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Abstract. Anaphora resolution is one of essential tasks in message understanding. In this paper 
resolution for pronominal and sortal anaphora, which are common in biomedical texts, is 
addressed. The resolution was achieved by employing UMLS ontology and SA/AO 
(subject-action/action-object) patterns mined from biomedical corpus. On the other hand, sortal 
anaphora for unknown words was tackled by using the headword collected from UMLS and the 
patterns mined from PubMed. The final set of antecedents finding was decided with a salience 
grading mechanism, which was tuned by a genetic algorithm at its best-input feature selection. 
Compared to previous approach on the same MEDLINE abstracts, the presented resolution was 
promising for its 92% F-Score in pronominal anaphora and 78% F-Score in sortal anaphora. 

1 Introduction 

 Anaphora resolution is one of essential tasks in message understanding as well as knowledge discovering. 
For example recognizing biomedical relations among biomedical entities from research literature like 
MEDLINE database requires anaphora resolution for those mentioned entities from texts.  
There are different types of anaphora to be solved like pronominal, sortal (definite), zero, event, and coreference 
anaphora. In biomedical literature, pronominal anaphora and sortal anaphora are the two common anaphora 
phenomena. Pronominal anaphora is that mentioned entity is substituted by the pronoun. Sortal (definite) 
anaphora occurs in the situation that a noun phrase is referred by its general concept entity. Definite noun 
phrases are noun phrases stating with demonstrative articles, such as those, this, both, each and these or starting 
with a definite article. 

Generally identifying antecedents of an anaphor can be handled by using syntactic, semantic or pragmatic 
clues. In past literature, syntax-oriented approaches for general texts can be found in [Hobbs, 76; Lappin and 
Leass 94; Kennedy and Boguraev 96] in which syntactic representations like grammatical role of noun phrases 
were used.  

On the other hand more information other than syntactic information like co-occurring patterns obtained 
from the corpus was employed during antecedent finding in [Dagan and Itai, 90]. Information with limited 
knowledge and linguistic resources for resolving pronouns were found in [Baldwin, 97]. In [Denber, 98, Mitkov, 
02], more knowledge from the outer resource like WordNet was employed in solving anaphora. Similarly 
WordNet together with additional heuristic rules were applied for resolving pronominal anaphora in [Liang and 
Wu, 04] which animacy information is obtained by analyzing the hierarchical relation of nouns and verbs in the 
surrounding context learned from WordNet.  

In biomedical literature, it was found that sortal anaphors are prevalent in the texts like MEDLINE 
abstracts [Castaño et al., 02]. To deal this type of anaphora, Castaño et al. [02] used UMLS (Unified Medical 
Language System) as ontology to tag semantic type for each noun phrase and used some significant verbs in 
biomedical domain to extract most frequent semantic types associated to agent (subject) and patient (object) role 
of SA/AO-patterns. The result showed SA/AO-pattern could gain increase in both precision (76% to 80%) and 
recall (67% to 71%). In [Hahn et al., 02], a center list mechanism was presented to relate each noun to those 
nouns appearing in a previous sentence anaphora. Gaizauskas et al. [03] presented a predefined domain rules for 
ensuring co-referent between two bio-entities so that implicit relations between two entities could be recognized.  

In this paper, the anaphora resolution for biomedical literature is achieved by employing UMLS ontology 
and syntactic information. The proposed system identifies both intra-sentential and inter-sentential antecedents 
of anaphors. In addition, anaphora resolution for unknown words has concerned in this paper by using headword 
mining and patterns mined from PubMed search results. Determining semantic coercion type of pronominal 
anaphor is done by SA/AO patterns, which were pre-collected from GENIA 3.02p corpus, a MEDLINE corpus 
annotated by Ohta et al. [02]. The final set of antecedents finding is decided with a salience grading mechanism, 
which is tuned by a genetic algorithm at its best-input feature selection. Compared to previous approach on the 



same MEDLINE abstracts, the presented resolution is promising for its 92% F-Score in pronominal anaphora 
and 78% F-Score in sortal anaphora. 

2 The Presented Resolution 

 
Figure 1: Architecture overview. 

