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Abstract
Recently, shallow parsing has been applied to various information processing systems, such as
information retrieval, information extraction, question answering, and automatic document
summarization. A shallow parser is suitable for online applications, because it is much more efficient
and less demanding than a full parser. In this research, we formulate shallow parsing as a sequential
tagging problem and use a supervised machine learning technique, Maximum Entropy (ME), to build a
Chinese shallow parser. The major features of the ME-based shallow parser are POSs and the context
words in a sentence. We adopt the shallow parsing results of Sinica Treebank as our standard, and
select 30,000 and 10,000 sentences from Sinica Treebank as the training set and test set respectively.
We then test the robustness of the shallow parser with noisy data. The experiment results show that the

proposed shallow parser is quite robust for sentences with unknown proper nouns.
1. Introduction

Parsing is a basic technique in natural language processing; however, a full parser is usually
costly and slow. Recently, shallow parsing has been applied to various information processing systems
[12]. Compared to the performance of full parsers, a shallow parser is much faster and the parsing
result is more useful for various applications, such as information retrieval and extraction, question
answering, and automatic document summarization. In this paper, we adopt a machine learning
approach to the Chinese shallow parsing problem.

Chinese full parsing is very challenging,[18, 22] because it is difficult to achieve high accuracy,
and the performance is not suitable for online applications. Shallow parsing of Chinese, on the other
hand, is promising and desirable in terms of efficiency. Researchers in Beijing, Harbin, Shenyang, and
Hong Kong have also developed related techniques [10, 15, 16, 20, 21]. Most of these works use
machine learning approaches, instead of the rule-based approach used in full parsing. Popular machine
learning methods such as SVM, CRF, and ME, have been tested. The parsing speed of each approach is

fast and the parsing accuracy is acceptable.



Currently, there is no standard for Chinese shallow parsing. Li et. al. [9] developed a Chinese
shallow parsed treebank to extract Chinese collocations automatically and built a large collocation bank.
There are also some works on a standard for Chinese shallow parsing [9, 19, 20]. Nevertheless, the
POS standard and vocabulary in each approach are different; thus, between simplified Chinese and
traditional Chinese, we cannot adopt their standard for simplified Chinese to traditional Chinese.
Instead, we use the first level of the parsing results of Sinica Treebank as our shallow parsing standard
[4]. Originally, Sinica Treebank was designed to provide full parsing results, whereby sentences could
be labeled with POS tags and the full parsing structure. There are 54,000 sentences in Sinica Treebank,
from which we randomly selected 30,000 and 10,000 sentences as the training set and test set
respectively.

Since there are many unknown words in Chinese [11], a Chinese shallow parser must be robust
against such words [22]. For example, it is not hard to correctly chunk the sentence “F.!,’ﬂ%ﬁ‘%/ﬁ%“ﬁ p/
ﬁﬁ/?ﬁﬂﬁ%/’ﬁi into “ ,Iﬁiﬂﬁiﬁﬁ?ﬁfﬁﬂﬁ F%‘/NP Z49/Dd =1{ERS /DM 2B /VP”, if we know
that “fégj HTEE is a proper noun. However, if the name is unknown, it could be split into three single
characters and tagged with the three POS of the single characters, i.e., “ﬁgjlﬁﬁﬁ% [VH13/Dd/P15]". It
might then be incorrectly chunked as "F.!,'JEWNP Fﬁ%&‘&i‘fﬁl@% F%‘/PP Z49RIDd Z1fESS /DM ZEH VP,
In this research, we simulate unknown words by adding some noises to the corpus in order to test the
robustness of the shallow parser. Since new proper nouns are normally unknown, we design three ways

to add noises to the training and testing sets by treating proper nouns as unknown words.
2. Shallow Parsing Standard

Sinica Treebank provides a full parse tree for each sentence. Here, we use the first-layer parsing
results of Sinica Treebank as the standard for shallow parsing. Instead of using all the phrase tags in
Sinica Treebank, we annotate five of them for chunking; all other phrases (including single words not
in any phrase) are tagged as others (X). The five tags, namely, noun phrase (NP), verb phrase (VP),
preposition phrase (PP), geographic phrase (GP), and clause (S), are the major tags in Sinica Treebank,
and therefore play significant syntactical roles. Thus, the constituents of the root node of a parse tree

are NP, VP, PP, GP, S, and X. Table 1 lists examples of the six types of constituent.

