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Abstract 

Recently, shallow parsing has been applied to various information processing systems, such as 

information retrieval, information extraction, question answering, and automatic document 

summarization. A shallow parser is suitable for online applications, because it is much more efficient 

and less demanding than a full parser. In this research, we formulate shallow parsing as a sequential 

tagging problem and use a supervised machine learning technique, Maximum Entropy (ME), to build a 

Chinese shallow parser. The major features of the ME-based shallow parser are POSs and the context 

words in a sentence. We adopt the shallow parsing results of Sinica Treebank as our standard, and 

select 30,000 and 10,000 sentences from Sinica Treebank as the training set and test set respectively. 

We then test the robustness of the shallow parser with noisy data. The experiment results show that the 

proposed shallow parser is quite robust for sentences with unknown proper nouns. 

1. Introduction 

Parsing is a basic technique in natural language processing; however, a full parser is usually 

costly and slow. Recently, shallow parsing has been applied to various information processing systems 

[12]. Compared to the performance of full parsers, a shallow parser is much faster and the parsing 

result is more useful for various applications, such as information retrieval and extraction, question 

answering, and automatic document summarization. In this paper, we adopt a machine learning 

approach to the Chinese shallow parsing problem.  

Chinese full parsing is very challenging,[18, 22] because it is difficult to achieve high accuracy, 

and the performance is not suitable for online applications. Shallow parsing of Chinese, on the other 

hand, is promising and desirable in terms of efficiency. Researchers in Beijing, Harbin, Shenyang, and 

Hong Kong have also developed related techniques [10, 15, 16, 20, 21]. Most of these works use 

machine learning approaches, instead of the rule-based approach used in full parsing. Popular machine 

learning methods such as SVM, CRF, and ME, have been tested. The parsing speed of each approach is 

fast and the parsing accuracy is acceptable. 



Currently, there is no standard for Chinese shallow parsing. Li et. al. [9] developed a Chinese 

shallow parsed treebank to extract Chinese collocations automatically and built a large collocation bank. 

There are also some works on a standard for Chinese shallow parsing [9, 19, 20]. Nevertheless, the 

POS standard and vocabulary in each approach are different; thus, between simplified Chinese and 

traditional Chinese, we cannot adopt their standard for simplified Chinese to traditional Chinese. 

Instead, we use the first level of the parsing results of Sinica Treebank as our shallow parsing standard 

[4]. Originally, Sinica Treebank was designed to provide full parsing results, whereby sentences could 

be labeled with POS tags and the full parsing structure. There are 54,000 sentences in Sinica Treebank, 

from which we randomly selected 30,000 and 10,000 sentences as the training set and test set 

respectively. 

Since there are many unknown words in Chinese [11], a Chinese shallow parser must be robust 

against such words [22]. For example, it is not hard to correctly chunk the sentence “高漸離/擊筑/的/

音調/忽然/急轉成/悲壯” into “高漸離擊筑的音調/NP 忽然/Dd 急轉成/DM 悲壯/VP”, if we know 

that “高漸離” is a proper noun. However, if the name is unknown, it could be split into three single 

characters and tagged with the three POS of the single characters, i.e., “高/漸/離 [VH13/Dd/P15]”. It 

might then be incorrectly chunked as ”高漸/NP 離擊筑的音調/PP 忽然/Dd 急轉成/DM 悲壯/VP”. 

In this research, we simulate unknown words by adding some noises to the corpus in order to test the 

robustness of the shallow parser. Since new proper nouns are normally unknown, we design three ways 

to add noises to the training and testing sets by treating proper nouns as unknown words.  

2. Shallow Parsing Standard 

Sinica Treebank provides a full parse tree for each sentence. Here, we use the first-layer parsing 

results of Sinica Treebank as the standard for shallow parsing. Instead of using all the phrase tags in 

Sinica Treebank, we annotate five of them for chunking; all other phrases (including single words not 

in any phrase) are tagged as others (X). The five tags, namely, noun phrase (NP), verb phrase (VP), 

preposition phrase (PP), geographic phrase (GP), and clause (S), are the major tags in Sinica Treebank, 

and therefore play significant syntactical roles. Thus, the constituents of the root node of a parse tree 

are NP, VP, PP, GP, S, and X. Table 1 lists examples of the six types of constituent. 

