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Reliable and Cost-Effective Pos-Tagging
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Abstract

In order to achieve fast, high quality Part-of-speech (pos) tagging, algorithms
should achieve high accuracy and require less manually proofreading. This study
aimed to achieve these goals by defining a new criterion of tagging reliability,
the estimated final accuracy of the tagging under a fixed amount of proofreading,
to be used to judge how cost-effective a tagging algorithm is. In this paper, we
also propose a new tagging algorithm, called the context-rule model, to achieve
cost-effective tagging. The context rule model utilizes broad context information
to improve tagging accuracy. In experiments, we compared the tagging accuracy
and reliability of the context-rule model, Markov bi-gram model and
word-dependent Markov bi-gram model. The result showed that the context-rule
model outperformed both Markov models. Comparing the models based on
tagging accuracy, the context-rule model reduced the number of errors 20%
more than the other two Markov models did. For the best cost-effective tagging
algorithm to achieve 99% tagging accuracy, it was estimated that, on average,
20% of the samples of ambiguous words needed to be rechecked. We also
compared tradeoff between the amount of proofreading needed and final
accuracy for the different algorithms. It turns out that an algorithm with the

highest accuracy may not always be the most reliable algorithm.
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1. Introduction

Part-of-speech (pos) tagging for a large corpus is a labor intensive and time-consuming task.
Most tagging algorithms try to achieve high accuracy, but 100% accuracy is an impossible
goal. Even after tremendous amounts of time and labor are spent on the post-process of
proofreading, many errors still exist in publicly available tagged corpora. Therefore, in order
to achieve fast, high quality pos tagging, tagging algorithms should not only achieve high

accuracy but also require less manually proofreading. In this paper, we propose a context-rule
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model to achieve both goals.

The first goal is to improve tagging accuracy. According to our observation, the pos
tagging of a word depends on its context but not simply on its context category. Therefore, the
proposed context-rule model utilizes a broad scope of context information to perform pos
tagging of a word. Rich context information helps to improve the model coverage rate and
tagging accuracy. The context-rule model will be described in more detail later in this paper.
Our second goal is to reduce the manual editing effort. A new concept of reliable tagging is
proposed. The idea is as follows. An evaluation score is assigned to each tagging decision as
an indicator of tagging confidence. If a high confidence value is achieved, it indicates that the
tagging decision is very likely correct. On the other hand, a low confidence value means that
the tagging decision requires manual checking. If a tagging algorithm can achieve a high
degree of reliability in evaluation, this means that most of the high confidence tagging results
need not manually rechecked. As a result, the time and manual efforts required in the tagging

process can be drastically reduced. The reliability of a tagging algorithm is defined as follows:

Reliability = The estimated final accuracy achieved by the tagging model under the
constraint that only a fixed number of target words with the lowest

confidence values are manually proofread.

The notion of tagging reliability is slightly different from the notion of tagging accuracy
since high accurate algorithm may require more manual proofreading than a reliable algorithm
that achieves lower accuracy.

The rest of this paper is organized as follows. In section 2, the relation between reliability
and accuracy is discussed. In section 3, three different tagging algorithms, the Markov pos
bi-gram model, word-dependent Markov bi-gram model, and context-rule model, are
discussed. In section 4, the three algorithms are compared based on tagging accuracy. In
addition, confidence measures of tagging results are defined, and the most cost-effective
algorithm is determined. Conclusions are drawn on section 5.

2. Reliability vs. Accuracy

The reported accuracy of automatic tagging algorithms ranges from about 95% to 96% [Chang
et al., 1993; Lua, 1996; Liu et al., 1995]. If we can pinpoint errors, then only 4~5% of the
target corpus has to be revised to achieve 100% accuracy. However, since the errors are not
identified, conventionally, the whole corpus has to be re-examined. This is most tedious and
time consuming since a practically useful tagged corpus is at least several million words in
size. In order to reduce the amount manual editing required and speed up the process of
constructing a large tagged corpus, only potential tagging errors should be rechecked
manually [Kveton et al., 2002; Nakagawa et al., 2002]. The problem is how to find the
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potential errors.