Table 1. Chunk Tags

Chunk Tag Description Example
NP Noun Phrase it & 1 py /2= [DM/DE/ Nab]
VP Verb Phrase % [ Bk / 2k [VD1/ Nad/ Nac]
PP Preposition Phrase | = / %% / [/ f[t [P21/Nab/Nab/Ncda]
GP Geographic Phrase | — it / E#] / I'Ji£ [DM/Nac/ Ng]
S Clause g1/ S | LA [Nab / Nab/ VHIL]
X Others O/ %/ 2% [DM/Caa/DM]




3. A Maximum Entropy-based Shallow Parser

Parsing is a fundamental technique in natural language processing, the results of which can be
used to improve various natural language tasks, such as word-sense disambiguation (WSD) [3] and
part-of-speech (POS) tagging [12].

Many natural language processing tasks, such as part-of-speech tagging, named-entity
recognition, and shallow parsing, can be viewed as sequence analysis tasks. Shallow parsing identifies
the non-recursive core of each phrase type in a text as a precursor to full parsing or information
extraction [1, 6]. The paradigmatic shallow parsing problem is called NP chunking, which finds the
non-recursive cores of noun phrases called base NPs. Ramshaw and Marcus introduced NP chunking as
a machine-learning problem [14].

Machine learning techniques, such as maximum entropy (ME) and conditional random fields

(CRF), are quite popular for sequential tagging. We adopt ME to build a robust Chinese shallow parser.
3.1 The B-1-O Scheme of Our Shallow Parser

In this work, we regard each word as a token, and consider a test corpus and a set of n phrase
categories. Since a phrase can have more than one token, we associate two tags, x: x_begin and
X_continue, with each category. In addition, we use the tag others to indicate that a token is not part of
a phrase. The shallow parsing problem can then be redefined as a problem of assigning one of 2n + 1
tags to each token. This is called the B-1-O scheme. There are 5 named entity categories and 11 tags:
NP_begin, NP_continue, VP_begin, VP_continue, PP_begin, PP_continue, GP_begin, GP_continue,

S_begin, S_continue, and X(others).
3.2 Maximum Entropy Formula

ME is a flexible statistical model that assigns an outcome to each token based on its history and
features [2]. The outcome space is comprised of the tags for an ME formulation. ME computes the
probability p(olh) for any o from the space of all possible outcomes, O, and for every h from the space
of all possible histories, H. A history is composed of all the conditioning data that enables one to assign
probabilities to the space of outcomes. In shallow parsing, history can be viewed as all the information
derived from the test corpus relevant to the current token.

The computation of p(o|h) in ME depends on a set of binary-valued features, which is helpful in
making a prediction about the outcome. For instance, one of our features is as follows: when the
current token is a verb, it is likely to be the leading character of a verb phrase. More formally, we can

represent this feature as

f(h,o)={

Here, Current-token-verb(h) is a binary function that returns the value true if the current token of the

1:if Current - token - verb(h) = trueand 0 =VP _begin @
0:else

history h is a verb.