Table 1. Chunk Tags 

Chunk Tag Description Example 

NP Noun Phrase 前十名 / 的 / 選手 [DM / DE / Nab] 

VP Verb Phrase 傳遞 / 區運 / 聖火 [VD1 / Nad / Nac] 

PP Preposition Phrase 在 / 旅客 / 口 / 中 [P21 / Nab / Nab / Ncda] 

GP Geographic Phrase 一個 / 星期 / 以後 [DM / Nac / Ng] 

S Clause 窗戶 / 玻璃 / 破掉 [Nab / Nab / VH11] 

X Others ０ / 到 / ２度 [DM / Caa / DM] 

 



3. A Maximum Entropy-based Shallow Parser 

Parsing is a fundamental technique in natural language processing, the results of which can be 

used to improve various natural language tasks, such as word-sense disambiguation (WSD) [3] and 

part-of-speech (POS) tagging [12].  

Many natural language processing tasks, such as part-of-speech tagging, named-entity 

recognition, and shallow parsing, can be viewed as sequence analysis tasks. Shallow parsing identifies 

the non-recursive core of each phrase type in a text as a precursor to full parsing or information 

extraction [1, 6]. The paradigmatic shallow parsing problem is called NP chunking, which finds the 

non-recursive cores of noun phrases called base NPs. Ramshaw and Marcus introduced NP chunking as 

a machine-learning problem [14].  

Machine learning techniques, such as maximum entropy (ME) and conditional random fields 

(CRF), are quite popular for sequential tagging. We adopt ME to build a robust Chinese shallow parser. 

3.1 The B-I-O Scheme of Our Shallow Parser 

In this work, we regard each word as a token, and consider a test corpus and a set of n phrase 

categories. Since a phrase can have more than one token, we associate two tags, x: x_begin and 

x_continue, with each category. In addition, we use the tag others to indicate that a token is not part of 

a phrase. The shallow parsing problem can then be redefined as a problem of assigning one of 2n + 1 

tags to each token. This is called the B-I-O scheme. There are 5 named entity categories and 11 tags: 

NP_begin, NP_continue, VP_begin, VP_continue, PP_begin, PP_continue, GP_begin, GP_continue, 

S_begin, S_continue, and X(others).  

3.2 Maximum Entropy Formula 

ME is a flexible statistical model that assigns an outcome to each token based on its history and 

features [2]. The outcome space is comprised of the tags for an ME formulation. ME computes the 

probability p(o|h) for any o from the space of all possible outcomes, O, and for every h from the space 

of all possible histories, H. A history is composed of all the conditioning data that enables one to assign 

probabilities to the space of outcomes. In shallow parsing, history can be viewed as all the information 

derived from the test corpus relevant to the current token. 

The computation of p(o|h) in ME depends on a set of binary-valued features, which is helpful in 

making a prediction about the outcome. For instance, one of our features is as follows: when the 

current token is a verb, it is likely to be the leading character of a verb phrase. More formally, we can 

represent this feature as 
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Here, Current-token-verb(h) is a binary function that returns the value true if the current token of the 

history h is a verb.  

Given a set of features and a training corpus, the ME estimation process produces a model in 



which every feature fi has a weight αi. This allows us to compute the conditional probability as 

follows: 
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where Z(h) is a normalization factor. Intuitively, the probability is the multiplication of the weights of 

active features (i.e., those fi (h,o) = 1). The weight αi is estimated by means of a procedure called 

Generalized Iterative Scaling (GIS) [8], which improves the estimation of the weights at each iteration. 

The ME estimation technique guarantees that, for every feature fi, the expected value of αi will be 

equal to the empirical expectation of αi in the training corpus. ME allows the designer to concentrate 

on finding the features that characterize the problem, while letting the ME estimation routine deal with 

assigning relative weights to the features. 

3.3 Decoding 

After an ME model has been trained and the proper weight αi has been assigned to each feature 

fi, decoding (i.e., marking up) a new piece of text becomes a simple task. First, the model tokenizes the 

text and preprocesses the test sentence. Then, for each token, it checks which features are active and 

combines the αi of the active features according to Equation 2. Finally, a Viterbi search is run to find 

the highest probability path through the lattice of conditional probabilities that does not produce any 

invalid tag sequences. Further details of the Viterbi search can be found in [17]. 

