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Abstract 

In order to achieve fast and high quality Part-of-speech (PoS) tagging, algorithms should be 

high accuracy and require less manually proofreading. To evaluate a tagging system, we 

proposed a new criterion of reliability, which is a kind of cost-effective criterion, instead of 

the conventional criterion of accuracy. The most cost-effective tagging algorithm is judged 

according to amount of manual editing and achieved final accuracy. The reliability of a tag-

ging algorithm is defined to be the estimated best accuracy of the tagging under a fixed 

amount of proofreading. 

We compared the tagging accuracies and reliabilities among different tagging algorithms, 

such as Markov bi-gram model, Bayesian classifier, and context-rule classifier. According 

to our experiments, for the best cost-effective tagging algorithm, in average, 20% of sam-

ples of ambivalence words need to be rechecked to achieve an estimated final accuracy of 

99%. The tradeoffs between amount of proofreading and final accuracy for different algo-



rithms are also compared. It concludes that an algorithm with highest accuracy may not 

always be the most reliable algorithm. 

1 Introduction 

Part-of-speech tagging for a large corpus is a labor intensive and time-consuming task. Most of time 

and labors were spent on proofreading and never achieved 100% accuracy, as exemplified by many 

public available corpora. Since manual proofreading is inevitable, how do we derive the most 

cost-effective tagging algorithm? To reduce efforts of manual editing, a new concept of reliable tag-

ging was proposed. The idea is as follows. An evaluation score, as an indicator of tagging confi-

dence, is made for each tagging decision. If a high confidence value is achieved, it indicates that this 

tagging decision is very likely correct. On the other hand, a low confidence value means the tagging 

result might require manual checking. If a tagging algorithm can provide a very reliable confidence 

evaluation, it means that most of high confidence tagging results need not manually checked. As a 

result, time and manual efforts for tagging processes can be reduced drastically. The reliability of a 

tagging algorithm is defined as follows. 

Reliability = The estimated final accuracy achieved by the tagging model under the con-

straint that only a fixed amount target words with the lowest confidence 

value is manually proofread. 

It is slightly different from the notion of tagging accuracy. It is possible that a higher accuracy algo-

rithm might require more manual proofreading than a reliable algorithm with lower accuracy. 



The tagging accuracies were compared among different tagging algorithms, such as Markov PoS 

bi-gram model, Bayesian classifier, and context-rule classifier. In addition, confidence measures of 

the tagging will be defined. In this paper, the above three algorithms are designed and the most 

cost-effective algorithm is also determined. 

2 Reliability vs. Accuracy 

The reported accuracies of automatic tagging algorithms are about 95% to 96% (Chang et al., 1993; 

Lua, 1996; Liu et al., 1995). If we can pinpoint the errors, only 4~5% of the target corpus has to be 

revised to achieve 100% accuracy. However, since the occurrences of errors are unknown, conven-

tionally the whole corpus has to be reexamined. It is most tedious and time consuming, since a prac-

tically useful tagged corpus is at least in the size of several million words. In order to reduce the 

manual editing and speed up the construction process of a large tagged corpus, only potential errors 

of tagging will be rechecked manually (Kveton et al., 2002; Nakagawa et al., 2002). The problem is 

how we find the potential errors. Suppose that a probabilistic-based tagging method will assign a 

probability to each PoS of a target word by investigating the context of this target word w. The hy-

pothesis is that if the probability  of the top choice candidate  is much higher 

than the probability  of the second choice candidate , then the confidence 

value assigned for  is also higher. (Hereafter, for simplification, if without confusing, we will use 

 to stand for .) Likewise, if the probability  is closer to the probabil-

ity , then the confidence value assigned for  is also lower. We try to prove the above hy-
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pothesis by empirical methods. For each different tagging method, we define its confidence measure 

according to the above hypothesis and to see whether or not tagging errors are generally occurred at 

the words with low tagging confidence. If the hypothesis is true, we can proofread the auto-tagged 

results only on words with low confidence values. Furthermore, the final accuracy of the tagging 

after partial proofreading can also be estimated by the accuracy of the tagging algorithm and the 

amount of errors contained in the proofread data. For instance, a system has a tagging accuracy of 