Given a set of features and a training corpus, the ME estimation process produces a model in



which every feature f; has a weight « ;. This allows us to compute the conditional probability as

follows:

ol =251, @

where Z(h) is a normalization factor. Intuitively, the probability is the multiplication of the weights of
active features (i.e., those f; (h,0) = 1). The weight «a;is estimated by means of a procedure called
Generalized Iterative Scaling (GIS) [8], which improves the estimation of the weights at each iteration.
The ME estimation technique guarantees that, for every feature f;, the expected value of «; will be
equal to the empirical expectation of «; in the training corpus. ME allows the designer to concentrate
on finding the features that characterize the problem, while letting the ME estimation routine deal with

assigning relative weights to the features.
3.3 Decoding

After an ME model has been trained and the proper weight «; has been assigned to each feature
f;, decoding (i.e., marking up) a new piece of text becomes a simple task. First, the model tokenizes the
text and preprocesses the test sentence. Then, for each token, it checks which features are active and
combines the «; of the active features according to Equation 2. Finally, a Viterbi search is run to find
the highest probability path through the lattice of conditional probabilities that does not produce any

invalid tag sequences. Further details of the Viterbi search can be found in [17].
4. Experiment

By comparing models with and without noisy training data, we can determine whether our
Chinese shallow parser is noisy-data-tolerant. In this section, we describe how we add noisy data to

maximum entropy models and evaluate the tolerance of our system to Chinese chunking.
4.1 Data and Features

Sinica Treebank contains more than 54,000 sentences, from which we randomly extract 30,000
for training and 10,000 for testing. The tokenized results and the corresponding part-of-speech
sequences of these sentences are extracted into a feature file, and the top-level chunks of the parsing
tree structure can be taken as the standard for training and evaluation. The information in the feature
file is translated into machine learning features by ME model in both the training and testing phrases.
The features we adopted are: words, adjacent characters, prefixes of words (1 and 2 characters),
suffixes of words (1 and 2 characters), word length, POS of words, adjacent POS tags, and the word’s
location in the chunk it belongs to.

To analyze the performance of our shallow parser under noisy conditions, we build a standard
model and various noisy models. Training data consisting of the tokenization and POS information
derived from the manually annotated Sinica Treebank is used as the standard model in our experiments.

The accuracy of chunking in this model is then compared with that of models containing noise to



observe the difference.
4.2 Noise Model Generation

The most important issue in noisy model generation is how to mix noisy features with correct
features as smoothly as in a real parsing system. We design three methods for adding noise to generate
different types of models with noisy tokenization and POS sequences.

The first two approaches are based on unknown word replacement. We find that unknown
words are one of the major causes of noisy data in real world system processing, because most
unknown words are proper nouns. Theoretically, we can pick a certain number of proper nouns in the
selected data and substitute them with noisy data to simulate real world input. In our experiment, “Nb”
and “Nc”, which are defined as “proper nouns” and “proper location nouns” respectively in the Sinica
Treebank tagging guideline [5], are chosen as replacement targets. Words with these two target POS
are regarded as replacement target strings and replaced by noisy data.

We adopt two types of noisy data for unknown word replacement. The first is the split character
sequence of a replacement target string in a sentence. Initially, we extract the correct tokenization
results and POS sequences of all data in the Sinica Treebank with “Nb” and “Nc”. Then, wherever
applicable, we split the replacement target string in a sentence into single Chinese characters. The
corresponding POS tag of each split character is re-assigned by selecting the most frequent POS tags of
these single characters in Sinica Treebank. For example, “[% </ 1fk” (Malaysia) would be split into
“RV7, 77 7P, and MER”, - and the original POS tag “Nca” would be replaced by the pos tags of four
single characters: “Nab”, “Dbab”, “Ncda”, and “Nca”. In this experiment, we control the amount of
noisy data in models to observe the relation between the percentage of imprecise data and the chunking
performance. The model generated by this approach is called a Type 1 noise model. Another approach,
called the Type 2 noise model, tokenizes the replacement target with AUTOTAG, which may produce
segmenting boundaries and POS tags that differ from those in Sinica Treebank. The information is then
used as noisy features and replaces the target string. For instance, the replacement target string ““~f 1-&
F” with POS tag ”Nb” would be tagged by AUTOTAG as ““~F I/Nb” and “£ E//Nb”. The above
noise-adding approaches are used to generate training data, as well as various kinds of noisy
information in the test sets.

