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Abstract

This paper presents a new speech enhancement approach originated from factor analysis (FA)

framework. FA is a data analysis model where the relevant common factors can be extracted from

observations. A factor loading matrix is found and a resulting model error is introduced for each

observation. Interestingly, FA is a subspace approach properly representing the noisy speech. This

approach partitions the space of noisy speech into a principal subspace containing clean speech and a

complimentary (minor) subspace containing the residual speech and noise. We show that FA is a

generalized data model compared to signal subspace approach. To perform FA speech enhancement,

we present a perceptual optimization procedure that minimizes the signal distortion subject to the

energies of residual speech and noise under a specified level. Importantly, we present a hypothesis

testing approach to optimally perform subspace decomposition. In the experiments, we implement

perceptual FA speech enhancement using Aurora2 corpus. We find that proposed approach achieves

desirable speech recognition rates especially when signal-to-noise ratio is lower than 5 dB.

1. Introduction

Automatic speech recognition (ASR) systems have been employed to many real-world applications.

However, ASR systems are always degraded in presence of different noises in practical situations. To

provide good speech quality for ASR systems, the speech enhancement is an important preprocessing

procedure for noisy speech recognition. In the past decade, the researchers on speech enhancement for

robust ASR have been attracting many people working on this issue. Spectral subtraction algorithm [2]

is one of the most popular methods for speech enhancement. This algorithm has the drawbacks of

producing speech distortion and “musical noise”. The method in [11] was proposed to overcome

“musical noise” problem by using human auditory models where the perceptual effect of “musical 

noise” was reduced under predefined threshold. Below the masking threshold, the residual noise

becomes inaudible by human ear. Other researchers presented subspace approaches to balance the trade

off between speech distortion and residual noise [5] [8].

The general concept of subspace approaches is originated from that the noisy speech signal can

be projected onto two subspaces; one is the signal subspace in which clean speech signal and few

noises are included, and the other is the noise subspace that only contains noise information. In [4],

Ephraim and Van Trees proposed signal subspace approach to find optimal estimator or filter by
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minimizing the speech distortion subject to the constraint of residual noise kept under a threshold. This

work decomposed the noisy signal into signal subspace and noise subspace by using Karhunen-Loève

transform (KLT). The noisy speech signal was accordingly enhanced by using inverse KLT. Rezayee

and Gazor [8] used a diagonal matrix instead of the identity matrix for finding the linear time domain

constrained estimator of clean speech. Hu and Loizou [5] estimated the optimal filter by using common

matrix diagonalizing the covariance matrices of the clean and noise signals.

In this paper, we are presenting a FA speech enhancement using the perceptual optimization

procedure. In general, FA is a data analysis model, which is popular in societies of social science and

machine learning. FA is highly related to principal component analysis (PCA) developed for feature

dimension reduction. One major difference is that PCA represents the covariance or correlation matrix

using singular value decomposition (SVD), whereas FA incorporates a prior structure of the residual

terms. Also, the common factors extracted by FA model are useful to represent the correlation between

different features [1]. The full covariance matrix can be properly modeled. Although FA generative

model is new in the society of speech technology, some researchers have successfully combined FA

model and hidden Markov model (HMM) for building ASR system [9]. In this paper, we present a new

perceptual FA model and solution to speech enhancement. The noisy speech signal is decomposed into

principal factors and minor factors, or correspondingly projected onto two subspaces. The first

subspace represents the clean speech and the other subspace is a residual subspace containing noise and

residual speech. The decomposition can be fulfilled via eigen-analysis for covariance matrix of speech

signal. However, in conventional signal subspace approach, the smaller eigenvalues were assumed to

be zero for speech enhancement. When considering FA modeling of noisy speech, the residual

covariance matrix is assumed to be a diagonal matrix, which is practical for speech enhancement in

presence of colored noise [8]. Furthermore, we exploit the hypothesis testing for finding the optimal

FA subspace decomposition. Correspondingly, the noisy speech signal can be enhanced. Experiments

on Aurora2 corpus show that the proposed FA speech enhancement approach attains good recognition

performance for different cases of signal-to-noise ratio (SNR).