94% and supposes that K% of the target words with the lowest confidence scores covers 80% of er-

rors. After proofreading those K% of words in the tagged words, those 80% errors are fixed. There-

fore the reliability score of this tagging system of K% proofread will be 1 - (error rate) * (reduced 

error rate) = 1 - ((1 - accuracy rate) * 20%) = 1 - ((1 - 94%) * 20%) = 0.988. On the other hand, an-

other tagging system has a higher tagging accuracy of 96%, but its confidence measure is not very 

reliable, such that the K% of the words with the lowest confidence scores contains only 50% of er-

rors. Then the reliability of this system is 1 - ((1 - 96%) * 50%) = 0.980, which is lower than the first 

system. That is to say after spending the same amount of effort of manual proofreading, the first 

system achieves a better results even it has lower tagging accuracy. In other word, a reliable system 

is more cost-effective. 

3 Tagging Algorithms and Confidence Measures 

In this study, we are going to test three different tagging algorithms based on same training data and 

testing data, and to find out the most reliable tagging algorithm. The three tagging algorithms are 



的(DE) 重要(VH) 研究(Nv) 機構(Na) 之(DE) 

相當(Dfa) 重視(VJ) 研究(Nv) 開發(Nv) ，(COMMACATEGORY)

內(Ncd) 重點(Na) 研究(Nv) 需求(Na) 。(PERIODCATEGORY)

仍(D) 限於(VJ) 研究(Nv) 階段(Na) 。(PERIODCATEGORY)

民族(Na) 音樂(Na) 研究(VE) 者(Na) 明立國(Nb) 

赴(VCL) 香港(Nc) 研究(VE) 該(Nes) 地(Na) 

亦(D) 值得(VH) 研究(VE) 。(PERIODCATEGORY)  

合宜性(Na) 值得(VH) 研究(VE) 。(PERIODCATEGORY)  

更(D) 值得(VH) 研究(Nv) 。(PERIODCATEGORY)  

Table 1 Sample keyword-in-context file of the words ‘研究’ sorted by its left/right context 

Markov bi-gram model, Bayesian classifier, and context-rule classifier. The training data and testing 

data are extracted from Sinica corpus, a 5 million word balanced Chinese corpus with PoS tagging 

(Chen et al., 1996). The confidence measure will be defined for each algorithm and the best accu-

racy will be estimated at the constraint of only a fixed amount of testing data being proofread. 

 It is easier to proofread and make more consistent tagging results, if proofreading processes were 

done by checking the keyword-in-context file for each ambivalence word and only the tagging re-

sults of ambivalence word need to be proofread. The words with single PoS need not be rechecked 

their PoS tagging. For instance, in Table 1, the keyword-in-context file of the word ‘研究’ (re-

search), which has PoS of verb type VE and noun type Nv, is sorted according to its left/right context. 



The proofreader can see the other examples as references to determine whether or not each tagging 

result is correct. If all of the occurrences of ambivalence word have to be rechecked, it is still too 

much of the work. Therefore only words with low confidence scores will be rechecked. 

A general confidence measure was defined as the value of 
)()(

)(

21

1

cPcP
cP
+

, where  is the 

probability of the top choice PoS  assigned by the tagging algorithm and  is the probabil-

ity of the second choice PoS 
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c 1. The common terms used in the following tagging algorithms were 

also defined as follows: 

w  The k-th word in a sequence 

kc  The PoS associated with k-th word  kw

cwcw ,...,  A word sequence containing  words with their associated categories respectively n

3.1 Markov Bi-gram Model 

The most widely used tagging models are part-of-speech n-gram models, in particular bi-gram and 

tri-gram model. In a bi-gram model, it looks at pair of categories (or words) and uses the conditional 

probability of , and the Markov assumption is that the probability of a PoS occurring 

depends only on the PoS before it. 