4. Experiment 

By comparing models with and without noisy training data, we can determine whether our 

Chinese shallow parser is noisy-data-tolerant. In this section, we describe how we add noisy data to 

maximum entropy models and evaluate the tolerance of our system to Chinese chunking. 

4.1 Data and Features 

Sinica Treebank contains more than 54,000 sentences, from which we randomly extract 30,000 

for training and 10,000 for testing. The tokenized results and the corresponding part-of-speech 

sequences of these sentences are extracted into a feature file, and the top-level chunks of the parsing 

tree structure can be taken as the standard for training and evaluation. The information in the feature 

file is translated into machine learning features by ME model in both the training and testing phrases. 

The features we adopted are: words, adjacent characters, prefixes of words (1 and 2 characters), 

suffixes of words (1 and 2 characters), word length, POS of words, adjacent POS tags, and the word’s 

location in the chunk it belongs to. 

To analyze the performance of our shallow parser under noisy conditions, we build a standard 

model and various noisy models. Training data consisting of the tokenization and POS information 

derived from the manually annotated Sinica Treebank is used as the standard model in our experiments. 

The accuracy of chunking in this model is then compared with that of models containing noise to 



observe the difference. 

4.2 Noise Model Generation 

The most important issue in noisy model generation is how to mix noisy features with correct 

features as smoothly as in a real parsing system. We design three methods for adding noise to generate 

different types of models with noisy tokenization and POS sequences.  

 The first two approaches are based on unknown word replacement. We find that unknown 

words are one of the major causes of noisy data in real world system processing, because most 

unknown words are proper nouns. Theoretically, we can pick a certain number of proper nouns in the 

selected data and substitute them with noisy data to simulate real world input. In our experiment, “Nb” 

and “Nc”, which are defined as “proper nouns” and “proper location nouns” respectively in the Sinica 

Treebank tagging guideline [5], are chosen as replacement targets. Words with these two target POS 

are regarded as replacement target strings and replaced by noisy data. 

We adopt two types of noisy data for unknown word replacement. The first is the split character 

sequence of a replacement target string in a sentence. Initially, we extract the correct tokenization 

results and POS sequences of all data in the Sinica Treebank with “Nb” and “Nc”. Then, wherever 

applicable, we split the replacement target string in a sentence into single Chinese characters. The 

corresponding POS tag of each split character is re-assigned by selecting the most frequent POS tags of 

these single characters in Sinica Treebank. For example, “馬來西亞” (Malaysia) would be split into 

“馬”, ”來”, ”西”, and “亞”,  and the original POS tag “Nca” would be replaced by the pos tags of four 

single characters: “Nab”, “Dbab”, “Ncda”, and “Nca”. In this experiment, we control the amount of 

noisy data in models to observe the relation between the percentage of imprecise data and the chunking 

performance. The model generated by this approach is called a Type 1 noise model. Another approach, 

called the Type 2 noise model, tokenizes the replacement target with AUTOTAG, which may produce 

segmenting boundaries and POS tags that differ from those in Sinica Treebank. The information is then 

used as noisy features and replaces the target string. For instance, the replacement target string “太白金

星” with POS tag ”Nb” would be tagged by AUTOTAG as “太白/Nb” and “金星/Nb”. The above 

noise-adding approaches are used to generate training data, as well as various kinds of noisy 

information in the test sets.  

In addition, we adopt an automatic tool, CKIP AUTOTAG [7], to obtain the tokenization 

information and POS features for generating models. This is a Chinese tokenizing tool that can deal 

with word segmentation in both the training and testing sets. CKIP AUTOTAG provides the POS 

sequences of the sentences. The tokenized sentences and POS sequences produced by AUTOTAG are 

used to generate feature files for ME processing.  

5. Results and Discussion 

In our experiment, we adopt the B-I-O scheme to identify the boundaries of Chinese chunks and 

the position of each element word in the chunks. In addition, we employ the following four standards 



when calculating the accuracy of Chinese shallow parsing: evaluation by token, by chunk boundary, by 

chunk category sequence, and by chunks. Token evaluation is based on the number of Chinese words. 

