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Abstract 
The newly-developed prosody module of our text-to-speech (TTS) system is described in the paper. 

We present two main works on it’s establishment and improvement. On the basis of potential factors 

influencing prosody parameters, inclusive of duration, pitch and intensity, the prosody model is built as 

groundwork of this module which is superior to the former rule-based one in generation of natural 

prosody. In addition, due to the current model’s flaw in prediction of the pitch contour, we further 

employ an technique named “Soft Template Mark-up Language“(STEM-ML) to improve the 

smoothness of intonation which has the crucial influence on the naturalness of synthetic speech. 

Results of the evaluation indicate that the new prosody model is precise enough to predict reliable 

prosody parameters’ values and with the STEM-ML technique, the prosody module can further yield 

14.75% reduction in the root mean square (RMS) error of the predicted pitch contour. 

1. Introduction  
In consideration of severe limitation in the resource afforded by some applications in need of speech 

response, we choose to develop one storage-saving TTS system which  has  functioned successfully 

in our spoken dialogue system. Accordingly, the acoustic inventory used in our system is simply 

composed of about four hundred base syllable units whose duration and pitch contour will be modified 

with the algorithm called Pitch-Synchronous Overlap-Add (PSOLA) [1][12] in the synthesizing phrase.  

In order to produce natural-sounding synthetic speech, the generation of prosody plays a key role 

and is a difficult issue yet. Outperforming rule-based method [13][14] which was employed in our 

system previously, the newly-built statistical model based on sum-of-products approach with key 

factors affecting prosody [7][8][9][10][11] can predict more accurate values of prosody parameters. 

And in general, the intonation which is characterized by the pitch contour seems more crucial to the 

naturalness and intelligibility of synthesized speech in comparison with other prosody elements such as 

duration, intensity etc [6]. Nevertheless, the pitch contour generated by our current prosody model is 

still short of smoothness.  As a result, we further concentrate our work on this problem. Based on the 

F0 (fundamental frequency) mean value predicted by the current prosody model, an technique named 

STEM-ML [2][3][4][5] is adopted to overcome this shortcoming. In the evaluation phrase, we prove 

that this technique can help to reduce the difference between the predicted and observed pitch contours, 

which means that a more natural intonation is achieved.    

The paper is organized as follows. In the chapter 2, we present the prosody modeling in our system, 

The chapter 3 reports STEM-ML technique and the result of implementation. The conclusion is 

described in the chapter 4.  
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2. Prosody modeling  
In general, prosody mainly consists of duration, pitch, intensity of the spoken unit which is one 

syllable in terms of Mandarin. Besides, the break between units is one of it’s important elements as 

well. Therefore, one utterance’s prosody can be regarded as the elaborate composition of these four  

perceivable characteristics. And the variation in prosody stem from a lot of factors in different 

dimensions which can be observed in the real speech corpus such as the syllable’s position in the 

sentence, lexical tone even the speaker’s emotion and so on. Furthermore the complex interactions 

between factors further lead to another difficulty in designing the prosody model. As a result, in 

addition to inferring the reliable factors influencing the prosody, to model the interactions between 

factors intelligently is also a challenge in this work.  .        

2.1 Modeling 

2.1.1 Base model and sub-models 
The potential factors affect one characteristic simultaneously and have additive, multiplicative or 

repulsive interactions . Thus, it’s troublesome to derive their eventual combined effect on the 

characteristic. However, for the purpose of assuring that the basically reasonable value for the 

characteristic can be preserved, one major factor in possession of dominant influence are elected to 

build the base model while the remaining minor factors take charge to constitute sub-models. In other 

words, under this framework, the base model provides fundamental value for the characteristic and 

sub-models act on this base value (BV for short) through the mechanism modeling their interaction to 

obtain the ultimate characteristic value (CV for short). 

2.1.2 Ratio of characteristic value to base value (RCB) 
In order that this concept of modeling can be put into practice concretely, the training sample for 

sub-models, namely the CV of each syllable has to be normalized by it’s corresponding BV beforehand. 

Thus, pre-processed CV is computed as follows.  