Figure 1 is the presented overview architecture which contains background processing, including SA/AO 
patterns and headword collection, indicated with dotted lines and foreground processing, including preprocessor, 
grammatical pattern extractor anaphor recognizer, and antecedent finder, indicated with solid lines. 

2.1 SA/AO Patterns Collection 

In this paper we used co-occurring SA/AO patterns obtained from GENIA corpus for pronominal 
anaphora resolution. Then we tag subjects and objects with UMLS-semantic type tags. Each SA/AO pattern is 
scored by the scoring function (Eq. 1). The antecedent candidates are concerned if their scores are greater than a 
given threshold. 
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The following is a pattern extraction example: 
 

Example1: 
<NFATp> <binds> to two sites within the kappa 3 element 
UMLS semantic type of NFATp: Amino Acid, Peptide, or Protein 
Extracted pattern: <Amino Acid, Peptide, or Protein> <bind> 

2.2 Headword Collection 

 For unknown words, we need to predict their semantic types of the word. In [Pustejovsky et al., 02], they 
use the righthand head rule (the head of a morphologically complex word to be the righthand member of that 
word) to extract headwords to be subtype of the semantic type in UMLS. Table 1 is an example for headword 
‘receptor’ which changes other noun phrase which were tagged with different semantic into ‘Amino Acid, 
Peptide, or Protein’. ‘Adhesion’ is tagged with ‘Acquired Abnormality, Disease or Syndrome’ but ‘adhesion 
receptor’ becomes the tag of ‘Amino Acid, Peptide, or Protein’ by addition of ‘receptor’. 

Table 1: Example with righthand rule. 

Noun Phrase Semantic Type 
Adhesion Acquired Abnormality, Disease or Syndrome 
adhesion receptor Amino Acid, Peptide, or Protein 
Contraction Pathologic Function 
Contraction receptor Amino Acid, Peptide, or Protein 
Estrogen Steroid, Pharmacologic Substance, Hormone  
estrogen receptor Amino Acid, Peptide, or Protein 
Dopamine Organic Chemical… 
dopamine receptor Amino Acid, Peptide, or Protein 

 

We collected all UMLS concepts and their corresponding synonyms, and then selected headwords for 
each semantic type (super-concept). For example, concept  ‘interleukin-2’ has synonyms ‘Costimulator’, 
‘Co-Simulator’, ‘IL 2’, and ‘interleukine 2’. We collected ‘interleukin’, ‘costimulator’, ‘simulator’, ‘IL’, and 
‘interleukine’ as headwords for ‘interleukin-2’. Then, we found semantic types of ‘interlukin-2’ is ‘Amino Acid, 
Peptide, or Protein’ and ‘Immunologic Factor’. We assigned synonym headwords of ‘interleukin-2’ into both 
semantic types. Eq. 2 was designed to score each headword for each semantic type. The scoring function 
smoothes the semantic type size. 

Headword scoring function: 
 

)2(1
,

ij

i
ji twcMax

ww ×=  

wi,j :  score of word i in semantic type j 
wi :   count of word i in semantic type j 
Max cj :  Max count of word k in semantic type j 
twi :   count of semantic types that word i occurs in 

2.3 Preprocessor 

 After input untagged documents, we go through POS tagging and NP Chunking these preprocessing will 
give us more information about the documents. 



2.4 Grammatical Function Extraction 

 Grammatical function is defined as creating a systematic link between the syntactic relation of arguments 
and their encoding in lexical structure. For anaphora resolution, grammatical function is an important feature of 
salience grading. We extended rules from Siddharthan [03], from following rules 1~4 to rules 1~6.  

Rule 1: Prep NP (Oblique) 
Rule 2: Verb NP (Direct object) 
Rule 3: Verb [NP]+ NP (Indirect object) 
Rule 4: NP (Subject) [“,[^Verb] appositive),”|Prep NP]* Verb 
Rule 5: NP1 Conjunction NP2 (Role is same as NP1) Conjunction] 
Rule 6: [Conjunction] NP1 ( Role is same as NP2 ) Conjunction NP2 

 
Rule 5 and rule 6 were presented for dealing those anaphors that have plural antecedents. We use syntactic 

agreement with first antecedent to find other antecedents. Without rules 5 and 6, ‘anti-CD4 mAb’ in Example 1 
will not be found when resolving ‘they’’s antecedents. 