2. Subspace Approaches

2.1. Signal Subspace (SS)

Signal subspace is a popular speech enhancement approach using a linear model assuming that

K-dimensional noisy observation vector z is corrupted in a form of

SSSSSSSS nynxz W , (1)

where SSW is a MK  matrix of rank M ( KM  ) with column vectors consisting of bases of

a subspace of Euclidean space KR . This is a subspace of clean speech y . SSx denotes the
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coordinate vector and SSn denotes the noise signal. This model is established assuming that noise

signal is additive and uncorrelated with clean speech. The covariance matrix of y with rank M is

given by

T
yyy

T
x

T
y WWWRWER  SSSS SS

}{yy . (2)

Using eigen-decomposition, we obtain eigenvector matrix ][ MK
y

M
yy WWW  and diagonal

eigenvalue matrix y containing MK  zero eigenvalues. The first M eigenvectors M
yW

span the same subspace as the clean speech subspace, i.e. )span()span( ss
M

yWW  . To find the

linear filtering for speech enhancement, it is popular to optimize the perceptually meaningful criterion,

which is equivalent to minimize signal distortion while the residual noise energy is constrained under a

predefined level. After solving a constrained optimization problem, we obtain the optimal solution to

SS approach [4]

yyn
T
yyyynyy WWRWWRRRH 11

SS )()(ˆ
SSSS

   , (3)

where  is the Lagrange parameter. In (3), we express the linear estimator SŜH using

eigen-decomposition of yR .

2.2. Factor Analysis (FA)

On the other hand, FA is a general modeling approach to express an observed data vector [1]

FAFAFA nxz W . (4)

Here, the noisy speech signal z is considered with a preprocessing stage of mean removal. The basic

idea of FA is to use a factor loading matrix FAW and a common factor vector FAx to represent the

observed data z . Common factors are referred as the latent variables. The error term FAn is a

specific factor representing the noise signal and/or residual speech signal. Different from principal

component analysis (PCA) developed for dimension reduction, FA aims to extract the common factors

for data modeling. Some properties have been specified to establish FA model. First, the observation,

common factor and error term are assumed to be Gaussian distributed with zero mean

0][][][ FAFA  nxz EEE . Also, common factor and error term are uncorrelated and their

covariance matrices are diagonal, namely 0][ FAFA TE nx , M
TE Ixx ][ FAFA and
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][ FAFA
TE nn . For the case of isotropic noise, we have FA parameter KI2 , where KI

is an KK  identity matrix. Typically, FA model in (4) is similar to the linear regression model.

However, the estimation of FA and linear regression models is quite different. In linear regression

model, only LRx is unknown ( LRW is known), whereas in FA model neither FAW nor FAx are

known. We should estimate FA parameters FAW , FAn and later find FAx . There are several

approaches useful to estimate FAW . One approach was derived from probabilistic PCA model [3] [10]

using the maximum likelihood estimate. Nevertheless, FAW can be estimated via

eigen-decomposition of covariance matrix of z
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FAFA][zz
. (5)

where zW and z are eigenvector and eigenvalue matrices, respectively. Through eigenvalue

ordering, we obtain partitioned eigenvector matrix ][ MK
z

M
zz WWW  and eigenvalue matrix

][diag MK
z

M
zz

 . Factor loading matrix FAW is found using principal submatrix M
zW and

the preceding M eigenvalues in z . Or, we have )span()span( FA
M

zWW  . The covariance

matrix of error or noise term  is generated using minor submatrix MK
zW  and the last MK 

eigenvalues. Interestingly, FA parameters are estimated from two subspaces of KRz . FA can serve

as SS approach. In what follows, we will explore the link between SS and FA for data modeling and

find the solution to FA speech enhancement.

