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Abstract

This paper presents a Chinese parser which has been derived from the Chinese treebank
developed at CKIP, Academia Sinica. Contrary to previous approaches which aim at the
conversion of a treebank into a parsers, we do not derive phrase structure rules of any type.
Instead, the approach chosen relies on a fuzzy pattern matching strategy in order to extract
relevant examples from the treebank. Via a set of adaptation mechanism, these examples are
merged and modified so as to produce the best parse for the given set of examples. A detailed
description of the parser is provided. The different modules of this parser are evaluated. It
is shown that the parser is not only efficient and robust but provides a reasonable level of
linguistic adequacy which can be improved upon by restricting the application domain or
increasing the number of examples. Competitive approaches are presented and compared to
the proposed approach.

1 Introduction
1.1 From a Treebank to a Parser

The Academia Sinica (AS) disposes of rich resources for the automatic treatment of Modern
Mandarin Chinese, among them the manually tagged AS-corpus of about 5 Million words
(Huang and Chen, 1992) and a lexicon containing about 80.000 words described with respect
to their main semantic and syntactic properties (Huang et al., 1995). With the help of a
rule-based parser (Chen, 1996) a treebank of manually corrected sentences has been create
recently, containing about 40.000 trees (Chen et al., 1999).

This paper describes the attempt to reshape these resources into an example-based parser
which ascribes as detailed information to a sentence as can be found in the treebank.

The annotation guidelines for the treebank and a sample of 1000 trees can be found at
http://godel.iis.sinica.edu.tw/CKIP/. One example tree is reproduced in Fig.1. A
BNF of the tree structure is added in Fig.2. While the semantic role labels are almost self-
explaining, POS tags are more complex: Tags starting with N refer to nouns, starting with
V refer to verbs, starting with P refer to prepositions etc. Additional characters develop a

finer classification e.g. VK1 is a subset of VK which is a subset of V. The current specifications



comprise almost 200 POS tags, 45 phrasal labels and 46 semantic role labels.

S(experiencer:Nep:"tal"|
Head:VE2:"xia3ng" |
goal:S(agent:Nap:"gelge" |

epistemics:Dbaa:"yi2di4ng" |
epistemics:Dbaa:"huid" |
Head:VE2:"shuol"))

Figure 1: Example from the treebank: he think older_brother certainly can speak

<top> ::= <ident> " " <cat> "(" <tree> *( "|" <tree>) ")"

<tree> ::= <role> ":" <cat> ( "(" <tree> *( "[|" <tree>) ")" | ":" <Word>)
<ident> ::= {00001, 00002, 00003, ...}

<role> ::= {agent, theme, goal, Head, head, epistemics, ...}

<cat> ::= {S, NP, VP, PP, GP, Nep, VE2, Nap, ...}

<Word> ::= {wordl, word2, ....}

Figure 2: The Backus-Naur Form of the tree structure.

Comparing this treebank to the Chinese Penn-Treebank currently under development (Xia

et al., 2000; Xue et al., 2000), we observe the following main differences .

| | Penn-Treebank | CKIP Treebank |
Chinese character simplified traditional (BIG5)
size 3.289 sentences 40.000 sentences
domain mainly economy balanced, mixed
average sentence length 27 words 6.3 words (cf. Fig.10)
word to character ratio 1.72 1.87
word to POS ratio 1.10 1.14
POS tags 33 200
syntactic functions not for every constituent | 0
semantic roles 0 46
underlying linguistic theory || GB idiosyncratic
empty categories PRO, pro, T(race) ... not used
branching deep (almost binary) flat

Figure 3: The CKIP Treebank compared to the Chinese Penn-Treebank.

1.2 From the ”Ultimate Parser” to the Nearest Neighbor (NN)

An example-based parser, in its most simple form, consists of a storing and retrieval function
that returns for every learned sentence the associated tree-structure. If for every sentence

such a tree-structure can be found this parser would be the ”Ultimate Parser” (Sekine and



Grisman, 1995). It would be easy to implement, efficient and easy to maintain. Unfortu-
nately, with large or open subject domains, such an idealized parser cannot perform well,
an insight which let Sekine and Grisman return to more conventional parsing approaches.
We think, however, that the main idea of the ” Ultimate Parser” may be retained if we do
not require exact matches of the Input Sentence (ISs) with stored Example Trees (ETs) but
content us to retrieve similar ETs and to adapt them according to the kind of mismatch
which has occurred.