All words in the test data can be verified independently to determine if they have the correct boundaries 

and belong to the right chunks. Evaluation by chunk boundary only checks the boundaries of each 

chunk, while evaluation by chunk category sequence only checks if all the chunks in a sentence can be 

identified successfully and disregards the constituents. By contrast, in chunk evaluation, the basic unit 

is the whole chunk, and only a chunk with the right constituents and tagged with proper categories can 

be considered correct. We use an example to demonstrate the evaluation process. The input sentence is 

“小朋友 換成 你 來 試試看”, which consists of five tokens; and the standard parsing result is “小朋

友/NP 換成/VC 你/NP 來-試試看/VP”, which contains four chunks. The parsing result we obtain 

from the system is “小朋友/NP 換成/VC 你/NP 來/Db 試試看/VE”, which contains five chunks. In 

this case, the accuracy of the chunk boundary and the chunk category are both 3/4=0.75, because the 

first three chunks in the sentence have the correct boundaries and phrase tags, and the last VP chunk is 

separated by two units. The token number in this sentence is 5 and the last two tokens have incorrect 

phrase category tags. Therefore, the accuracy of the token is 3/5=0.6. In chunk evaluation, three of the 

four chunks are identified successfully and the chunk accuracy is 3/4=0.75. We adopt these evaluation 

methods in all the experiment configurations in Tables 2 to 5.  

5.1 Performance on Noisy Data 

Table 2 shows the accuracy rates using Type 1 noisy models with different scales of noisy data 

for chunking clean test data. The columns show the percentage of ‘Nb’ and ‘Nc’ replaced by single 

character noisy data in the training model, and the rows indicate the four evaluation methods. We find 

that the accuracy in this series decreases slightly, while the percentage of single character noisy data 

increases. 

Table 2. Results of chunking clean test data with the Type 1 noise model 

 Boundary Category Tokens Chunks 

0 (%) 84.83 70.10 69.14 70.47 

10 (%) 84.74 69.92 69.04 70.30 

20 (%) 84.80 69.94 69.03 70.26 

30 (%) 84.77 69.88 69.10 70.20 

40 (%) 84.70 69.77 68.97 70.13 

50 (%) 84.64 69.65 69.02 70.00 

60 (%) 84.56 69.57 68.78 69.82 

70 (%) 84.42 69.39 68.76 69.59 

80 (%) 84.53 69.67 68.99 69.77 

90 (%) 84.38 69.44 68.58 69.72 

100 (%) 84.26 69.51 68.57 69.75 



Table 3 shows the accuracy rates using the Type 1 model with different scales of noisy data for 

chunking test data with single character noise (Type 1). It is quite interesting that the curve is not 

monotonically increasing or decreasing. This indicates that the accuracy in this series decreases until 

the percentage of noise reaches 60%, and then it increases. Figures 1 to 4 show the differences between 

the clean test data and the noisy test data in Tables 2 and 3. We can observe the trends in the experiment 

results more intuitively. 

Table 3. Results of chunking test data containing Type 1 noisy data with the Type 1 noise model 

 Boundary Category Tokens Chunks 

0 (%) 83.73 69.09 65.16 66.51 

10 (%) 83.65 69.00 65.33 66.36 

20 (%) 83.72 69.11 65.34 66.30 

30 (%) 83.69 69.20 65.37 66.27 

40 (%) 83.62 69.14 65.42 66.25 

50 (%) 83.58 69.05 65.52 66.13 

60 (%) 83.57 69.07 65.36 66.00 

70 (%) 83.52 69.24 65.70 66.07 

80 (%) 83.63 69.46 65.83 66.25 

90 (%) 83.65 69.49 65.69 69.30 

100 (%) 83.77 69.67 65.85 66.42 
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Figure 1. Evaluation of the boundaries in different experiment configurations 
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Figure 2. Evaluation of the chunking category in different experiment configurations 
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Figure 3. Evaluation of tokens in different experiment configurations 
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Figure 4. Evaluation of chunks in different experiment configurations 

Table 4 shows the accuracy rates using the Type 2 noise model with and without tokenized strings 

for chunking clean test sentences and test data with tokenized strings. There are four configurations:  

y C-C: Using a clean training model and clean test data.  

y C-N: Using a clean training model and noisy test data in which all ‘Nb’ and ‘Nc’ are replaced by 

tokenized results. 

y N-C: Using a training model with noisy data in which all ‘Nb’ and ‘Nc’ are replaced by the 

tokenized results of chunking clean test data. 

y N-N: Both the training model and the test data have noisy data in which all ‘Nb’ and ‘Nc’ are 

replaced by tokenized results. 

Table 4 also shows that noisy training data yields better accuracy for both clean and noisy test data, 

although the difference is quite small. 