3. FA Speech Enhancement

3.1. Relation between SS and FA

Actually, the underlying concept of FA is similar to SS. Both methods decompose the signal space into

two subspaces. Using FA model, the principal subspace )(span FAW or )(span M
zW is used to

represent all observed clean and noisy data. The minor subspace )(span MK
zW  contains the

information of residual speech and noise. However, in SS approach, the signal subspace and noise

subspace represent clean speech and noise signal, respectively. The linear models of SS in (1) and FA

in (4) look similar. Typically, FA model is desirable for modeling full covariance or correlation matrix

of observed data. After eigen-decomposition, the first M common factors have high energy. They

are used for representing clean speech signal. The correlation between corresponding feature

components is significant. But, the last MK  common factors contain residual speech and noise

signal with small energy. In SS model, the last MK  eigenvectors span the noise subspace. This is

the key difference between FA and SS models. To explain this property, let us use the same factor

loading matrix FAW and common factor FAx to express the corresponding clean speech

rs
FAFAFA nxy W . (6)
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The term rs
FAn means the error due to residual speech. Then, the observed noisy speech has the form

n
FA

rs
FAFAFA nnxz W . (7)

Here, the residual speech rs
FAn and noise signal n

FAn are summed up to denote the error term of

noisy speech, i.e. FA
n
FA

rs
FA nnn  . Accordingly, the covariance matrix of noisy speech turns out

to be

nrsFAFA

FAFAFAFAFAFA

FA

]))([(

RRWRW

WWER
T

x

T
z



 nxnx
. (8)

Two covariance matrices rsR and nR corresponding to error variables rs
FAn and n

FAn are

produced, respectively. Basically, FA is a generalized data modeling approach compared to SS.

3.2. Perceptual Criterion for Speech Enhancement

We have explained how FA is used to model noisy speech data. Under this data modeling framework,

we would like to develop speech enhancement approach. Similar to SS speech enhancement, we should

adopt an objective function to be optimized to estimate the clean speech signal ŷ . A KK  matrix

FAH serves as a linear estimator or filter for speech enhancement zy FAˆ H . The residual speech

signal  due to this estimation becomes

nyK HH   n
FAFAFA )(ˆ nyIyy , (9)

where y is the speech distortion and n is the residual noise. The energies of signal distortion

and residual noise are obtained by

])()[(tr][tr FAFA
2 T

KyKy
T
yy HRHE II   , (10)

][tr][tr FAnFA
2 T

n
T
nn HRHE   . (11)

Also, from (6), we calculate the covariance matrix of clean speech y as

rsFAFA FA
RWRWR T

xy  . (12)

Notably, there is an additional term in FA model due to the residual speech. When finding FA speech

enhancement solution, such generalized model should be better for estimation of clean speech. In this
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study, we also take into account the auditory effects [6][7] while estimating the optimal filter. In

human’s auditory perception system, frequency masking is a phenomenon under which one sound can’t 

be perceived if another sound close in frequency has a high enough level. Based on the masking effects,

the residual noise is constrained to be smaller than a masking threshold rather than subtracting all noise

in the noisy speech. Additionally, human is more sensitive to the distorted sound. There is a tradeoff

between signal distortion and residual noise. Less residual noise will causes larger signal distortion,

and the optimal filter will become an identity matrix if we enhance speech signal without distortion.

According to these two properties, we adopt perceptual criterion for FA speech enhancement. Namely,

we minimize the energy of speech distortion by considering the masking effect that the energy of

residual noise should be controlled under a specific threshold. The objective function and constraint are

given by

2

FA

min yH


subject to: 22
nn   , (13)

where 2
n denotes the permissible residual noise level, 2

n is a predefined noise energy,  is an

adjustable parameter which controls the masking level and that is restricted between the range of 0 and

1. The optimum linear estimator can be solved through Lagrange optimization procedure. By

introducing the Lagrange multiplier , we can find the solution to FA speech enhancement

1
nrsFAFArsFAFAFA ))((ˆ

FAFA

 RRWRWRWRWH T
x

T
x  . (14)

The key difference between SS solution in (3) and FA solution in (14) lies in the models of clean

speech y in (1) and (6). Either MK  matrix SSW or FAW is not sufficient to represent clean

speech signal. With an additional residual speech term rs
FAn , we are able to achieve precise data model

contributed by the last MK  eigenvectors. If we neglect the residual speech in FA, clean speech

becomes FAFA xy W . The covariance matrix nR disappears in the solution. The FA solution is

reduced to SS solution.