  
BV
CV

=RCB                   (1) 

2.1.3 Mechanism 
In brief, the ultimate objective of the mechanism devised here is to make combined effect of minor 

factors quantized to one RCB value used as the multiplier of the BV. The interactions of minor factors 

are modeled by the approach of sum-of-products and the predicted CV is computed as follows. 
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where 

Bi is the parameter of the base model for the characteristic i and 



SMN is the numbers of sub-models for the characteristic i and   

Si is the parameter of the sub-model i and 

Cij is a coefficient associating the sub-model i and sub-model j and 

mij and nij represent the stress of sub-model i and sub-model j respectively.  

2.1.4 Factors 
We infer seven potential factors crucial to the characteristics in prosody. 

Those are listed and described briefly as below. 

 Base syllable (BS)  

408 identities  

 Lexical tone (LT)  

4 lexical tones and one neutral tone  

 Left and right context tones (LRCT) 

175 levels: 25(bi-tone) + 125(tri-tone) 

 The syllable’s position in the word and the syllable number of one word 

(SInW) 

 15 levels: 1+2+3+4+5 (longest word length) 

 The word’s position in the phrase (WInP) 

4 levels: 
OfPhraseWordNumber

WordIndexWInP 4×
=  

 Right context break (RCBk) 

4 levels: inter-syllable pause, inter-word pause, comma, period  

 Right context initial (RCIt) 

32 identities  

Accordingly., four kinds of base models and seven kinds of sub-models will be established in light of 

these factors. 

2.2 Estimation 

2.2.1 Corpus 
Recorded by a single female speaker, the speech corpus contains 3657 sentences (70000 

syllables;about 7 hours) with moderate intonation and constant speaking rate. In terms of 

linguistics ,the properly-designed one has enough coverage to tackle diverse variability of prosody. 

Among these sentences, around 3200 ones are used as training data and the rest of them are reversed 

for the purpose of evaluation. The syllable boundaries in the waveform are further calibrated manually 

after aligned by the automatic speech recognizer.  

2.2.2 Objective function 
The distortion rate (DR) is defined to measure the precision of predicted value.    

 
O
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where  

O is the occurrence’s CV and 

P is the predicted CV. 

Accordingly, the objective function is defined as average DRs of all occurrences in the training data. 
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where N is the number of training samples. 

2.2.3 Approach 
 Model 

Both base models and sub-models have only one parameter. The parameters of base models and 

sub-models are calculated as the average of observed occurrences’s CVs and RCBs which correspond 

to them in the training corpus respectively. 
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where  

µ is the parameter of the model and  

oi is observed occurrence whose value is either RCB or CV depending on whether the model is a 

sub-model or base model and 

oN is the number of occurrences.    

 Coefficients and Stress    

Firstly, the initial values of coefficients and stress are calculated by means of linear least square error 

and given value 1 respectively. And furthermore beginning with the initial values, 

Levenberg-Marquardt algorithm [15][16] with numerical differentiation is employed to find the 

optimal values of these parameters with the goal of minimizing the objective function O defined in (4). 

2.3 Characteristic model 
In this section ,the characteristic models, inclusive of duration, pitch and intensity are discussed in 

terms of the related factors and precision. And as for the break characteristic, we straightforwardly give 

each type of break an empirical length instead of building the model. 

2.3.1 Duration  
This characteristic means the time for which one syllable endures in the utterance. Since the 

boundaries between syllables are demarcated precisely by hand in our speech corpus, it is 

straightforward to calculate the syllable’s duration. 

 Factors 

Major BS 
Minor  1. LRCT 2. SInW 3. WInP 4. RCBk 5. RCIt 

 Speaking rate 

Each syllable’s duration in the corpus needs to be normalized by the utterance’s speaking rate (SR) 



which is estimated as: 
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where  

iD  is duration of one syllable (named Si), BSiD  is average duration of base syllable corresponding to 
Si in the corpus and is the number of syllables in one utterance. SylN

2.3.2 Pitch  
Pitch here means the one syllable‘s pitch contour which is depicted with  F0 (fundamental 

frequency) computed at a constant frame rate. In our task, this characteristic is discussed in two 

separate aspects, namely the pitch contour ‘s F0 mean (FM for short) and F0 shape. The former can 

leave the each syllable’s pitch contour in a proper level and the later considerably concerns it’s 

smoothness.  

