accuracy (%) results of using clean training set in Aurora2, Tables 2
and 3 show the results after enhancement using signal subspace (SS) and factor analysis (FA)
enhancement. On average, in Tables 1 and 3, the relative word error rate is improved by 14.88%,
specifically in 0 dB (29.01%), -5 dB (24.88%), and 5 dB (18.18%). Error reduction is achieved for
cases of Car (26.01%), Subway (19.47%), and Station (19.34%) environments. Figure 1 shows the

performances for baseline system and two enhancement approaches in different environments.

Table 1. Baseline results for clean training

Aurora 2 Clean Training - Results (Baseline)

Subway | Babble Car | Exhibition| Average |Restauran| Street Airport | Station | Average |Subway M Street M| Average | Overall
Clean 98.83 98.61 98.78 99.01 98.81 99.29 99.24 99.25 99.48 99.32 99.42 99.00 99.21 99.09
20dB 97.61 97.97 98.51 97.35 97.86 98.43 97.52 98.24 98.95 98.29 94.11 94.89 94.50 97.36
15dB 95.09 94.20 95.71 94.82 94.96 95.36 94.35 95.32 95.68 95.18 87.96 89.45 88.71 93.79
10dB 84.83 81.38 80.55 84.70 82.87 85.63 82.16 83.21 82.66 83.42 75.74 76.45 76.10 81.73
5dB 63.77 59.37 48.97 56.09 57.05 63.31 54.23 60.72 54.89 58.29 54.59 51.72 53.16 56.77
0dB 35.12 35.04 22.70 25.15 29.50 37.21 28.48 35.88 26.94 3213 29.44 26.90 2817 30.29
-5dB 15.08 19.17 11.09 12.47 14.45 18.36 15.30 18.19 14.56 16.60 14.09 13.75 13.92 15.21
average | 70.05 69.39 65.19 67.08 67.93 71.08 67.33 70.12 67.59 69.03 65.05 64.59 64.82 67.75
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Table 2. Signal subspace enhancement for clean training

Aurora 2 Clean Training - Results (SS Enhancement)

A C
Subway | Babble Car | BExhibition| Average |Restauran| Street Airport | Station | Average |Subway M Street M| Average | Overall
Clean 99.26 99.06 99.14 99.51 99.24 99.26 99.24 99.14 99.51 99.29 99.32 99.00 99.16 99.24
20dB | 98.28 97.40 98.09 97.81 97.90 97.97 97.67 97.55 97.55 97.69 97.42 96.55 96.99 97.63
15dB 95.52 92.87 96.69 94.48 94.89 94.32 93.23 94.18 94.18 93.98 95.33 93.74 94.54 94.45
10dB | 87.69 81.89 90.34 85.34 86.32 84.07 83.92 84.46 84.46 84.23 87.81 83.65 85.73 85.36
5dB 74.70 64.06 74.59 62.94 69.07 65.18 67.02 67.52 67.52 66.81 73.07 65.63 69.35 68.22
0dB 52.16 39.84 45.45 38.29 43.94 41.23 39.02 43.66 43.66 41.89 46.05 39.21 42.63 42.86
-5dB 28.31 21.49 20.34 16.11 21.56 17.93 16.84 21.47 2147 19.43 19.62 16.14 17.88 19.97
average | 76.56 70.94 74.95 70.64 7327 7142 70.99 72.57 72.62 71.90 74.09 70.56 72.32 72.53
Table 3. Factor analysis enhancement for clean training
Aurora 2 Clean Training - Results (FA Enhancement)
A C
Subway | Babble Car | Exhibition| Average |Restauran| Street Airport | Station | Average |Subway M| Street M| Average | Overall
Clean 99.32 99.03 99.19 99.48 99.26 99.32 99.21 99.22 99.54 99.32 99.39 98.94 99.17 99.26
20dB 98.31 97.88 98.45 97.84 98.12 98.25 97.85 98.06 98.80 98.24 97.54 96.80 97.17 97.98
15dB 95.95 93.86 96.72 95.62 95.54 95.15 94.77 95.14 95.99 95.26 95.30 93.86 94.58 95.24
10dB 89.04 83.83 91.47 88.98 88.33 86.06 85.73 85.45 86.76 86.00 88.21 83.49 85.85 86.90
5dB 77.04 66.08 76.53 68.22 7197 68.25 69.80 69.79 72.72 70.14 74.74 66.81 70.78 71.00
0dB 55.76 42.38 47.27 43.26 47.17 44.34 41.05 44.23 41.59 42.80 47.44 40.93 44.19 44.83
-5dB 28.80 23.88 18.67 17.49 2221 23.18 19.14 24.31 20.55 21.80 20.36 17.32 18.84 21.37
Average | 77.75 72.42 75.47 72.98 74.66 7351 7251 73.74 7371 73.37 74.71 71.16 72.94 73.80