3.3. Optimal Subspace Decomposition

Using either FA or SS, it is critical to determine the partition of principal factors (or signal subspace)

and minor factors (or noise subspace). This partition is controlled by the parameter of noise threshold

2
n . To significantly perform subspace decomposition, in this study, we employ hypothesis test

principle to estimate optimal 2
n instead of empirically assigning a value using SS approach.
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Accordingly, we are not only able to determine the dimension of principal factors but also the

parameters 2
n without using the additional empirical parameter . We are testing the null

hypothesis [1] that the last MK  eigenvalues are equal KMMH    210 : against

the alternative hypothesis 1H that at least two of the last MK  eigenvalues are different.

Assuming that eigenvalues are Gaussian distributed, we can represent the likelihood under null

hypothesis as


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 N
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2
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0 2
1
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where xxx  ii denotes the ith row of X with  XXxx 


T
N

i

T
ii tr

1

. 2 is a

diagonal matrix with its diagonal elements equal to the last MK  eigenvalues and N is the number

of training observations. )( 0HL can be arranged as
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Similarly, the likelihood under alternative hypothesis is yielded by
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We evaluate the likelihood ratio q of )( 0HL to )( 1HL . The resulting test statistic q has the

form of
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Then, the distribution of statistic qlog2 turns out to be a 2 distribution
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Finally, we find that null hypothesis 0H is rejected at a significance level  if

2
;

1

loglog)(  




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In (20),  is a sample mean of eigenvalues, and  is the degree of freedom of 2 distribution.
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4. Experiments

4.1. Speech Database and Experimental Setup

We performed speech recognition and SNR calculation using Aurora2 database for evaluating

performance of proposed speech enhancement methods. Aurora2 database consisted of English digits

and English alphabet-sequence in the presence of additive noise and linear convolutional distortion.

There were three test sets in the corpus. Set A had four noise types (subway, babble, car and exhibition

hall) that were similar to those in the training data, and set B contained four noise types (restaurant,

street, airport and station noise) different from those in the training data. An additional convolutional

channel was used in set C. All these three test sets consisted of six SNR conditions (-5 dB, 0 dB, 5 dB,

10 dB, 15 dB and 20 dB) and clean condition. Acoustic models in clean and multi-conditional noise

conditions were estimated for comparison. There were 8,440 clean training utterances. The

multi-conditional training data consisted of the same utterances artificially added with four different

noise types (subway, babble, car and exhibition hall) in five different environmental conditions (5 dB,

10 dB, 15 dB, 20 dB and clean).

Speech features consisted of 13 MFCC coefficients and energy along with the delta and

acceleration coefficients. There were 39 features extracted for each frame. In this paper, we estimated

continuous-density hidden Markov models (HMM’s) and built the recognizer using HTK toolkit

package [12]. Some parameters were used: 1) 16 states per word; 2) 3 mixture components of Gaussian

density per state; 3) only the variances of all acoustic coefficients are used; 4) optimal subspace

decomposition was done by performing hypothesis testing frame by frame and significance level 
was set to be 0.05 in multi-condition training and 0.02 in clean training. In speech enhancement

procedure, we used 40 sampling point for a frame. The filter of 4040 matrix was estimated. When

computing the covariance matrix, a window of 9 frames was used. The control parameter  was

dynamically specified according to the SNR measured in each frame. Larger  corresponded to

smaller residual noise and larger signal distortion. In the experiments, we preset the range 4~0 .