For this purpose we employ the so-called k-nearest neighbor classifier (k-NN classifier), an
approach underlying paradigms as Fxample-Based Machine Translation, Translation Mem-
ories and Case-Based Reasoning (Collins and Cunningham, 1996). According to the latter
approach, a new problem is approached by retrieving similar problem formulation from a
data-base together with their associated solutions. In a consecutive step the old solutions are
adapted to the new problem formulation. This approach is considered to result in efficient
and qualified problem solutions.

Transferring this approach to the task of parsing, we can identify the problem formulation
with an IS to be parsed and the solution with the stored ETs. The adaptation consists in
modifying the stored ETs there where the IS does not match the ET.

1.3 From Generalizations to Fuzzy Match

If we accept differences between IS and ET, we may try to find out automatically, or via
human reflections what this mismatch can and should be. For example, we could allow pro-
nouns to be matched on proper nouns and vice versa. Predictions of such allowed mismatches
are called generalizations and are commonly used within memory-based NLP-systems, e.g
(Brown, 1999b; Brown, 1999a; Carl, 1999; Streiter, 1999). Due to the pre-definition of such
generalizations, they can form part of the indexing system and, as a consequence, matches
can be performed efficiently.

In previous experiments (Streiter, 1999) we could show that a still greater degree of flexi-
bility, which cannot or should not be pre-determined may improve the performance. It could
be shown that a retrieval requiring strict or generalized matches cannot compete with a fuzzy
retrieval that allows for substitutions (an incompatible tree slot, e.g. a pronoun matches an
adverb) or deletions (a tree slot is missing, e.g. no time adverb in the ET) if adaptations are
applied in order to handle the mismatch. If, for example, an adverb substitutes a subject
pronoun, simple frequencies collected during the training of the treebank allow to overwrite
the labels associated to the pronoun by the most probable labels associated to this adverb.
If a temporal adverb has been deleted, the adaptation inserts this word together with its

most likely POS and semantic role.



1.4 From Generalizations to Exact Matches

Generalizations are useful if the set of examples is not large enough to cover the input:
They help to increase the coverage. As could be shown in (Streiter, 2000) however, they may
threaten the reliability, i.e. the capacity to correctly retrieve ETs once learned in the case the
generalizations lead to an ambiguous matching of input and output. In such a case we speak
of an over-generalization. Unfortunately, over-generalization can hardly be avoided as each
word behaves differently. Therefore, in many memory-based approaches, generalizations are
stored in addition to the original ungeneralized form. If the match with the generalization is
ambiguous, the system may resort to the original encoding in order to resolve the ambiguity
(Bod and Kaplan, 1998; Daelemans, 1998; Daelemans et al., 1999; Carl, 1999).

2 The parser from a bird eye’s view
2.1 Training

The training phase consists of two runs through the treebank. The first run aims at the
statistical acquisition of weights which describe how strong a word or its POS is related to
a syntactic pattern it occurs in. In a second run, the trees of the treebank including all
subtrees are indexed. As indeces we use the words and their POS. Each index is associated
with a weight which has been calculated in the first run and points to all trees in which it
occurs in. The indexing technique is called an inverted index (Grandy, 1999), a strategy
used otherwise for full-text indexing. This technique in not only fast but allows also for the

required fuzziness.

2.2 Parsing

Parsing starts with the extraction of k£ ETs, summing up the weights for all ETs referred to
by the words and POSs of the IS. £ ETs which accumulate the highest sum of weights are
retained. As not every position in an ET has to be matched by an index (word or POS), the
match between the IS and the ET may be inexact. A mismatch does not block an already
retrieved ET; it only does not increase the total score for the ET.!

In the following step the k¥ ETs and the IS are aligned: If, an ET is smaller than the IS
(we face a deletion), the best mapping of the words of the IS and the positions in the ET
has to be found. Words which are not aligned (deleted words) are inserted later on in order
to obtain a complete parse.