In Figure 2, we find that the proposed FA enhancement performs better than SS enhancement
especialy in presence of larger background human voices, e.g. the noise conditions of exhibition and

restaurant. Experimental results using multi-condition training for baseline system, signal subspace and

Subway Babble

Car  ExhibitionRestaurant

Street

Airport

O Baseline B SS Enhancement O FA Enhancement

M

Figure 2. Comparison of different environments for clean training

factor analysis enhancement are also reported in Tables 4, 5 and 6, respectively.
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Table 4. Baseline results for multi-condition training

Aurora 2 Multicondition Training - Results (Baseline)

A B C

Subway | Babble Car | Exhibition| Average |Restauran{ Street Airport | Station | Average |Subway M| Street M| Average | Overall
Clean 99.02 98.73 98.88 99.01 98.91 99.02 98.91 98.87 99.01 98.95 98.86 98.85 98.86 98.92
20dB 98.43 98.04 98.27 97.99 98.18 98.71 98.46 98.63 98.83 98.66 97.76 97.64 97.70 98.28
15dB 97.42 97.82 97.88 97.16 97.57 98.43 97.28 98.21 98.46 98.10 96.96 96.31 96.64 97.59
10dB 95.00 96.43 95.97 94.17 95.39 96.90 95.89 96.96 97.04 96.70 94.20 93.68 93.94 95.62
5dB 89.28 89.48 88.07 88.06 88.72 91.31 88.88 92.48 89.63 90.58 82.65 83.22 82.94 88.31
0dB 67.39 65.69 53.50 64.89 62.87 71.26 66.60 72.08 64.49 68.61 47.44 56.65 52.05 63.00
-5dB 25.15 30.14 19.59 24.56 24.86 37.95 30.59 35.73 27.21 32.87 18.36 26.00 22.18 27.53
average | 81.67 82.33 78.88 80.83 80.93 84.80 82.37 84.71 82.10 83.49 76.60 78.91 71.76 81.32
Table 5. Signal subspace enhancement for multi-condition training
Aurora 2 Multicondition Training - Results (SS Enhancement)
A B C
Subway | Babble Car Exhibition| Average |Restauran{ Street Airport | Station | Average |Subway M| Street M | Average | Overall
Clean 98.86 98.85 98.84 99.04 98.90 98.86 98.97 98.84 99.04 98.93 98.68 98.94 98.81 98.89
20dB 98.77 98.25 98.60 98.09 98.43 98.80 98.43 98.72 98.95 98.73 98.00 98.04 98.02 98.47
15dB 97.45 97.73 98.18 97.25 97.65 98.25 97.46 98.24 98.52 98.12 96.99 96.40 96.70 97.65
10dB 96.28 95.37 96.48 95.34 95.87 95.43 95.77 96.60 96.82 96.16 95.52 94.07 94.80 95.77
5dB 90.54 89.45 91.74 90.03 90.44 86.61 88.94 91.23 90.74 89.38 87.96 86.19 87.08 89.34
0dB 71.72 66.75 74.89 67.23 70.15 70.03 7343 76.44 78.46 74.59 72.46 60.37 66.42 71.18
-5dB 49.19 35.07 50.40 47.82 45.62 41.93 43.77 44.94 45.82 44.12 41.20 36.67 38.94 43.68
average | 86.12 83.07 87.02 84.97 85.29 84.27 85.25 86.43 86.91 85.72 84.40 81.53 82.96 85.00
Table 6. Factor Analysis enhancement for multi-condition training
Aurora 2 Multicondition Training - Results (FA Enhancement)
A B C
Subway | Babble Car | Exhibition| Average |Restauran{ Street Airport | Station | Average |Subway M Street M| Average | Overall
Clean 98.99 98.70 98.87 99.04 98.90 98.99 99.03 98.87 99.07 98.99 98.86 98.97 98.92 98.94
20dB 98.53 98.22 98.36 98.06 98.29 98.80 98.52 98.72 99.01 98.76 98.13 98.04 98.09 98.44
15dB 97.85 97.52 98.30 97.19 97.72 98.40 97.52 98.33 98.58 98.21 96.93 96.70 96.82 97.73
10dB 96.84 96.16 96.99 95.28 96.32 96.53 96.13 96.99 97.44 96.77 95.73 94.56 95.15 96.27
5dB 91.00 90.60 92.54 89.95 91.02 89.59 90.57 92.25 92.22 91.16 88.30 87.30 87.80 90.43
0dB 77.03 68.26 79.51 67.48 73.07 73.75 75.18 78.97 78.68 76.65 73.75 64.72 69.24 73.73
-5dB 50.51 41.38 50.43 47.95 47.57 44.89 45.50 48.23 47.36 46.50 41.97 37.36 39.67 45.56
Average | 87.25 84.41 87.86 84.99 86.13 85.85 86.06 87.48 87.48 86.72 84.81 82.52 83.67 85.87