4.2. Evaluation of SNR Performance

In this subsection, we collected test sets containing six SNR conditions in Aurora2 database for

evaluation of SNR’s when applying FA speech enhancement. Assuming clean speech and noise signals

are independent, SNR formula is calculated by

 
%100

)()(

)(
log10SNR

1 1
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1 1

2

10 
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T

t

K

k
tt

T

t

K

k
t

kykz

ky
. (21)

where y is clean speech signal and z is noisy speech signal. In Figure 1, the SNR’s defined in

Aurora2 are similar to those calculated by (21). When applying FA speech enhancement, we find that

SNR’s are significantly improved for different SNR conditions. The SNR evaluation shows that FA
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Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall
Clean 98.83 98.61 98.78 99.01 98.81 99.29 99.24 99.25 99.48 99.32 99.42 99.00 99.21 99.09
20 dB 97.61 97.97 98.51 97.35 97.86 98.43 97.52 98.24 98.95 98.29 94.11 94.89 94.50 97.36
15 dB 95.09 94.20 95.71 94.82 94.96 95.36 94.35 95.32 95.68 95.18 87.96 89.45 88.71 93.79
10 dB 84.83 81.38 80.55 84.70 82.87 85.63 82.16 83.21 82.66 83.42 75.74 76.45 76.10 81.73
5 dB 63.77 59.37 48.97 56.09 57.05 63.31 54.23 60.72 54.89 58.29 54.59 51.72 53.16 56.77
0 dB 35.12 35.04 22.70 25.15 29.50 37.21 28.48 35.88 26.94 32.13 29.44 26.90 28.17 30.29
-5 dB 15.08 19.17 11.09 12.47 14.45 18.36 15.30 18.19 14.56 16.60 14.09 13.75 13.92 15.21

average 70.05 69.39 65.19 67.08 67.93 71.08 67.33 70.12 67.59 69.03 65.05 64.59 64.82 67.75

Aurora 2 Clean Training - Results (Baseline)
A B C
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approach does suppress the noise level. Such suppression does not assure small distortion of speech

signal itself. Namely, over suppression of noise in noisy speech will cause the series distortion of

speech signal at the same time. To verify the effectiveness of using FA approach, we further conduct

experimental comparison for the application of noisy speech recognition using Aurora 2 database.

Figure 1. SNR improvement using FA speech enhancement

4.3. Evaluation of Speech Recognition Performance

Table 1 reports the baseline word accuracy (%) results of using clean training set in Aurora2, Tables 2

and 3 show the results after enhancement using signal subspace (SS) and factor analysis (FA)

enhancement. On average, in Tables 1 and 3, the relative word error rate is improved by 14.88%,

specifically in 0 dB (29.01%), -5 dB (24.88%), and 5 dB (18.18%). Error reduction is achieved for

cases of Car (26.01%), Subway (19.47%), and Station (19.34%) environments. Figure 1 shows the

performances for baseline system and two enhancement approaches in different environments.

Table 1. Baseline results for clean training
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Table 2. Signal subspace enhancement for clean training

Table 3. Factor analysis enhancement for clean training

Figure 2. Comparison of different environments for clean training

In Figure 2, we find that the proposed FA enhancement performs better than SS enhancement

especially in presence of larger background human voices, e.g. the noise conditions of exhibition and

restaurant. Experimental results using multi-condition training for baseline system, signal subspace and

factor analysis enhancement are also reported in Tables 4, 5 and 6, respectively.

Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall
Clean 99.26 99.06 99.14 99.51 99.24 99.26 99.24 99.14 99.51 99.29 99.32 99.00 99.16 99.24
20 dB 98.28 97.40 98.09 97.81 97.90 97.97 97.67 97.55 97.55 97.69 97.42 96.55 96.99 97.63
15 dB 95.52 92.87 96.69 94.48 94.89 94.32 93.23 94.18 94.18 93.98 95.33 93.74 94.54 94.45
10 dB 87.69 81.89 90.34 85.34 86.32 84.07 83.92 84.46 84.46 84.23 87.81 83.65 85.73 85.36
5 dB 74.70 64.06 74.59 62.94 69.07 65.18 67.02 67.52 67.52 66.81 73.07 65.63 69.35 68.22
0 dB 52.16 39.84 45.45 38.29 43.94 41.23 39.02 43.66 43.66 41.89 46.05 39.21 42.63 42.86
-5 dB 28.31 21.49 20.34 16.11 21.56 17.93 16.84 21.47 21.47 19.43 19.62 16.14 17.88 19.97

average 76.56 70.94 74.95 70.64 73.27 71.42 70.99 72.57 72.62 71.90 74.09 70.56 72.32 72.53