One way to insert deleted words is the combination (mixing) of the £ aligned ETs. For

this purpose the aligned trees are segmented into opening phrases, €.g. ”Siepei—1 head=vE2(" ,

!This and the following steps are illustrated in detail in (Streiter and Hsueh, 2000) for one parsing

example.



words, e.g. "Headepei=1,head=v p2: VE2:xiang3”, and closing phrases, €.g. ”)Sicvei=1 head=vE2" -
Such fragments of all ET's are transformed into nodes of a common lattice. Those nodes which
are neighbors in a sentence are linked via a transition. The best path through the lattice is
generated in the backward pass of a forward-backward two-pass search. As for the alignment
mentioned above, the use of the Viterbi-algorithm allows for an efficient implementation of
this task. This adaptation strategy will be referred to as combinatorial adaptation.

The next adaptation step, referred to as derivational adaptations identifies awkward sub-
trees and replaces them with subtrees obtained by the recursive application of the hole
parsing procedure to the words of the subtree. As the phrase to be parsed is shorter than
the original IS, we are likely to obtain a better match, unless the chunking into phrases is
wrong (as illustrated in Streiter and Hsueh (2000)). The purpose of this recursive call is,
similar to the previous adaptation step, to correct badly matched trees and to insert deleted
words.

The final structural adaptations operate on single words. They handle accidental word
mismatches, unknown words, phenomena of type shifting and metonymical extentions of
words. They compare the encoding of a word in the retrieved ET with what is know about
this word in the lexicon and the learned tree structures. In the case of a mismatch, either
the mismatch is maintained (type shifting and metonymies) or the mismatch is attempted
to be corrected by assigning the words most likely POS and semantic role (given the POS
of the head-word).

3 The Parser in Detail

3.1 Training

3.1.1 Deriving Weights

In a first run we calculate the statistical association between a specific index and a specific
tree structure, where an index (Z) is a) a word-form (£) (which is Chinese is almost identical

to the lexeme), b) its POS (C), ¢) an abbreviated POS for verbs and nouns (A), and d) a

semantic feature (S).

T, € {L;,C, Ay, i} €9 Togerger € {gelge, Nap, N, human} (1)

The weight W7 = we assign to an index 7, is its paradigmatic weight, i.e. the relation
between the index and the sentence structure. For £, and only for £, this weight is completed

by the syntagmatic weight.

Wi .. = Wsyntag;  + Wparadig;, (2)



Syntagmatic Weights The syntagmatic weight describes the contribution of £, to the
string of a sentence, comparable to the power of a word to trigger a poem or a song in
humans. The syntagmatic weight for £, in the position pos of a sentence s calculated as

follows:

log(10 + length(s))
length(s) (3)

The aim of the syntagmatic weight is to enhance the reliability of the parser, i.e. to

Wsyntagy, . =

correctly retrieve learned examples. Without this syntagmatic weight the parser max prefer
similar matches with a high probability over exact but unlikely matches. This may already
happen with a training corpus as small as 100 sentences. Using this syntagmatic weight, the

reliability can be maintained even with very large training corpora.

Paradigmatic Weights The paradigmatic weight of an index Z for a sentence s is calcu-

lated indirectly by braking down sentence s in a set of paradigms P;.

Whparadig;  ~= Wparadi g?pos (4)

How to obtain Wparadig;j from Wpamdz'g?pos will be shown below in Section 3.1.2.

What a paradigm is and how it is related to a tree is illustrated in Fig.4.

S(experiencer,Head,goal)
S(agent,epistemics,epistemics,Head)

Figure 4: Paradigms derived from sentencerg.1-

There is more than one way to calculate the association between an index and the pattern
it occurs in. Many association measures are reported to be equivalent when their outcome
is transformed onto an ordinal scale (Rijsbergen, 1979) (they are said to be monotone with
respect to each other). However, within the current setting we use a ratio scale which has
to represent the fact that, for example, two bad matches are better than one good match or
not. Whether the different association measures can provide valid information of this type
cannot be concluded given the definition of the association measure. We therefore conducted
a sequence of experiments reported on in Section 4.2 in which we identified association
measures which are more adequate for the task at hand than others.

In order to allow for a better understanding of the weights tested, we develop here, as an
example, two weights. The first is derived from the Mutual Information of the paradigm

(P,) and the index in that position of the paradigm (Z,,) (with pos = 1,2,3,...) and the



second is derived from the conditional probability to have the paradigm (7P,) given the index
in that position of the paradigm (Z,,;).