In addition, we adopt an automatic tool, CKIP AUTOTAG [7], to obtain the tokenization
information and POS features for generating models. This is a Chinese tokenizing tool that can deal
with word segmentation in both the training and testing sets. CKIP AUTOTAG provides the POS
sequences of the sentences. The tokenized sentences and POS sequences produced by AUTOTAG are

used to generate feature files for ME processing.
5. Results and Discussion

In our experiment, we adopt the B-1-O scheme to identify the boundaries of Chinese chunks and

the position of each element word in the chunks. In addition, we employ the following four standards



when calculating the accuracy of Chinese shallow parsing: evaluation by token, by chunk boundary, by
chunk category sequence, and by chunks. Token evaluation is based on the number of Chinese words.
All words in the test data can be verified independently to determine if they have the correct boundaries
and belong to the right chunks. Evaluation by chunk boundary only checks the boundaries of each
chunk, while evaluation by chunk category sequence only checks if all the chunks in a sentence can be
identified successfully and disregards the constituents. By contrast, in chunk evaluation, the basic unit
is the whole chunk, and only a chunk with the right constituents and tagged with proper categories can
be considered correct. We use an example to demonstrate the evaluation process. The input sentence is
LA oy e s 28R, which consists of five tokens; and the standard parsing result is “’] ¥
% INP #i55/VC /NP +-2838%/VP”, which contains four chunks. The parsing result we obtain
from the system is “’]- 4% /NP $15%/VC /NP 9</Db =8¢ /VE”, which contains five chunks. In
this case, the accuracy of the chunk boundary and the chunk category are both 3/4=0.75, because the
first three chunks in the sentence have the correct boundaries and phrase tags, and the last VP chunk is
separated by two units. The token number in this sentence is 5 and the last two tokens have incorrect
phrase category tags. Therefore, the accuracy of the token is 3/5=0.6. In chunk evaluation, three of the
four chunks are identified successfully and the chunk accuracy is 3/4=0.75. We adopt these evaluation

methods in all the experiment configurations in Tables 2 to 5.
5.1 Performance on Noisy Data

Table 2 shows the accuracy rates using Type 1 noisy models with different scales of noisy data
for chunking clean test data. The columns show the percentage of ‘Nb’ and ‘Nc’ replaced by single
character noisy data in the training model, and the rows indicate the four evaluation methods. We find

that the accuracy in this series decreases slightly, while the percentage of single character noisy data

increases.
Table 2. Results of chunking clean test data with the Type 1 noise model
Boundary Category Tokens Chunks

0 (%) 84.83 70.10 69.14 70.47
10 (%) 84.74 69.92 69.04 70.30
20 (%) 84.80 69.94 69.03 70.26
30 (%) 84.77 69.88 69.10 70.20
40 (%) 84.70 69.77 68.97 70.13
50 (%) 84.64 69.65 69.02 70.00
60 (%) 84.56 69.57 68.78 69.82
70 (%) 84.42 69.39 68.76 69.59
80 (%) 84.53 69.67 68.99 69.77
90 (%) 84.38 69.44 68.58 69.72
100 (%) 84.26 69.51 68.57 69.75




Table 3 shows the accuracy rates using the Type 1 model with different scales of noisy data for
chunking test data with single character noise (Type 1). It is quite interesting that the curve is not
monotonically increasing or decreasing. This indicates that the accuracy in this series decreases until
the percentage of noise reaches 60%, and then it increases. Figures 1 to 4 show the differences between
the clean test data and the noisy test data in Tables 2 and 3. We can observe the trends in the experiment

results more intuitively.

Table 3. Results of chunking test data containing Type 1 noisy data with the Type 1 noise model

Boundary Category Tokens Chunks

0 (%) 83.73 69.09 65.16 66.51
10 (%) 83.65 69.00 65.33 66.36
20 (%) 83.72 69.11 65.34 66.30
30 (%) 83.69 69.20 65.37 66.27
40 (%) 83.62 69.14 65.42 66.25
50 (%) 83.58 69.05 65.52 66.13
60 (%) 83.57 69.07 65.36 66.00
70 (%) 83.52 69.24 65.70 66.07
80 (%) 83.63 69.46 65.83 66.25
90 (%) 83.65 69.49 65.69 69.30
100 (%) 83.77 69.67 65.85 66.42
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Figure 1. Evaluation of the boundaries in different experiment configurations
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Figure 4. Evaluation of chunks in different experiment configurations

Table 4 shows the accuracy rates using the Type 2 noise model with and without tokenized strings
for chunking clean test sentences and test data with tokenized strings. There are four configurations:

* C-C: Using a clean training model and clean test data.