Aurora 2 Clean Training - Results (SS Enhancement)
A B C

Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall
Clean 99.32 99.03 99.19 99.48 99.26 99.32 99.21 99.22 99.54 99.32 99.39 98.94 99.17 99.26
20 dB 98.31 97.88 98.45 97.84 98.12 98.25 97.85 98.06 98.80 98.24 97.54 96.80 97.17 97.98
15 dB 95.95 93.86 96.72 95.62 95.54 95.15 94.77 95.14 95.99 95.26 95.30 93.86 94.58 95.24
10 dB 89.04 83.83 91.47 88.98 88.33 86.06 85.73 85.45 86.76 86.00 88.21 83.49 85.85 86.90
5 dB 77.04 66.08 76.53 68.22 71.97 68.25 69.80 69.79 72.72 70.14 74.74 66.81 70.78 71.00
0 dB 55.76 42.38 47.27 43.26 47.17 44.34 41.05 44.23 41.59 42.80 47.44 40.93 44.19 44.83
-5 dB 28.80 23.88 18.67 17.49 22.21 23.18 19.14 24.31 20.55 21.80 20.36 17.32 18.84 21.37

Average 77.75 72.42 75.47 72.98 74.66 73.51 72.51 73.74 73.71 73.37 74.71 71.16 72.94 73.80

Aurora 2 Clean Training - Results (FA Enhancement)
A B C
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Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall
Clean 99.02 98.73 98.88 99.01 98.91 99.02 98.91 98.87 99.01 98.95 98.86 98.85 98.86 98.92
20 dB 98.43 98.04 98.27 97.99 98.18 98.71 98.46 98.63 98.83 98.66 97.76 97.64 97.70 98.28
15 dB 97.42 97.82 97.88 97.16 97.57 98.43 97.28 98.21 98.46 98.10 96.96 96.31 96.64 97.59
10 dB 95.00 96.43 95.97 94.17 95.39 96.90 95.89 96.96 97.04 96.70 94.20 93.68 93.94 95.62
5 dB 89.28 89.48 88.07 88.06 88.72 91.31 88.88 92.48 89.63 90.58 82.65 83.22 82.94 88.31
0 dB 67.39 65.69 53.50 64.89 62.87 71.26 66.60 72.08 64.49 68.61 47.44 56.65 52.05 63.00
-5 dB 25.15 30.14 19.59 24.56 24.86 37.95 30.59 35.73 27.21 32.87 18.36 26.00 22.18 27.53

average 81.67 82.33 78.88 80.83 80.93 84.80 82.37 84.71 82.10 83.49 76.60 78.91 77.76 81.32

Aurora 2 Multicondition Training - Results (Baseline)
A B C

Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall
Clean 98.86 98.85 98.84 99.04 98.90 98.86 98.97 98.84 99.04 98.93 98.68 98.94 98.81 98.89
20 dB 98.77 98.25 98.60 98.09 98.43 98.80 98.43 98.72 98.95 98.73 98.00 98.04 98.02 98.47
15 dB 97.45 97.73 98.18 97.25 97.65 98.25 97.46 98.24 98.52 98.12 96.99 96.40 96.70 97.65
10 dB 96.28 95.37 96.48 95.34 95.87 95.43 95.77 96.60 96.82 96.16 95.52 94.07 94.80 95.77
5 dB 90.54 89.45 91.74 90.03 90.44 86.61 88.94 91.23 90.74 89.38 87.96 86.19 87.08 89.34
0 dB 71.72 66.75 74.89 67.23 70.15 70.03 73.43 76.44 78.46 74.59 72.46 60.37 66.42 71.18
-5 dB 49.19 35.07 50.40 47.82 45.62 41.93 43.77 44.94 45.82 44.12 41.20 36.67 38.94 43.68

average 86.12 83.07 87.02 84.97 85.29 84.27 85.25 86.43 86.91 85.72 84.40 81.53 82.96 85.00