)|( ccP

Given a word sequence , the Markov bi-gram model searches for the PoS sequence 

such that argmax Π  *  is achieved. In our experiment, since we are 
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1 Log-likelihood ratio of log P(c1)/P(c2) is another alternation of confidence measure. However, for some 
tagging algorithms, they may not necessary produce real probability estimation for each PoS, such as con-
text-rule model. The scaling control for log-likelihood ratio will be hard for those algorithms. In addition, the 
range of our confidence score is between 0.5~1.0. Therefore, the above confidence value is adopted. 



only focusing on the resolution of ambivalence words only, a twisted Markov bi-gram model was 

applied. For each ambivalence target word, its PoS with the highest model probability is tagged. The 

probability of each candidate PoS  for a target word  is estimated by * 

* . There are two approaches to estimate the statistical data for  

and . One is to count all the occurrences in the training data, and another one is to count 

only the occurrences in which each  occurs. According to the experiments, to estimate the sta-

tistic data using  dependent data is better than using all sequences. In other words, the algorithm 

tags the PoS  for , such that  maximizes the probability of * 

*  instead of maximizing the probability of * * 
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3.2 Bayesian Classifier 

The Bayesian classifier algorithm adopts the Bayes theorem (Manning et al., 1999) that swaps the 

order of dependence between events. That is, it calculates  instead of . The 

probability of each candidate PoS c  in Bayesian classifier is calculated by 

*  * P . The Bayesian classifier tags the PoS  for , 

such that  maximizes the probability of * * . 
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3.3 Context-Rule Model 

Dependency features utilized in determining the best PoS-tag in both Markov and Bayesian models 

are categories of context words. As a matter of fact, for some cases the best PoS-tags might be de-



termined by other context features, such as context words (Brill, 1992). In the context-rule model, 

broader scope of context information is utilized in determining the best PoS-tag. We extend the 

scope of the dependency context of a target word into its 2 by 2 context windows. Therefore the 

context features of a word can be represented by the vector of . 

Each feature vector may be associated with a unique PoS-tag or many ambiguous PoS-tags. Their 

association probability of a possible PoS 

],,,,,,,[ 22111122 cwcwcwcw −−−−

0c′  is P( 0c′ | , feature vector). If for some ( , ), the 

value of P( | , feature vector) is not 1, it means that the  of  cannot be  uniquely de-

termined by its context vector. Some additional features have to be incorporated to resolve the am-

biguity. If for a word , all of its PoS 

0w 0w 0c′

0w0c′ 0w 0c

0w 0c′  such that the value of P( c0′ | , feature vector) is zero 

which means there is no training examples with the same context vector of . If the full scope of 

the context feature vector is used, data sparseness problem will seriously hurt the system perform-

ance. Therefore partial feature vectors are used instead of full feature vectors. The partial feature 

vectors applied in our context-rule classifier are , , , , , , , 

and . 
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At the training stage, for each feature vector type, many rule instances will be generated and their 

probabilities associated with PoS of the target word are also calculated. For instance, with the fea-

ture vector types of , , , ,…, we can extract rule patterns of (先生), (之

餘), (Nb, Na), (Ng, COMMA), ... etc, associated with the PoS VE of target word from 

the following sentence while the target word is ‘研究 research’. 
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周 Tsou (Nb) 先生 Mr (Na) 研究 research (VE) 之餘 after (Ng) ，(COMMA) 

” After Mr. Tsou has done his research,” 

By investigating all training data, various different rule patterns (associated with a candidate PoS of 

a target word) will be generated and their association probabilities of P( 0c′ | , feature vector) are 

also derived. For instance, If we take those word sequences listed in Table 1 as training data and 

 as feature pattern, and set ‘研究’ as target word, we would train with a result containing a rule 

pattern = (VH, PERIOD) and derive the probabilities of P(VE | ‘研究’, (VH, PERIOD)) = 2/3 

and P(NV | ‘研究’, (VH, PERIOD)) = 1/3. The rule patterns and their association probability will be 

utilized to determine the probability of each candidate PoS of a target word in a testing sentence. 

Suppose that the target word  has ambiguous categories of , and the context pat-

terns of , then the probability to assign tag  to the target word 

 is defined as follows: 
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In other words, the probabilities of different patterns with the same candidate PoS are accumulated 

and normalized by the total probability distributed to all candidates as the probability of the candi-

date PoS. The algorithm will tag the PoS of the highest probability. 