Table 4. Results of chunking with the Type 2 noise model 

 Boundary Category Tokens Chunks 

C-C 84.83 70.10 69.14 70.47 

C-N 84.84 70.09 69.04 70.37 

N-C 84.89 70.13 69.15 70.51 

N-N 84.90 70.11 69.02 70.38 

 

Table 5 shows the accuracy rates using the model generated by AUTOTAG-parsed data and 

Sinica Treebank chunking tags. Both the training and the test sets are preprocessed by AUTOTAG. This 

experiment is designed for open testing; thus, we can use the AUTOTAG program to tokenize any 



sentence and give it POS tags.  However, compared to the standard model, the chunking accuracy is 

lower. The parsing results of the AUTOTAG-parsed model and the Type 2 noise models are shown in 

Figure 5. 

Table 5.  Accuracy using the model generated by AUTOTAG-parsed data  

 Boundary Category Tokens Chunks 

Fully AUTOTAG 81.42 64.81 61.80 61.30 
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Figure 5. Comparison of various experiment configurations using tokenized string noisy data (the 

Type 2 noise model) and the AUTOTAG-parsed model 

In Tables 6, 7, and 8, we give examples of the correct and incorrect shallow parsing results of 

four sentences. In each table, the left column contains the original sentences tokenized and tagged with 

POS tags; the center column shows the standard chunking result from Sinica Treebank; and the right 

column shows the shallow parsing result of our system. Table 6 shows the parsing examples with Type 

1 noise. The shallow parsing results of the first two sentences are correct, while those of the last two 

sentences are incorrect.  

Table 6. Shallow parsing examples with Type 1 noise 

Sentence and POS sequences with Type 

1 noise 

Chunking standard from 

Sinica Treebank 

Chunking results of our 

system 

女性/形象/在/台/灣/和/中/國/大/陸/小

說/是/解放/的/過程 

[Nab/Nac/P21/Nca/Nab/Caa/Ng/Ncb/

VH13/Nab/Nac/V_11/VC2/DE/Nac] 

女性形象/NP 在台灣和

中國大陸小說/PP 是/V_ 

解放的過程/NP 

女性形象/NP 在台灣和中

國大陸小說 /PP 是/V_ 解

放的過程/NP 



與/中/華/及/日/本/隊/在/伯仲/之間

[P35/Ng/Nca/Caa/Nca/Nes/Nab/VC1/

Nhac/Ng] 

與中華及日本隊 /PP 在

/VC 伯仲之間/GP 

與 /P3 中華及日本隊 /NP 

在/VC 伯仲之間/GP 

首先/義賣/的/是/黑/將/軍/史/東/的/手

套 

[Cbbb/VC31/DE/V_11/VH11/Dd/Nab/

Nad/Ncda/DE/Nab] 

首先義賣的 /NP 是 /V_ 

黑將軍史東的手套/NP 

首先/Cb 義賣的/NP 是/V_ 

黑將軍史東的手套/NP * 

學藝/股長/王/文/星/站起來/說 

[Nad/Nab/Nbc/Nab/Nab/VA11/VE2] 

學藝股長王文星/NP 站

起來/VA 說/VP 

學藝股長王文星站起來/NP 

說/VP * 

 

Table 7 shows the parsing examples with Type 2 noise. The shallow parsing results of the first 

and the last sentences are correct, while those of the second and the third sentences are incorrect.  

Table 7. Shallow parsing examples with Type 2 noise 

Sentence and POS sequences with Type 

2 noise 

Chunking standard from 

Sinica Treebank 

Chunking results of our 

system 

女性/形象/在/台灣/和/中國/大陸/小說

/是/解放/的/過程 

[Nab/Nac/P21/Nca/Caa/Nc/Nc/Nac/V_

11/VC2/DE/Nac] 

女性形象/NP 在台灣和

中國大陸小說/PP 是/V_ 

解放的過程/NP 

女性形象/NP 在台灣和中

國大陸小說 /PP 是/V_ 解

放的過程/NP 

與/中華/及/日本/隊/在/伯仲/之間

[P35/Nba/Caa/Nc/Na/VC1/Nhac/Ng] 

與中華及日本隊 /PP 在

/VC 伯仲之間/GP 

與 /P3 中華及日本隊 /NP 

在/VC 伯仲之間/GP * 

首先/義賣/的/是/黑/將軍/史東/的/手

套 

[Cbbb/VC31/DE/V_11/VH/Na/Nba/D

E/Nab] 