Aurora 2 Multicondition Training - Results (SS Enhancement)
A B C

Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Overall
Clean 98.99 98.70 98.87 99.04 98.90 98.99 99.03 98.87 99.07 98.99 98.86 98.97 98.92 98.94
20 dB 98.53 98.22 98.36 98.06 98.29 98.80 98.52 98.72 99.01 98.76 98.13 98.04 98.09 98.44
15 dB 97.85 97.52 98.30 97.19 97.72 98.40 97.52 98.33 98.58 98.21 96.93 96.70 96.82 97.73
10 dB 96.84 96.16 96.99 95.28 96.32 96.53 96.13 96.99 97.44 96.77 95.73 94.56 95.15 96.27
5 dB 91.00 90.60 92.54 89.95 91.02 89.59 90.57 92.25 92.22 91.16 88.30 87.30 87.80 90.43
0 dB 77.03 68.26 79.51 67.48 73.07 73.75 75.18 78.97 78.68 76.65 73.75 64.72 69.24 73.73
-5 dB 50.51 41.38 50.43 47.95 47.57 44.89 45.50 48.23 47.36 46.50 41.97 37.36 39.67 45.56

Average 87.25 84.41 87.86 84.99 86.13 85.85 86.06 87.48 87.48 86.72 84.81 82.52 83.67 85.87

Aurora 2 Multicondition Training - Results (FA Enhancement)
A B C

Table 4. Baseline results for multi-condition training

Table 5. Signal subspace enhancement for multi-condition training

Table 6. Factor Analysis enhancement for multi-condition training

When looking at Tables 4 and 6, we find that the relative word error rate is improved by 22.15%. The

performances are improved in 5 dB (32.92%), 10 dB (28.30%), 20 dB (23.47%) and 15 dB (23.24%).

The error reduction is obtained for Car (29.08%), Subway (28.72%), and Exhibition (23.85%)

environments. The relative improvement percentage at -5 dB SNR in clean training (7.27%) is much

less than that in multi-condition training (24.88%). This is because that well-trained clean models could

not predict unknown noise influence. Performances for baseline and two enhancement approaches in

different environments using multi-condition training are also shown in Figure 2.

From the experiments, we find that in noise environments of subway, car, and station, the speech

recognition improvements were larger compared to other noise environments. This is because that

machine noises are quite different from human voice noises. More human sound in background noise

obtains fewer improvement using proposed enhancement methods. In this work, we evaluate the

performances of FA enhancement using SNR measures and speech recognition rates. The experiments
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show that FA enhancement is better than SS enhancement. This implies that a generalized model is

desirable for representing signals. Moreover, the optimal subspace decomposition by hypothesis testing

is used frame by frame to find the optimal filter with suitable dimensions of residual subspace. Such

technique is also beneficial to obtain better performance than SS enhancement.

Figure 3. Comparisons for different environments (multi-condition training)

5. Conclusions

In this paper, we have presented FA enhancement of noisy speech signal for application of speech

recognition. Interestingly, we built the bridge between FA and signal subspace approaches.

Experimental results showed that the proposed approach improved the performance of ASR systems

especially in low SNR environments. Compared to other subspace approaches, we presented a novel

hypothesis testing approach to optimally perform subspace decomposition. In the future, we will extend

this speech enhancement approach by considering the phase effect. Also, we will also improve FA

framework through developing new estimation criteria for factor loading matrix. Additionally, we will

also explore FA approaching to other speech related applications, e.g. speaker adaptation and acoustic

modeling.
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