 
Example 1:  
“Whereas different anti-CD4 mAb or HIV-1 gp120 could all trigger activation of the ..., they 

differed…” 

3 Anaphora Resolution  

 Anaphor and antecedent recognition are the two main parts of the anaphora resolution system. Anaphor 
recognition is to recognize the target anaphora by filtering strategies. Antecedent recognition is to determine 
appropriate antecedents with respect to the target anaphor. 

3.1 Anaphora Recognition 

 Noun phrases or prepositional phrases with ‘it’, ‘its’, ‘itself’, ‘they’, ‘them’, ‘themselves’ and ‘their’ are 
considered as pronominal anaphor. ‘it’, ‘its’, and ‘itself’ are considered as anaphor which has singular number 
of antecedent, others are considered as anaphor which has plural number of antecedents. Relative pronouns 
‘which’ and ‘that’ are also pronominal anaphors but these anaphors can use a simple rule, point to the nearest 
noun phrase or prepositional phrase, to find its antecedent or point to the relative clause behind when paired 
with a pleonastic-it. 

 Noun phrases or prepositional phrases with ‘either’, ‘this’, ‘both’, ‘these’, ‘the’, and ‘each’ are considered 
as candidates of sortal anaphors. Noun phrases or prepositional phrases with ‘this’ or ‘the+ singular noun’ are 
considered as anaphors which have singular antecedent. Anaphor with plural number of antecedents are shown 
in Table 2. 

Table 2: Number of Antecedents 

Anaphor Antecedents #
Either 2 
Both 2 
Each Many 
They, Their, Them, Themselves Many 
The +No.+ noun No. 
Those +No.+ noun No. 
these +No.+ noun No. 

3.1.1 Pronominal Anaphora Recognition 

 Pronominal anaphora recognition was done by filtering out pleonastic-it. Following rules are used to 
recognize pleonastic-it instances. 

 
Rule1: It be [Adj|Adv| verb]* that 
 



Example 2: 
“It is shown that antibody 19 reacts with this polypeptide either bound to the ribosome or free in solution.”  
 
Rule 2: It be Adj [for NP] to VP 
 
Example 3: 
“However, it is possible for antidepressants to exert their effects on the fetus at other times during pregnancy 

as well as to infants during lactation.”  
 
Rule 3: It [seems|appears|means|follows] [that]*  
 
Example 4: 
“It seems that the presence of HNF1 sites in liver-specific genes was favoured, but that no counter-selection 

occurred within the rest of the genome.”  
 
Rule 4: NP [makes|finds|take] it [Adj]* [for NP]* [to VP|Ving] 
 
Example 5:  
“Furthermore, the same experimental model makes it possible to image lymphoid progenitors in fetal and 

adult hematopoietic tissues.” 

3.1.2 Sortal Anaphora Recognition 

 Sortal anaphora recognition was done by filtering those sortal anaphor, which have no referent 
antecedent or which have antecedents but not in the defined biomedical semantic types. Following two rules are 
used to filter out those un-target anaphors.  

 
 Rule 1: Filter out those noun phrases or prepositional phrases if they are not tagged with the following 
UMLS classes. 

Amino Acid, Protein, Peptide, Embryonic Structure, Cell Biomedical Active Substance, Organism, 
Functional Chemical, Bacterium, Molecular Sequence, Chemical, Nucleoside, Cell Component, Enzyme, 
Gene or Genome, Structural Chemical Nucleotide Sequence, Substance, Organic Chemical, Pharmacologic 
Substance, Organism Attribute, Nucleic Acid, Nucleotide. 

 
Rule 2: Filter out proper nouns with capitals and numerical features. 