Word Word Sense Distribution Characteristics 

了 an expletive in the Chinese high frequency 

將 get, be about to average distribution of candidate categories 

研究 research high inconsistence of context information 

改變 change simply two candidate categories 

採訪 interview, gather material low frequency 

演出 perform extremely low frequency 

Table 2 Target words used in the experiments 

4 Tradeoffs between Amount of Manual Proofreading and the Best Accuracy 

There is a tradeoff between amount of manual proofreading and the best accuracy. If the goal of 

tagging is to achieve an accuracy of 99%, then an estimated threshold value of confidence score to 

achieve the target accuracy will be given and the tagged word with confidence score less than this 

designated threshold value will be checked. On the other hand, if the constraint is to finish the tag-

ging process under the constraints of limited time and manual labors, in order to achieve the best 

accuracy, we will first estimate the amount of partial corpus which can be proofread under the con-

strained time and labors, and then determine the threshold value of the confidence. 

The six ambivalence words with different frequencies, listed in Table 2, were picked as our target 

words in the experiments. We like to see the tagging accuracy and confidence measure effected by 

variation of ambivalence and the amount of training data among selected target words. The Sinica 



corpus is divided into two parts as our training data and testing data. The training data contains 90% 

of the corpus, while the testing data is the remaining 10%. 

Some words’ frequencies are too low to have enough training data, such as the target words ‘採訪 

interview’ and ‘演出 perform’. To solve the problem of data sparseness, the Jeffreys-Perks law, or 

Expected Likehood Estimation (ELE) (Manning et al., 1999), is introduced as the smoothing method 

for all evaluated tagging algorithms. The probability  is defined as),...,( 1 nwwP
N
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N

, 

where  is the amount that pattern  occurs in the training data, and  is 

the total amount of all training patterns. To smooth for an unseen event, the probability of 

 is redefined as 
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B

λ  denotes the default occurrence count for an unseen event. That is to say, we 

assume a value λ  for an unseen event as its occurrence count. If the value of λ  is 0, it means that 

there is no smoothing process for the unseen events. The most widely used value for λ  is 0.5, 

which is also applied in the experiments. 

In our experiments, the confidence measure of the ratio of probability gap between top choice can-

didate and the second choice candidate 
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 is adopted for all three different models. 

Figure 1 shows the result pictures of tradeoffs between amount of proofreading and the estimated 

best accuracies for the three different algorithms. Without any manual proofreading on result tags, 

the accuracy of context-rule algorithm is about 1.4% higher than the Bayesian classifier and Markov 

bi-gram model. As the percentage of manual proofreading increases, the accuracy of each algorithm 
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Figure 1  Tradeoffs between amount of manual proofreading and the best accuracy 

increases, too. It is obvious to see that the accuracy of context-rule algorithm increases slower than 

those of other two algorithms while the amount of manual proofreading increases more. The values 

of best accuracy of three algorithms will meet in a point of 99% approximately, with around 20% of 

required manual proofreading on result tags. After the meeting point, Bayesian classifier and 

Markov bi-gram model will have higher value of best accuracy than context-rule classifier when the 

amount of manual proofreading is over 20% of the tagged results. 

The result picture shows that if the required tagging accuracy is over 99% and there are plenty of 

labors and time available for manual proofreading, the Bayesian classifier and Markov bi-gram 



model would be better choices, since they have higher best accuracies than the context-rule classi-

fier. 

5 Conclusion 

In this paper, we proposed a new way of finding the most cost-effective tagging algorithm. The 

cost-effective is defined in term of a criterion of reliability. The reliability of the system is measured 

in term of confidence score of ambiguity resolution of each tagging. For the best cost-effective tag-

ging algorithm, in average, 20% of samples of ambivalence words need to be rechecked to achieve 

an accuracy of 99%. In other word, the manual labor of proofreading is reduced more than 80%. 

In future, we like to extend the coverage of confidence checking for all words, including words with 

single PoS, to detect flexible word uses. The confidence measure for words with single PoS can be 

made by comparing the tagging probability of this particular PoS with all other categories. 
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