Suppose that a probabilistic-based tagging method assigns a probability to each pos of a
target word by investigating the context of this target word w. The hypothesis is that if the
probability P (c, | w,context ) of the top choice candidate C, is much higher than the
probability P(c, | w,context ) of the second choice candidate C,, then the confidence
value assigned to C, will also be higher. (Hereafter, for the purpose of simplification, we
will use P(c) to stand for P(c|w,context), if without confusing.) Likewise, if the
probability P(c,) is close to the probability P(c,), then the confidence value assigned to
¢, will also be lower. We aim to prove the above hypothesis by using empirical methods. For
each different tagging method, we define its confidence measure according to the above
hypothesis and examine whether tagging errors are likely to occur for words with low tagging
confidence. If the hypothesis is true, we can proofread among the auto-tagged results only
those words with low confidence values. Furthermore, the final accuracy of the tagging
process after partial proofreading is done can also be estimated based on the accuracy of the
tagging algorithm and the number of errors contained in the proofread data. For instance,
suppose that a system has a tagging accuracy of 94%, and that K% of the target words with the
lowest confidence scores covers 80% of the errors. After those K% of tagged words are
proofread, 80% of the errors are fixed. Therefore, the reliability score of this tagging system
of K% proofread words will be 1 - (error rate) * (reduced error rate) = 1 - ((1 - accuracy rate)
*20%) =1 - ((1 - 94%) * 20%) = 98.8%. On the other hand, suppose that another tagging
system has a higher tagging accuracy of 96%, but that its confidence measure is not very high,
such that K% of the words with the lowest confidence scores contains only 50% of the errors.
Then the reliability of this system is 1 - ((1 - 96%) * 50%) = 98%, which is lower than that of
the first system. That is to say, after expending the same amount of effort on manual
proofreading, the first system achieves better results even though it has lower tagging

accuracy. In other words, a reliable system is more cost-effective.

3. Tagging Algorithms and Confidence Measures

In this paper, we will evaluate three different tagging algorithms based on the same training
and testing data, compare them based on tgging accuracy, and determine the most reliable
tagging algorithm among them. The three tagging algorithms are the Markov bi-gram model,
word-dependent Markov model, and context-rule model. The training data and testing data
were extracted from the Sinica corpus, a 5 million word balanced Chinese corpus with pos
tagging [Chen et al., 1996]. The confidence measure was defined for each algorithm, and the
final accuracy was estimated with the constraint that only a fixed amount of testing data

needed to be proofread.
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Table 1. Sample keyword-in-context file of the words ﬁﬂ% sorted according to
its left/right context.

(19(DE) FIREIVH) PN BN V(DE)

ff (Do) FUB(VI)  FENY) IS NY) s (COMMACATEGORY)
*](Ned) FIBiNa)  PER(NY) N - (PERIODCATEGORY)
("%(D) IUS(VI)  FE(NY)  EE(Na) - (PERIODCATEGORY)
AHR(Na) TiENa)  PHR(VE)  H(Na) PE BI(Nb)

#(VCL) FiH(Ne) FHUVE) fﬁ(NeS) #3(Na)

(D) [@H(VH) FH(VE) - (PERIODCATEGORY)

AdENa)  [if(VH)  FR(VE) - (PERIODCATEGORY)

71(D) i (VH)  F(Nv) o (PERIODCATEGORY)

It is easier to proofread and obtain consistent tagging results if proofreading is done by
checking each ambiguous word in its keyword-in-context file. For instance, in Table 1, the
keyword-in-context file of the word "F"JIZ[‘L" (research), which has pos of verb type VE and
noun type Nv, is sorted according to its left/right context. Proofreaders can take the other
examples as references to determine whether tagging results are correct. If all of the
occurrences of ambiguous words had to be rechecked, this would require too much work.
Therefore, only words with low confidence scores will be rechecked.

A general confidence measure can be defined as P(c) , where P (c,) is the
P(c,)+ P(cy)

the probability of the top choice pos C, assigned by the tagging algorithm and P(c,) is the
probability of the second choice pos C, '. The common terms used in the following tagging
algorithms discussed below are defined as follows:

W, the k-th word in a sequence;
Cy the pos associated with the k-th word W, ;

W,C;,...,W,C, aword sequence containing N words with their associated categories.

3.1 Markov Bi-gram Model

The most widely used tagging models are the part-of-speech n-gram models, in particular, the

' The log-likelihood ratio of log(P(c;)/P(c,)) is an alternative confidence measure. However, some
tagging algorithms, such as context-rule model, may not necessary produce a real probability
estimation for each pos. Scaling control for the log-likelihood ratio will be hard for those algorithms
to achieve. In addition, the range of our confidence score is 0.5 ~ 1.0 and it is thus easier to evaluate
different tagging algorithms. Therefore, the above confidence value is adopted.
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bi-gram and tri-gram models. A bi-gram model looks at pairs of categories (or words) and
uses the conditional probability of P(c, |c, ,) . The Markov assumption is that the
probability of a pos occurring depends only on the pos before it.