Be fq; the total number of observations we make in the training corpus during which we
observe a) the joint occurrence of position pos with an index Z (f¢;pos), b) a paradigm P,
(fgp) and c) the joint occurrence of Zp,s in Py (fgp,ipos). We can calculate the MIp, ;.. and
P(p|1,s) as:

pr,i,pos
. P(P ﬂIos) I fqios'fqt
Whparadigl} ~= MlIp, 1., =log PP = log—"% = log 2P 5
oo = Mitts = 9B ) PPy = e T = gy e )

fq ,1,P08
P(Pp ﬂIpos) . I}qtp . pr,i,pos' th

=t = (6)
P(IPOS) % fqi,pos

By removing the constant fgq, we simplify the calculus and obtain scores between 0 and

Wparadig2y , ~= P(p|lyes) =

1, so that the logarithmic transformation is no longer necessary.

. f 4p,i,pos
Wparadigml? = —-"222 7
Tpos fqp' fQi,pos ( )
Wparadigm?2i = JApigos (8)

ot f i pos

As can be seen, these two values and those we shall test below differ with respect to the
normalization of the joint occurrence fgq,;p.s. The measure derived from the Mutual Infor-
mation provides for a maximal normalization, while the measure derived from the conditional
probability does not normalize for fg, and thus reproduces frequent structures more often
than infrequent structures.? Both normalize for fg; .5, i.e. reduce the score if the index Z
occurred also in different patterns p. This is may be questionable, especially if Z nevertheless
occurred in all or most patterns p. After all, none of the scores tested below seems to be

perfect, as none of them obtains the best scores for frequent and infrequent structures.

3.1.2 Indexing

During the indexing of the ETs, we transform the weights we have obtained for the patterns
into weights for ETs. In general, the weight of an index Z in sentence s is the weight we
calculated for Z in P;. For head-words of embedded phrases (patters), which have received

two scorings, one as dependent of the upper level and one as the head of the lower level (e.g.

2The conditional probability is frequently used in studies which try to model the human language perfor-
mance (Hoogweg, 1999; Kaplan, 1996; Bod and Kaplan, 1998). In this light, it seems reasonable to assume

that studies using the Mutual Information are competence studies - but do the authors agree upon that?



”shuol” in Fig.1 is scored once as "Head” at level 2 and once as ”goal” at level 1) only the
better score is retained.

Inverted indices as used here to retrieve ETs are position independent and as such an
optimal indexing mechanism for free word order languages like Russian (although the words
of different phrasal levels should not be confused). Word order in Chinese is less free and
therefore Chinese may not be well suited for a position-less indexing. In addition, position-
less matching requires complex adaptation strategies which have not been investigated until
now. Therefore we have to assign the index and its score to a position in the ET. As we
intend to match ISs onto ETs which are smaller than the IS, which is not possible if we retain
absolute position values (e.g. 3th word of a sentence of 12 words), we map the position onto
what we call an index-position ipos by transforming the position onto a scale of 10 (e.g.
3/12 = index-position 2). The resulting tuple < Z,ipos > serves as index to the tuple
< trees, Wpamdigfipos >,

(9)

. s - ]
Wparadigy, .= = maz Wparadig; o _pos(l) |
'length(s)

integer(l

In order to parse fast, even with tens of thousand trees learned, we let the system au-
tomatically extend the index with key-words. A key — word is a word which occurs more
than 100 times at a given index-position. If a sentence to be indexed contains a key-word,
all indices of the sentence are extended by the keyword and its index position. More than
one keyword are allowed, extending the index to < Z, ipos * (, keyword, ipoSkeywora) >. More
sentences are learned, more words are used as key-word. The additional indexing may im-
prove the performance (not only in time), if the search-space is limited correctly (similar to
document clustering in Information Retrieval (Rijsbergen, 1979), or the parsing experiments
reported in (Kim and Kim, 1995)), however, if the search-space becomes to small, or, in
the worst case, no intersection of the key-words can be found, also negative effects may be
expected. It goes without saying that most key-words are high frequent function words like
de and le together with their index-position, but also sha. .. de, bi shi, zai. .. de...zid or

zai. . . de. . . zhong constructions are indexed when training data becomes larger.