首先義賣的 /NP 是 /V_ 

黑將軍史東的手套/NP 

首先/Cb 義賣的/NP 是/V_ 

黑將軍史東的手套/NP * 

學藝/股長/王/文星/站起來/說 

[Nad/Nab/Nb/Nb/VA11/VE2] 

學藝股長王文星/NP 站

起來/VA 說/VP 

學藝股長王文星/NP 站起

來/VA 說/VP 

 

Table 8 shows the parsing results using AUTOTAG-parsed training data and test data. The results 

of the first and last sentences are correct, while those of the second and the third sentences are incorrect. 

We replace the original word segmentation and POS tags of all the sentences with AUTOTAG-parsed 

word segmentation and POS tags. The word segmentation of the last sentence provided by AUTOTAG 

is incorrect; however, the chunking result is correct. 

Table 8. Shallow parsing examples with AUTOTAG-parsed training data and test data 

AUTOTAG-parsed Sentence and POS 

sequences 

Chunking standard from 

Sinica Treebank 

Chunking results of our 

system 



女性/形象/在/台灣/和/中國/大陸/小說

/是/解放/的/過程 

[Na/Na/P/Nc/Caa/Nc/Nc/Na/SHI/VC/D

E/Na] 

女性形象/NP 在台灣和

中國大陸小說/PP 是/V_ 

解放的過程/NP 

女性形象/NP 在台灣和中

國大陸小說 /PP 是/V_ 解

放的過程/NP 

與/中華/及/日本/隊/在/伯仲/之間 

[P/Nc/Caa/Nc/Na/P/Nh/Ng] 

與中華及日本隊 /PP 在

/VC 伯仲之間/GP 

與中華及日本隊/PP 在伯

仲之間/PP * 

首先/義賣/的/是/黑/將軍/史東/的/手

套 

[D/VC/DE/SHI/VH/Na/Nb/DE/Na] 

首先義賣的 /NP 是 /V_ 

黑將軍史東的手套/NP 

首先/Cb 義賣的/NP 是/V_ 

黑將軍史東的手套/NP * 

學藝/股長王/文星/站起來/說 

[Na/Nb/Nb/VA/VE] 

學藝股長王文星/NP 站

起來/VA 說/VP 

學藝股長王文星/NP 站起

來/VA 說/VP 

 

The experiment results show the noise-tolerance of our Chinese shallow parser with two different 

kinds of noise from unknown proper nouns. The system’s performance is only degraded slightly when 

noisy data is added. Most sentences, such as “六十年代的台灣是怎樣的形貌＂ in which “台

灣＂ is split into two characters and assigned with incorrect POS tags, can still be identified. However, 

the token accuracy is a little lower than the chunk accuracy, which indicates that our system needs to be 

improved for chunking longer phrases. In contrast, the chunking accuracy obviously decreases if 

models fully generated by AUTOTAG-parsed data are used. The difference between the AUTOTAG 

and Sinica Treebank tag sets probably causes the accuracy to decrease. Furthermore, this suggests that, 

while the shallow parsing system can deal with unknown nouns, it has difficulty dealing with other 

kinds of noisy data. For example, data preprocessing errors, such as, incorrect tokenization or wrong 

tagging in other POS categories, affect the performance of shallow parsing substantially We can not 

comment on which part-of-speech tags are the major factors in Chinese chunking without conducting 

additional experiments. 

5.2 Use of Our Shallow Parser on News Articles 

For the first application of our shallow parser, we collect some news articles as the test set. The 

articles did not have standard word segmentation, POS tagging, and parsing results; therefore, we 

cannot report on the accuracy. However, we find the results interesting. Some examples are given in 

Table 9. The left column shows the original sentences tokenized and tagged with POS tags by 

AUTOTAG. The right column shows the shallow parsing results using our system.  

One interesting point is that the shallow parser tends to group named entities into a phrase. 

Therefore, the shallow parsing result can be used as a feature for boundary detection in named entity 

recognition (NER). In sentence 1, “中鋼公司” is grouped as one phrase, and in sentence 9, “中鋼公司

88 年盈餘” is grouped as one phrase, without first recognizing that “中鋼公司” is an entity by NER. 