Given a word sequence W,,...W,, the Markov bi-gram model searches for the pos
sequence C;,...C, such that argmax IIP(w, |c,) * P(c, |c,_,) is achieved. In our
experiment, since we were only focusing on the resolution of ambiguous words, a twisted
Markov bi-gram model was applied. For each ambiguous target word, its pos with the highest
model probability was tagged. The probability of each candidate pos C, for a target word

W, was estimated as P(c, |c,_,) * P(c,lc,) * P(w,|c,). We call this model the

k+1
general Markov bi-gram model.

3.2 Word-Dependent Markov Bi-gram Model

The difference between the general Markov bi-gram model and the word-dependent Markov
bi-gram model lies in the way in which the statistical data for P(c, |c, ,) and P(c,,, |c,)
is estimated. There are two approaches to estimating the probability. One is to count all the
occurrences in the training data, and the other is to count only the occurrences in which each
W, occurs. In other words, the algorithm tags the pos €, for W, ,such that C, maximizes
the probability of P(c, |w,,c,,) * P(c.,, |W,.c,) * P(w, |c,) instead of
maximizing the probability of P(c, |c,_,) * P(cy,, [c) * P(w,|c,). We call this
model the word-dependent Markov bi-gram model.

3.3 Context-Rule Model

The dependency features utilized to determine the best pos-tag in Markov models are the
categories of context words. In fact, in some cases, the best pos-tags might be determined by
using other context features, such as context words [Brill, 1992]. In the context-rule model,
broad context information is utilized to determine the best pos-tag. We extend the scope of the
dependency context of a target word to its 2 by 2 context windows. Therefore, the context
features of a word can be represented by the vector of [W_,,C_,,W_,C_;,W,,C;,W,,C,].
Each feature vector may be associated with a unique pos-tag or many ambiguous pos-tags.
The association probability of a possible pos C; is P(Cq|W,, feature vector). If for some
(W, Cg), the value of P(c;|w,, feature vector) is not 1, then this means that the C, of
W, cannot be uniquely determined by its context vector. Some additional features have to be
incorporated to resolve the ambiguity. If the full scope of the context feature vector is used,
data sparseness problem will seriously degrade the system performance. Therefore, partial
feature vectors are used instead of full feature vectors. The partial feature vectors applied in
our context-rule model are wW_,, w,, ¢_,Cc,, CC,, C,C;,W_,C,, W,C,,and CW,.
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In the training stage, for each feature vector type, many rule instances are generated, and
their probabilities associated with the pos of the target word are calculated. For instance, with
the feature vector types W_,, W,, C_,C_,, C,C,,..., we can extract the rule patterns of
w_, (), w, (VER), c_,c (Nb, Na), c,c,(Ng, COMMA), ...etc. associated with the pos
VE of the target word from the following sentence while the target word is ‘?F"JI” & research’:

’ﬁj Tsou (Nb) “% Mr(Na) J%¢ research (VE) [V §; after Ng) - (COMMA)
“After Mr. Tsou has done his research,”

Through the investigation of all training data, various different rule patterns (associated
with a candidate pos of a target word) are generated and their association probabilities of
P(c, | W, , feature vector) derived. For instance, if we take those word sequences listed in 0 as
training data and take C_,C, as a feature pattern, and if we let ‘TFIDJZ’ be the target word, then
the rule pattern C_,C, (VH, PERIOD) will be extracted, and we will derive the probabilities
P(VE | ‘TPJIZ‘E’, (VH, PERIOD)) = 2/3 and P(NV | ?I?Jt’ (VH, PERIOD)) = 1/3. The rule
patterns and their association probability are used to determine the probability of each
candidate pos of a target word in a testing sentence. Suppose that the target word W, has
ambiguous categories C,,C,,...,C,, and context patterns pattern,, pattern,, ..., pattern;
then, the probability of assigning tag C; to the target word W, is defined as follows:

> P(c; |w, pattern )
P(c)) =4 :
> > P(c, |w, pattern )

m
x=1y=I1

In other words, the probabilities of different patterns with the same candidate pos are
accumulated and normalized by means of the total probability distributed to all the candidates

as the probability of the candidate pos. The algorithm tags the pos of the highest probability.

4. Experiments and Results

For our experiments, the Sinica corpus was divided into two parts. The training data contained
90% of the corpus, while the testing data contained the remaining 10%. Only the target words
with ambiguous pos were evaluated. We evaluated only on the ambiguous words with
frequencies higher than or equal to 10 for sufficiency of the training data and testing data.
Furthermore, the total token count of the words with frequencies less than 10 occupied only
0.4335% of all the ambiguous word tokens. Since those words had much less effect on the
overall performance, we just ignored them to simplify the designs of the evaluated tagging
systems in the experiments. Another important reason was that for those words with low

frequencies, all their tagging results had to be rechecked anyway, since our experiments
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showed that low tagging accuracies were inevitable due to the lack of training data. We also
examined the effects on the tagging accuracy and reliability on the words with variations on
pos ambiguities and the amount of training data. Six ambiguous words with different

frequencies, listed in Table 2, were selected as our target words for detail examinations.