In this chapter, we only concentrate discussion on the F0 mean. In the other hand, one technique 

named STEM-ML is adopted to deal with F0 shape. This work will be reported in next chapter.    

 Factors 

Major LT 

 Minor 1. BS  2. LRCT  3. SinW  4. WinP 5. RCBk 

 
 FM rate 

Each syllable’s FM in the corpus needs to be normalized by the utterance’s FM rate (FMR) which is 

estimated as:   

      ∑=
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where  

iF is FM of one syllable, ToneiF  is average FM of Tonei in corpus and is syllable number in one 

utterance. 

SylN

2.3.3 Intensity   
This characteristic means one syllable’s volume in one utterance. We measure one syllable’s 

intensity with it’s power. The power can be estimated as below. 
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where 

Xi and N are the sample value and number of samples respectively. 

 
 Factors 

Major LT 

   Minor 1. BS 2. LRCT 3. SInW 4. WInP 5. RCBk 



 Power rate 

Each syllable’s power in the corpus needs to be normalized by the utterance’s power rate (PR) which 

is estimated as: 

    ∑=
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where 

iP  is power of one syllable (named Si), ToneiP is average power of Tonei in the corpus and is 

syllable number in one utterance. 

SylN

2.4 Evaluation 

The evaluation set consists of 300 stentences, exclusive of the sentence in the training set and the 

precision of the characteristic models are evaluated with DR defined in (3). The results are shown in 

the Table 1. 

Model Precision

Duration 11.35%

Pitch 5.6%

Intensity 1.98%

Table 1. The preciosion of characteristic models. 

3. Soft Template Mark-up Language (STEM-ML) 
The prosody model developed in the previous chapter establishes the groundwork for the prosody 

module of our TTS system. However, since it merely aims at assuring the accuracy of F0 mean without 

putting emphasis on the F0 shape, the predicted pitch contour lacks smoothness. For the sake of this 

drawback , we proceed to employ an model devised by Kochanski, G. P. et al. and called STEM-ML 

that is abbreviated from “Soft Template Mark-up Language”.  

It is a tagging system which computes the pitch contour in light of a set of tags serving to interpret 

the variation in the pitch contour more humanly. In order to make the artificial pitch contour closer to 

the real one, the mechanism of model has to comply with the constraints actually existing in the human 

uttering process. Thus, each tag concretely takes effect by imposing constraints on prediction of the 

pitch curve. 

As a result, the pitch curve is eventually generated by the model on condition that those constraints 

come to a compromise. In fact, such compromise can be considered to be the result of tradeoff between 

two events with reversal interaction, namely effort and error. The effort term stands for physiological 

energy consumed in the uttering processing and the error one means the communication error rate 

caused under the current effort. Obviously, they behave contrary to each other. With more effort, the 

uttering can achieve more accurate expression on words while the error results from little effort spent 

on uttering. In conclusion, the model can be also thought to predict the pitch curve with the goal of 

minimizing the sum of effort and error caused in the uttering process.  

3.1 Model 



3.1.1 Soft templates 
Soft templates consists of pitch contours of four lexical tones (tone1,tone2,tone3 tone4) and the 

neutral tone (graphed in Figure 1).Since the syllable’s tone shape varies considerably due to the 

affection from syllables nearby, five templates aren’t apparently equal to express such variability . 

However, the adjective, “Soft” significantly implies that their shapes are allowed to change properly 

(see Figure 2). Consequently, these templates with the elastic property can form smoother pitch 

contour.    

        
Fig 1. 5 tone templates.               Fig2. A example of how one syllable is 

effected by it’s neighbor. Succeeding to Tone3, 

the original shape of Tone1 template (dot line) 

is bended under control of the model and turns 

out to be the one (cross line) with tilt in the 

front part. 

3.1.2 Tags 
The tags function as adjustable parameters of the model. Each kind of tag governs the pitch curve’s 

variability in one certain dimension. For instance, the tag smooth determines the permissible velocity 

of change in pitch values and the priority over one pitch curve’s shape and F0 mean is dependent on the 

tag syllable-type . Thus, the tags have the critical influence on the generated pitch curve’s look and 

should be given proper values so that the one can has good quality. The estimation of tags will be 

reported in the section 3.3. 10 kinds of tags in total are used in our work as listed below. 

max, min, base, range, add, slope, smooth, pdroop, adroop syllable-type, syllable-strength 

Moreover, to account for the more detailed pitch curve’s variation inside one word, the tag 

syllable-strength is specially given a distinct value depending on the syllable’s position inside the word. 