3.2  Number Agreement Checking 

Number is the quantity that distinguishes between singular (one entity) and plural (numerous entities). It 
makes the process of deciding candidates easier since they must be consistent in number. All noun phrases and 
pronouns are annotated with number (singular or plural). For a specified pronoun, we can discard those noun 
phrases whose numbers differ from the pronoun. With singular antecedent anaphor, plural noun phrases are not 
considered as possible candidates. 

3.3 Salience Grading 

Salience grade for each candidate antecedent is assigned according to Table 3. Each candidate antecedent 
is assigned with zero at initial state.  

Recency is a feature about distance between an anaphor and candidate antecedents. The closer between an 
anaphor and a candidate antecedent, the more chance the anaphor points to this candidate antecedent. For 
grammatical role agreement, if we use same entity in the second sentence and in the same role, it is easy for 
readers to identify which antecedent that the anaphor points to, so an author might use anaphor instead of full 
name of the entity. In addition to role agreement, subjects and objects are important role in sentence, which may 
be mentioned many times and writer might use an anaphor to replace a previously mentioned items. Singular 
anaphors may only point to one antecedent, while plural anaphors usually points to plural antecedents. For the 
feature of semantic type agreement, when we mention entity the second time, it is common for us to use its 
hypernym concept. Therefore such feature will receive high weights at salience grading. 



Table 3: Salience grading for candidate antecedents. 

Features Score 
Recency 0-2 
Subject and Object Preference 1 
Grammatical Role Agreement 1 
Number Agreement 1 
Longest Common Subsequence 0-3 
Semantic Type Agreement -1 if not or +2 
Biomedical Antecedent  -2 if not or +2 

3.3.1 Antecedent and Anaphor Semantic Type Agreement 

For pronominal anaphora, we collected coercion semantic type between verb and headword by GENIA 
SA/AO patterns, and we generalized subjects and objects by using UMLS semantic types. For a pronoun, we 
tagged the pronoun with coercion semantic types on the basis of SA/AO pattern. 

Sortal anaphoras are dealt by checking semantic agreement between anaphor and antecedent. So, all noun 
phrases and prepositional phrases will be tagged in advance by following steps. 

(1) UMLS type check 
(2) The Antecedent contains the headword in the anaphor’s semantic type.  
(3) If there is no headword found in antecedent then check {anaphor, antecedent} pair by using PubMed 

For {anaphor, antecedent} pair {The nmd mouse mutation, of a second site suppressor allele}, we created 
query1 :<anaphor: ”The nmd mouse mutation”, antecedent: “of a second site suppressor allele”> and query2: 
<antecedent: “of a second site suppressor allele”>. Queries are used to query from PubMed website and Eq. 3 
was used to score the antecedent for semantic type agreement. 
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3.3.2 Longest Common Subsequence (LCS) 

The use of the LCS exploits the fact that the anaphor and its antecedents are morphological variants of each 
other (e.g., the anaphor “the grafts” and the antecedent “xenografts”) [Castaño, 02]. We score each anaphor and 
candidate antecedent as follows:  

 If total match between a anaphor and its candidate antecedents  
   then salience score = salience score + 3 
 Else if partial match between a anaphor and its candidate antecedents 
   then salience score = salience score + 2 
 Else if one antecedent match its anaphor hyponym by WordNet 2.0 
   then salience score = salience score + 1 

3.3.3 Antecedent Selection 

We search noun phrases or prepositional phrases in range of two sentences preceding the anaphor. We 
count salience grader scores for each noun phrase. Antecedents are selected by using best fit or nearest fit 
strategy. 

(1) Best Fit: select antecedents with the highest salience score that is greater than threshold  
(2) Nearest Fit: Select the nearest antecedents whose salience value is greater than a given threshold, and 

find candidate antecedents from the anaphor to the two sentences ahead 
 

We have identified the number of antecedents for its corresponding anaphor. If an anaphor is identified to 
have plural antecedents, we will use following steps to choose antecedents. 

(1) If the number of antecedents is identified, set the highest number of noun phrases or prepositional 
phrases to the anaphor.  

(2) If the number of antecedents is unknown, find those noun phrases and prepositional phrases that are 
greater than a given threshold and they have the same patterns as the top-score noun phrase or 
prepositional phrase. 