Table 2. Target words used in the experiments tagging accuracy.

Word Frequency Ambiguity (Pos-Count)
T 47607 | Di-36063 | T-11504 VI-25 VC-11
s 13188 | D-7599 P-5547 Na-27 Di-8 VC-5
9T 4734 | Nv-3695 | VE-1032 VC-6 VA-1
g 1298 | VC-953 Na-345
T 723 | VC-392 Na-331
Rili 121 VC-70 Nv-45 Na-6

Table 3. Accuracy rates of the evaluated tagging algorithms.

Word General Markov Word-Depend. Markov | Context-Rule
T 96.95 % 97.92 % 98.87 %
i 93.47 % 93.17 % 95.52 %
i 80.76 % 79.28 % 81.40 %
B¢ 2 87.60 % 89.92 % 93.02 %
PRl 68.06 % 63.89 % 77.78 %
B 41.67 % 66.67 % 66.67 %
Average of 6 words 94.56 % 95.12 % 96.60 %
Average of all 91.07 % 94.07 % 95.08 %
ambiguous words

The frequencies of some words were too low to provide enough training data, such as the
words ‘#X%f interview’ and ‘i H! perform’ listed in 0. To solve the problem of data
sparseness, the Jeffreys-Perks law, or Expected Likehood Estimation (ELE) [Manning et al.,
1999], was used as a smoothing method for all the tagging algorithms evaluated in the
experiments. The probability P(w,,..,w,) was defined as C(W,,. W,) | where
C(w,,.., w,) isthe number of times that pattern W,,..., W, occurs in theNtraining data, and

N is the total number of training patterns. To smooth for an unseen event, the probability of

C(Wy,, W)+ 4
N+BA

P(w,,...,W,) was redefined as where B denotes the number of all
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pattern types in the training data and A denotes the default occurrence count for an unseen
event. That is to say, we took a value A for an unseen event as its occurrence count. If the
value of A4 was 0, this means that there was no smoothing process for the unseen event. The

most widely used value for A4 is 0.5, which was also applied in our experiments.

4.1 Tagging Accuracy

In the experiments, we compared the tagging accuracy of the three tagging algorithms as
described in section 3. The experiment results are shown in Table 3. It is obvious that the
word-dependent Markov bi-gram model outperformed the general Markov bi-gram model. It
reduced almost 30% the number of errors compared to the general Markov bi-gram model. As
expected, the context-rule model performed the best for each selected word and the overall
tagging accuracy. The tagging accuracy results for selected words show inconsistency. This is
exemplified by the lower accuracy for the word ‘?E:Z[Tj research’. It is believed that the
flexible usage of ‘TPJIZIE research’ degraded the performances of the tagging algorithms. The
lack of training data also hurt the performance of the tagging algorithms. The words with
fewer training data, such as ‘4254 interview’ and ‘iFﬁ'H', perform’, were also associated with
poor tagging accuracy. Therefore, words with low frequencies should be handled using some
general tagging algorithms to improve the overall performance of a tagging system.

Furthermore, in future, word-dependent reliability criteria need to be studied.

4.2 Tagging Reliability

In the experiments on reliability, the confidence measure of the ratio of the probability gap

between the top choice candidate and the second choice candidate P(c,) was
P(c)) + P(cy)

adopted for all three models. The tagging results with confidence scores lower than a
pre-defined threshold were re-checked. Some tagging results were assigned the default pos
(in general, the one with the highest frequency of the word) since there were no training
patterns applicable to the tagging process. Those tagging results that were not covered by
the training patterns also needed to be re-checked. With the increased pre-defined threshold,
the amount of partial corpus that needed to be re-checked could be estimated automatically
since the Sinica corpus provides the correct pos-tag for each target word. Furthermore, the
final accuracy could be estimated if the corresponding amount of partial corpus was

proofread.
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Figure 1. Tradeoff between the amount of manual proofreading and the final
accuracy.

Figure 1 shows the results for the tradeoff between the amount of proofreading and the
estimated final accuracy for the three algorithms. The x-coordinate indicates the portion of the
partial corpus that needed to be manually proofread under a pre-defined threshold. The
y-coordinate indicates the final accuracy after the corresponding portion of the corpus was
proofread. Without any manual proofreading, the accuracy of the context-rule algorithm was
about 1.4% higher than that of the word-dependent Markov bi-gram model. As the percentage
of manual proofreading increased, the accuracy of each algorithm also increased. It is obvious
that the accuracy of the context-rule model increased more slowly than did that of the two
Markov models, as the amount of manual proofreading increased.