* C-N: Using a clean training model and noisy test data in which all ‘Nb’ and “‘Nc’ are replaced by
tokenized results.

*N-C: Using a training model with noisy data in which all ‘Nb’ and ‘Nc’ are replaced by the
tokenized results of chunking clean test data.

* N-N: Both the training model and the test data have noisy data in which all ‘Nb’ and ‘Nc’ are

replaced by tokenized results.

Table 4 also shows that noisy training data yields better accuracy for both clean and noisy test data,
although the difference is quite small.

Table 4. Results of chunking with the Type 2 noise model

Boundary Category Tokens Chunks
Cc-C 84.83 70.10 69.14 70.47
C-N 84.84 70.09 69.04 70.37
N-C 84.89 70.13 69.15 70.51
N-N 84.90 70.11 69.02 70.38

Table 5 shows the accuracy rates using the model generated by AUTOTAG-parsed data and
Sinica Treebank chunking tags. Both the training and the test sets are preprocessed by AUTOTAG. This

experiment is designed for open testing; thus, we can use the AUTOTAG program to tokenize any



sentence and give it POS tags. However, compared to the standard model, the chunking accuracy is

lower. The parsing results of the AUTOTAG-parsed model and the Type 2 noise models are shown in

Figure 5.
Table 5.  Accuracy using the model generated by AUTOTAG-parsed data
Boundary Category Tokens Chunks
Fully AUTOTAG 81.42 64.81 61.80 61.30
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Figure 5. Comparison of various experiment configurations using tokenized string noisy data (the
Type 2 noise model) and the AUTOTAG-parsed model

In Tables 6, 7, and 8, we give examples of the correct and incorrect shallow parsing results of
four sentences. In each table, the left column contains the original sentences tokenized and tagged with
POS tags; the center column shows the standard chunking result from Sinica Treebank; and the right
column shows the shallow parsing result of our system. Table 6 shows the parsing examples with Type
1 noise. The shallow parsing results of the first two sentences are correct, while those of the last two

sentences are incorrect.

Table 6. Shallow parsing examples with Type 1 noise

Sentence and POS sequences with Type | Chunking standard from Chunking results of our
1 noise Sinica Treebank system
K 'I‘%/%%@/&/ﬁiﬁ/ﬂllfll/@l/*/@/'] T GINP F’}?ﬁﬂl T EIINP F’}?ﬁfpf[[
LR L AR Pl [ [ SUPP ALV | B[k ] 3PP ALV i
[Nab/Nac/P21/Nca/Nab/Caa/Na/Ncb/ | &l iiAE/NP FE R EFE/NP
VH13/Nab/Nac/V_11/VC2/DE/Nac]




R D IEUR BRIV | ZE R O A RRIPP T | ZE/P3 1 N BT A /NP
[P35/Ng/Nca/Caa/Nca/Nes/Nab/VC1/ | IVC [fIffil fi]/GP “£IVC ([l TGP
Nhac/Ng]
FIAIAR O RLEGR IR EO=| F S VNP R LIV | F1Ae/Ch SAE[VINP RV
> FURFHLI Y= 2 /NP FUR BRIy = 2 /NP *
[Cbbb/VC31/DE/V_11/VH11/Dd/Nab/

\-lm}

Nad/Ncda/DE/Nab]
FRERIZ L IBEMERIE | FRIERT Y RINP | FRIER YR NP
[Nad/Nab/Nbc/Nab/Nab/VA11/VE2] | EJ/VA FVP VP *

Table 7 shows the parsing examples with Type 2 noise. The shallow parsing results of the first

and the last sentences are correct, while those of the second and the third sentences are incorrect.