When looking at Tables 4 and 6, we find that the relative word error rate is improved by 22.15%. The
performances are improved in 5 dB (32.92%), 10 dB (28.30%), 20 dB (23.47%) and 15 dB (23.24%).
The error reduction is obtained for Car (29.08%), Subway (28.72%), and Exhibition (23.85%)
environments. The relative improvement percentage at -5 dB SNR in clean training (7.27%) is much
less than that in multi-condition training (24.88%). Thisis because that well-trained clean models could
not predict unknown noise influence. Performances for baseline and two enhancement approaches in
different environments using multi-condition training are also shown in Figure 2.

From the experiments, we find that in noise environments of subway, car, and station, the speech
recognition improvements were larger compared to other noise environments. This is because that
machine noises are quite different from human voice noises. More human sound in background noise
obtains fewer improvement using proposed enhancement methods. In this work, we evaluate the

performances of FA enhancement using SNR measures and speech recognition rates. The experiments
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show that FA enhancement is better than SS enhancement. This implies that a generalized model is
desirable for representing signals. Moreover, the optimal subspace decomposition by hypothesis testing
is used frame by frame to find the optimal filter with suitable dimensions of residual subspace. Such

technique is aso beneficial to obtain better performance than SS enhancement.

90
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Subway Babble Car  ExhibitionRestaurant Street ~ Airport  Station Subway Street M
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O Baseline @ SS Enhancement O FA Enhancement ‘

Figure 3. Comparisons for different environments (multi-condition training)

5. Conclusions

In this paper, we have presented FA enhancement of noisy speech signal for application of speech
recognition. Interestingly, we built the bridge between FA and signa subspace approaches.
Experimental results showed that the proposed approach improved the performance of ASR systems
especialy in low SNR environments. Compared to other subspace approaches, we presented a novel
hypothesis testing approach to optimally perform subspace decomposition. In the future, we will extend
this speech enhancement approach by considering the phase effect. Also, we will aso improve FA
framework through developing new estimation criteria for factor loading matrix. Additionally, we will
also explore FA approaching to other speech related applications, e.g. speaker adaptation and acoustic
modeling.
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