3.3.4 Feature Selection 

Feature selection for salience grading was implemented with a genetic algorithm which can get the best 
features by choosing best parents to produce offspring leave local maximum by mutation. 

In the initial state, we chose features (10 chromosomes), and chose crossover feature to produce offspring 
randomly. We calculated mutations for each feature in each chromosome, and found about two features to be 
mutated in each generation. Max F-Score was used to evaluate each chromosome and top 10 chromosomes were 
chosen for next generation. The algorithm terminated if two contiguous generations did not increase the F-score. 

3.4 Experiments and Analysis 

The test corpus, Medstract, was adopted from (http://www.medstract.org/), containing 32 MEDLINE 
abstracts and 83 anaphora pairs (26 pronominal and 57 sortal pairs). For pronominal anaphora, we tagged 
another 103 MEDLINE abstracts (103-MEDEDLINSs) corpus which contains 177 pronominal anaphora pairs. 

From the experimental results in Table 4, best fit strategy performed better than the nearest first strategy. 
In addition, the features selected by the genetic algorithm indicated that syntactic features affect pronominal 
anaphora, and semantic features will impacts on both sortal and pronominal anaphora.  

Table 4: System result with best-first and nearest-first algorithm for Medstract. 

 Best Fit Nearest Fit [Castano et al., 2002] 
 Sortal Pronominal Sortal Pronominal Sortal Pronominal 
Total 

Features 64.08% 88.46% 50.49% 73.47%   
F5~F7 All-{F5} F5~F7 All-{F2,F5} F4~F6 F4, F6, F7 Genetic 

Features 78.26% 92.31% 61.18% 79.17% 74.4% 75.23% 
F1: Recency, F2: Subject and Object preference, F3: Grammatical role Agreement, F4: Number Agreement, 

F5: Longest common subsequence, F6: Semantic type Agreement, F7: Biomedical Antecedent  
  

The impact of each feature was also concerned and verified with the same corpus. Syntactic features 
(F1~F4) play insignificant roles in sortal resolution but they are useful for pronominal anaphora resolution. 
Sortal anaphora resolution are sensitive to semantic features (F5~F7), semantic type agreement plays an 
important role in sortal anaphora resolution. In addition to UMLS, headwords and PubMed search results were 
used to determine semantic type agreement between anaphor and antecedents. Table 5 shows F3 increases 
F-score in pronominal anaphora but drop F-score in sortal anaphora. Medstract and 103-MEDLINEs results 
show semantic type match is important in both sortal and pronominal anaphora.  Table 6 shows F-score when 
removing headword and PubMed query result. Headword features show improvement in F-score because the 
semantic type of new words become precisely. PubMed query results improved little in F-score may because we 
only use co-occurrence information was concerned. 

  

Table 5: Impact of each feature in pronominal and sortal. 

  Medstract 103-MEDLINEs 

 Sortal Pronominal Pronominal 
All 64.08% 88.46% 85.88% 
All – Recency (F1) 61.05% 73.08% 79.10% 
All - Subject or Object preference (F2) 65.96% 88.00% 84.18% 
All - Grammatical Role Match (F3) 72.00% 80.77% 80.79% 
All - Number Agreement (F4) 64.65% 81.48% 85.88% 
All – LCS (F5) 48.00% 92.31% 86.44% 
All – Semantic Type Match (F6) 44.04% 88.46% 77.40% 
All - Biomedical Antecedent (F7) 38.26% 59.26% 61.02% 

  
  



Table 6: Impact of headword and PubMed. 

 With Headword Without Headword 
With PubMed 78% 59% 
Without PubMed 76% 58% 

4 Conclusion  

In this paper, pronominal and sortal anaphora which are common phenomenal in biomedical texts are 
discussed. The pronominal anaphora processing was achieved by syntactic and semantic features, while sortal 
anaphora was tackled by semantic features. For new biomedical entities to UMLS, we solve the entities 
semantic agreement by using headword mining and patterns mine from PubMed query results. Experiment 
results showed the proposed strategies indeed enhance the resolution in terms of higher F-Score. 
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