As the case for the sub-model SInW, this actually leads to 15 kinds of syllable-strength tags 

considered in the model.   

3.2 Calculation of pitch contour  
  Based on the templates and tags, the process of calculating the pitch curve mainly includes two 

steps. 

Step1 

The first step purposes to prepare the plain templates assembling a prototype of the pitch curve.  

1. Select the templates according to each syllable’s tone among five basic templates as mentioned 

above.   



2. The templates have to be modified to conform to the desired duration and F0 mean predicted by the 

prosody model.  

Step2 

In this step, the tags start to be applied in the calculation along with ready templates. The constraints 

on generation of the pitch curve are realized by translating the tags to a number of conditional 

equations with pitch instants (F0) as unknown variables to be solved. One tag can brings in one 

equation or one group of equations. For example, the slope tag which controls the pitch’s increasing or 

decreasing rate in the phrase level yields the equation Pt+1 – Pt = S where P and S are the pitch 

variable and the slope tag’s value respectively. These joint conditional equations can be written as the 

form Ax = b where A is matrix with rows composed of the coefficients in the left-hand side of all 

equations and x is a vector containing the unknown variables and the b is a vector with elements 

consisting of the right-hand side of all equations .Consequently, the pitch values of the curve are the 

solution of the algebraic problem Ax = b.      

Furthermore, the calculation proceeds in the order of phrase level and the syllable level. Riding on 

the phrase’s pitch curve solved firstly, the syllable’s one is calculated . The process in the phrase level 

aims at deciding the trend of the whole resultant pitch curve which is finally obtained in the syllable 

level. Step2 is illustrated in Figure 3. 
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3.3.1 Approach 
We estimate the tags by data fitting with the objective to minimize root mean square (RMS) error of 

the predicted F0 in comparison with the observed F0 in the data. The development data set composed 

of 300 sentences is designed to cover enough occurrences for each kind of tag and templates. Similarly, 

Levenberg-Marquardt algorithm with numerical differentiation is employed in this task. In addition, the 

number of pitch samples per syllable in the data is normalized to a constant and the syllable’s 

un-voiced position is excluded. 

3.3.2 Results 
The process of minimization ends in RMS error that is equal to 16.16 (Hz ) One example of fitting 

results is shown in Figure5. 

 
              靈 活  調 度 飛 機  班 次 或 派 遣  專 機  來 接 運 僑 民 

Fig5. A example of one utterance‘s simulated pitch curve (dot line) along with the real one (dash line) 

in the data-fitting result. 

3.4 Evaluation  
The evaluation data set is the same to one in the chapter 2 and the prosody model is used as the 

baseline of this task. In the baseline, the templates are unvaried in the shape but shifted to have the F0 

mean predicted by the prosody model. The accuracy of the pitch contour generated by the model is 

measured by the RMS error of predicted F0 .The result is shown in the Table 2. 

Prosody model (baseline) 19.46 (Hz) 

Prosody model + STEM-ML 16.59 (Hz) 

Table 2. The RMS F0 error of the pitch contour generated by the prosody model and prosody model + 

STEM-ML. 

The result indicates that based on the prosody model, this technique can further reduce 14.75% RMS 

error of F0 in the predicted pitch contour.     

4. Conclusions  
In this paper, we successively report two works on the development of the prosody module in our 

TTS system, Firstly, the prosody model based on the framework of base models and sub-models and 

sum-of-products approach has been proven to have the capability of predicting reliable prosody 

parameters’ values. Furthermore, the employment of the STEM-ML technique further bring in the 

improvement in the smoothness of the intonation which the prosody model originally lacks 

In order to raise the accuracy of the prosody model, the refinement of the mechanism in the 

modeling should be necessary . Besides, we consider expanding the types of STEM-ML tags defined in 



our system to generate more natural and lively intonation.  
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