Another example, in sentence 2 is that “益華在花蓮的三棟大樓” is grouped as one phrase, without 

first recognizing that ”益華” is a company name.  



Table 9. Shallow parsing results for news articles 

 Tokenization and POS of Sentences Shallow Parsing Result 

1 中 鋼 / 公 司 / 是 / 台 灣 / 鋼 鐵 業 / 龍 頭 

[Nc/Nc/SHI/Nc/Na/Na] 

中鋼公司/NP 是 台灣鋼鐵業龍頭

/NP 

2 益/華/在/花蓮/的/三棟/大樓/有/二/棟/是/七層/建築 

[VJ/ Nc/P/Nc/DE/Nb/Na/V_2/Neu/Nf/SHI/Na/Na] 

益華在花蓮的三棟大樓/NP 有 二

棟/NP 是 七層建築/NP 

3 大陸/仍/有/廣闊/發展/空間 [Nc/D/V_2/VH/VC/Na] 大陸/NP 仍 有 廣闊發展空間/NP 

4 光 /是 /中共 /國家 /主席 /江澤民 /就 /出 /訪五次 

[Da/SHI/Nb/Na/Na/Nb/D/VC/Na] 

光/NP 是 中共國家主席江澤民/NP 

就出訪五次/PP 

5 許 多 / 地 區 / 都 / 出 現 / 新 舊 / 共 存 / 的 / 景 觀

[Neqa/Nc/D/VH/Na/VH/DE/Na] 

許多地區/NP 都 出現 新舊共存的

景觀/NP 

6 過去/一年/是/兩岸/關係/比較/困難/、/且/希望/落空/

的/一年 

[Nd/Nd/SHI/Nc/Na/Dfa/VH/PAUSECATEGORY/Cbb 

/VK/VH/DE/Nd] 

過去一年/NP 是 兩岸關係比較困

難、且希望落空的一年/NP 

7 恆生/指數/創下/歷史/新高 [Nb/Na/VC/Na/VH] 恆生 指數/NP 創下 歷史新高/NP 

8 將 / 資本主義 / 及 / 投機 / 氣息 / 帶入 / 大陸 / 內部 

[P/Na/Caa/VH /Na/VCL/Nc/Ncd] 

將資本主義及投機氣息 /PP 帶入 

大陸內部/NP 

9 中鋼 /公司 /88/年盈餘 /可望 /達到 /140 億 /元 /左右 

[Nc/Nc/Neu/Na/VK/VJ/Neu/Nf/Ng] 

中鋼公司 88 年盈餘/NP 可望達到

140 億元/VP 左右 

10 企業界/已/開始/尾牙/聚餐 [Nc/D/VL/Nd/VA] 企業界/NP 已 開始 尾牙聚餐/VP 

11 投資/人/靜候/美國/聯邦/準備/理事會/(/Fed/)/21 日/

的/利率/決策 

[Nc/Na/VJ/Nc/Na/VC/Na/PARENTHESISCATEGOR

Y/FW /PARENTHESISCATEGORY/Nd/DE/Na/Na] 

投資人/NP 靜候 美國聯邦準備理

事會(Fed)21 日的利率決策/NP 

12 央行 / 總裁 / 及 / 理監事 / 都 / 有 / 一定 / 的 / 任期 

[Nc/Na/Caa/Na/D/V_2/A/DE/Na] 

央行總裁及理監事/NP 都 有 一定

的任期/NP 

6. Conclusion and Future Works 

In this paper, we propose a Chinese shallow parser that can chunk Chinese sentences into five 

chunk types. We test the noise tolerance of the shallow parser and found that the accuracy of data with 

simulated unknown words only decreases slightly in chunk parsing. We also test our Chinese shallow 

parser on an open corpus, and found that it yields interesting chunking results. 

Tolerance of unknown words is an essential characteristic of a Chinese shallow parser. In this 

paper, we demonstrate our parser’s robustness in handling noisy data from proper nouns. However, we 

could not verify the robustness of chunking noisy data from other kinds of POS. Thus, adopting other 

POS systems, such as the Penn Chinese Treebank tagset, for Chinese shallow parsing could prove both 



interesting and useful. In the future, we will improve our model by adding more types of noise, such as 

random noise, filled noise, and repeated noise proposed by Osborne [13]. In addition to Sinica 

Treebank, we will extend our training corpus by incorporating other corpora, such as Penn’s Chinese 

Treebank.  
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