Table 7. Shallow parsing examples with Type 2 noise

Sentence and POS sequences with Type | Chunking standard from Chunking results of our
2 noise Sinica Treebank system
E3 ‘l@/%%/&/fﬁﬁ/ﬂllfl@l/“‘\ e/ [ G| b (TSNP T F",fﬁﬂ[ ¥ EF GNP T ’F‘[fﬁﬂlf[[
TR/ A FIBS A EE [ 3PP RLIV_ | B [EE /] SU/PP hLIV_ i
[Nab/Nac/P21/Nca/Caa/Nc/Nc/Nac/V_ | E6vHsEFA/NP eI AH/NP
11/VC2/DE/Nac]
E eV R L R I E S FIARRIPP T | ZE/P3 I1E N B4 IR INP
[P35/Nba/Caa/Nc/Na/VC1/Nhac/Ng] | /VC (fIf{iV f]/GP +/VC IV [#IIGP *
Fi itl%éiﬂlﬁﬂlﬂ_/gﬁtjgﬂ BLBR/FV/= | F1ASRYINP RLIV_ | F1/Ch ARYAVINP £V
= gg{%ﬁ(g{@ﬁa:’ /NP f;l;{ﬁ'ﬁ, alﬁ\[ﬁ@f:ﬂ%/Np *
[Cbbb/VC31/DE/V_11/VH/Na/Nba/D
E/Nab]
%_ﬁj/ﬁ&%/ﬂ/ifﬁ@ﬂd?ﬁ FENES P BINP if’!T FEIES = Y BINP ifﬁf'é'
[Nad/Nab/Nb/Nb/VA11/VE2] 1 /VA VP F/VA VP

Table 8 shows the parsing results using AUTOTAG-parsed training data and test data. The results
of the first and last sentences are correct, while those of the second and the third sentences are incorrect.
We replace the original word segmentation and POS tags of all the sentences with AUTOTAG-parsed
word segmentation and POS tags. The word segmentation of the last sentence provided by AUTOTAG

is incorrect; however, the chunking result is correct.

Table 8. Shallow parsing examples with AUTOTAG-parsed training data and test data

AUTOTAG-parsed Sentence and POS Chunking standard from Chunking results of our

sequences Sinica Treebank system
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The experiment results show the noise-tolerance of our Chinese shallow parser with two different
kinds of noise from unknown proper nouns. The system’s performance is only degraded slightly when
“H A R uf L AR 5

is split into two characters and assigned with incorrect POS tags, can still be identified. However,

noisy data is added. Most sentences, such as in which “'F"[
S
the token accuracy is a little lower than the chunk accuracy, which indicates that our system needs to be
improved for chunking longer phrases. In contrast, the chunking accuracy obviously decreases if
models fully generated by AUTOTAG-parsed data are used. The difference between the AUTOTAG
and Sinica Treebank tag sets probably causes the accuracy to decrease. Furthermore, this suggests that,
while the shallow parsing system can deal with unknown nouns, it has difficulty dealing with other
kinds of noisy data. For example, data preprocessing errors, such as, incorrect tokenization or wrong
tagging in other POS categories, affect the performance of shallow parsing substantially We can not
comment on which part-of-speech tags are the major factors in Chinese chunking without conducting

additional experiments.
5.2 Use of Our Shallow Parser on News Articles

For the first application of our shallow parser, we collect some news articles as the test set. The
articles did not have standard word segmentation, POS tagging, and parsing results; therefore, we
cannot report on the accuracy. However, we find the results interesting. Some examples are given in
Table 9. The left column shows the original sentences tokenized and tagged with POS tags by
AUTOTAG. The right column shows the shallow parsing results using our system.