The final accuracy results of the context-rule model and the two Markov models
coincided at approximately 98.5% and 99.4%, with around 13% and 35% manual proofreading.
After that, both Markov models achieved higher final accuracy than the context-rule model
did when the amount of manual proofreading increased more. The results indicate that if the
required tagging accuracy is over 98.5%, then the two Markov models will be better choices
since in our experiments, they achieved higher final accuracy than the context-rule model did.
It can also be concluded that an algorithm with higher accuracy may not always be an accurate
algorithm.
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Figure 2. Error coverage of word-dependent Markov model after amount of
corpus is proofread.
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Figure 3. Error coverage of context-rule model after amount of corpus is

proofread.
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Figure 2 and Figure 3 show the error coverage of the six ambiguous target words after
different portions of corpus are proofread respectively. It shows that not only tagging accuracy
but also reliability were degraded due to the lack of sufficient training data. Tagging

algorithms achieve better error coverage for target words with more training data.

4.3 The Tradeoff between the Amount of Manual Proofreading and the
Final accuracy

There is a tradeoff between amount of manual proofreading and the final accuracy. If the goal
of tagging is to achieve 99% accuracy, then an estimated threshold value of the confidence
score needed to achieve the target accuracy rate will be given, and a tagged word with a
confidence score less than this designated threshold value will be checked. On the other hand,
if the requirement is to finish the tagging process in a a limited amount of time and with
limited amount of manual labor, then in order to achieve the desired final accuracy, we will
first need to estimate the portion of the corpus which will have to be proofread, and then
determine the threshold value of the confidence score. Figure 4 shows the error coverage of
each different portions of corpus with the lowest confidence score. By proofreading the initial
10% low confidence tagging data we achieve the most improvement in accuracy. As the
amount of proofread corpus increased, the level of accuracy decreased rapidly. The
experimental results of tagging reliability can help us decide which is the most cost-effective
tagging algorithm and how to proofread tagging results under constraints on the available

human resources and time.
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Figure 4. Error coverage rate of different portion of corpus to be proofread.
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5. Conclusion

In this paper, we have proposed a context-rule model for pos tagging. We have also proposed
a new way of finding the most cost-effective tagging algorithm. Cost-effectiveness is defined
based on a criterion of reliability. The reliability of the system is measured in terms of the
confidence score for ambiguity resolution of each tagging. The basic observation of
confidence tagging is as follows: the larger the gap between the candidate pos with the highest
probability and other (the second, for example) candidate pos with lower probability, the more
confidence can be placed in the tagging result. It is believed that the ability to resolve pos
ambiguity plays a more important part than the confidence measurement in the tagging system,
since a larger gap between the first candidate pos and the second candidate pos can result in a
high confidence score. Therefore, another reasonable measurement of the confidence score
will work as well as the one used in our experiments if the tagging algorithms have good

ability to resolve pos ambiguity.

For the best cost-effective tagging algorithm, on average, 20% of the samples of
ambiguous words need to be rechecked to achieve 99% accuracy. In other words, the manual
labor of proofreading is reduced by more than 80%. Our study on tagging reliability, in fact,
provides a way to determine the optimal tagging strategy under different constraints. The
constraints might be to achieve the best tagging accuracy under time and labor constraints or
to achieve a certain accuracy with the least effort possible expended on proofreading. For
instance, if the goal of tagging is to achieve 99% accuracy, then a threshold value of the
confidence score needed to achieve the target accuracy will be estimated, and a tagged word
with a confidence score less than this designated threshold value will be checked. On the other
hand, if the constraint is to finish the tagging process under time and manual labor constraints,
then in order to achieve the desired final accuracy, we will first estimate the portion of the
corpus that will have to be proofread, and then determine the threshold value of the confidence

Score.

In future, we will extend the coverage of confidence checking for all words, including
words with single pos, to detect flexible word usages. The confidence measure for words with
single pos can be obtained by comparing the tagging probability of the pos of the words with
the probabilities of the other categories. Furthermore, since tagging accuracy and reliability
are degrading due to the intrinsic complexity of word usage and the less amount of training
data, we will study word-dependent reliability to overcome the degrading problems. There
are many possible confidence measures. For instance log(p(c,)/ p(c,)) is a reasonable
alternative. We will study different alternatives in the future to obtain a more reliable

confidence measure.
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