One interesting point is that the shallow parser tends to group named entities into a phrase.
Therefore, the shallow parsing result can be used as a feature for boundary detection in named entity
recognition (NER). In sentence 1, “f| lfﬁ, " is grouped as one phrase, and in sentence 9, “f[ 15 - f'J
88 F Z7E%" is grouped as one phrase, W|thout first recognizing that “f| &kt * F fil” is an entity by NER.
Another example, in sentence 2 is that “2F# vt [L58[10 = ffi-“#1” is grouped as one phrase, without

first recognizing that "%52 " is a company name.



Table 9. Shallow parsing results for news articles

Tokenization and POS of Sentences Shallow Parsing Result
NN FERIR N R SR AR N O e 2 &
[Nc/Nc/SHI/Nc/Na/Na] /NP
2| A/E TR TSP = RUSARE IR T ST | AR (R Y S RS EIUNP E T
[VJ/ Nc/P/Nc/DE/Nb/Na/V_2/Neu/Nf/SHI/Na/Na] FRINP L+ ek SEINP

3 | NBR/TSE B TR ] [N/DIV_2IVHIVCINa] | NEINP [ F ) REST R 2 /NP
4 | S TRLIFITHCT S = T S S| SN RL IR R T SNP

[Da/SHI/Nb/Na/Na/Nb/D/VC/Na] it '[F:?f*l /PP

5 | 7 B8 B /0L AT R | 7 SREINP R
[Nega/Nc/D/VH/Na/VH/DE/Na] F,J%E/NP

6 | /- #/i/ﬁx&[/w»/m/wij/ [ 17 BE T | S~ 2 INPRL ﬁqﬁﬁﬁ%f&?%ﬁ[ﬂ
- = HE 9 T - /NP
[Nd/Nd/SHI/Nc/Na/Dfa/VH/PAUSECATEGORY/Chb
IVKIVH/DE/Nd]

7| 19 RGO PRl ETE) [ND/Na/VC/Na/VH] 19 JEEINP fI LT INP

8 | HJITEA 2 RS 5 BTG ISR PR R 2 S UR S KLPP
[P/Na/Caa/VH /Na/VCL/Nc/Ned] Ik HINP

O | lisht/ 2t Fil/88) & Zrgk/ [t WAL E[/140 fB/F 1% Ty | [l Rl 88 F R7ERINP it W E]
[Nc/Nc/Neu/Na/VK/VI/Neu/Nf/Ng] 140 @A VP % 1

10| {3 BHI=1/ilhEi /= 17 128 [NC/DIVLINGIVA] FHPINP =1 [ = 17 RAEIVP

11| B IR o SR A f?/i’é&%’?/(/Fed/)/Zl FI/ | 45~ INP i S s
FOIFRIERTY gy F’ﬁ(Fed)Zl ; Ipq%ua:yqa*/NP

[Nc/Na/VI/Nc/Na/VC/INa/PARENTHESISCATEGOR
Y/FW /PARENTHESISCATEGORY/Nd/DE/Na/Na]
12| T IR LR L L) | RS EEUNP o E -
[Nc/Na/Caa/Na/D/V_2/A/DE/Na] Y= IH/NP

6. Conclusion and Future Works

In this paper, we propose a Chinese shallow parser that can chunk Chinese sentences into five
chunk types. We test the noise tolerance of the shallow parser and found that the accuracy of data with
simulated unknown words only decreases slightly in chunk parsing. We also test our Chinese shallow
parser on an open corpus, and found that it yields interesting chunking results.

Tolerance of unknown words is an essential characteristic of a Chinese shallow parser. In this
paper, we demonstrate our parser’s robustness in handling noisy data from proper nouns. However, we
could not verify the robustness of chunking noisy data from other kinds of POS. Thus, adopting other

POS systems, such as the Penn Chinese Treebank tagset, for Chinese shallow parsing could prove both



interesting and useful. In the future, we will improve our model by adding more types of noise, such as

random noise, filled noise, and repeated noise proposed by Osborne [13]. In addition to Sinica

Treebank, we will extend our training corpus by incorporating other corpora, such as Penn’s Chinese
Treebank.
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