3.2 Parsing
3.2.1 NN-Retrieval

Parsing starts with a lexicon look-up which transforms the word of an IS into indices (Z,).
The positions of the words are transformed into the index-position as described above. With
the help of the resulting index < Z, ipos * (, keyword, ipoSkeywora >) We access the database

and retrieve tuples of < treeg, Wparadz'g‘}ipos >. One matching index is sufficient in order to



sub NN-retrieval {
KEY-WORD=mkKEY-WORD (WORD) ;
for each (WORD,POSITION) {

INDEX=mkINDEX (WORDi) ; # make the index
IND-POS=mkINDEX-P0S (POSITION) ; # make the index-position
for each(INDEX) { # database is looked up
(TREE,SCORE) =$treeDB{INDEXi, IND-POS ,KEY-WORD}
$NNscore{TREE}+=SCORE } # accumulate scores per tree
return best_NN(/NNscore) } # return best NN

Figure 5: Fuzzy NN-retrieval algorithm.

retrieve an ET. In order to distinguish this match from a better match we sum up the scores

for every tree.
3.2.2 Alignment
After the NN-Retrieval £ ETs and IS are aligned. As IS may have more words than ET, we

have to determine which words of IS matches best with which word in ET and which words
are not matched (i.e. deleted during the fuzzy match). In order to solve this task efficiently,
dynamic programming strategies can be used: Imagine the words of IS to be plotted on the
z-axis and the slots in ET to be plotted on the y-axis. We first determine the ”envelope”,

i.e. all possible combinations of x and y. Within this envelop every cell is filled with a score.

/
shuol /v‘;ls,sﬁv‘gl‘;,s
=
hui4 vkla2 vals2
=
tal /ﬂrll;v‘_lzl
tal
yi2ding4
hui4

Figure 6: The alignment of IS and ET.

defined

above and the similarity between Z, and Z,. For the moment these similarity measures are

This score consists of the sum of three sub-scores, each being the product of Wp, 1,

quite rudimentary.?

3For L, they yield binary values (0,1), for C, the surface similarity of the features is used (e.g. C,=Nha
and C,=Nhb yields 0.66). For S, some hand-coded rough estimations are used.



Valyg, = p 1., Stmilarity(ZL,,
lyy W, 1., similarity(Z;, L, 10
Ze{L,C,S}

The alignment of the IS and ET in Fig.6 consists of finding a path through this lattice
which accumulates most scores. By storing in a hash table partial best paths (e.g. the best
path starting from (3,2) to the end), not all possible paths have to be run through, but can
be calculated by summing up these partial results (Viterbi-Algorithm cf Ryan and Nudd
(1993)). The last step of the alignment consists of the replacement of the words in the ET
by the aligned words of the IS. The POS found in the ET is still retained for a while, as this

coupling of word and POS allows to identify mismatches.

3.2.3 Combinatorial Adaptation

An almost identical algorithm is used for the combinatorial adaptation. The lattice we see in
Fig.7 consists not of words as in Fig.6 but of all segments of the £ aligned trees. The scores

for each segment are those which have been calculated during the alignment procedure and

are not reproduced.

VPlevel 1,head= VE2 Slevl 1,head= VE2(

experlencer Nep tallevel 1,head=V E2

epistemics: Dbaa Y12ding4ievei=1,head=v E2

epistemics: Dbaa huidiever=1,head=v E2

Head:VE2: Shuohevel 1,head=V E2

VPievei=1,head=v E2) Slevel 1 head=V E2)

NS

Figure 7: A lattice of tree-segments for the combinatorial adaptation, merging two partial

matches: yiding hut shuo and ta yiding shuo into ta yiding hui shuo.

Looking for the best path trough this lattice allows for the combination of different trees:
the insertion of the analysis of one word or phrase of tree A into tree B. In order to obtain
coherent tree structures, the level (= the depth) and the head-POS of each segment are
annotated on the nodes of the lattice. In addition, the sequence of words of the resulting

tree must not contradict that of the IS.



3.2.4 Derivational Adaptations

The next adaptation step identifies awkward subtrees and replaces such subtrees with the
re-parse of the words of the awkward subtrees. A phrase is re-parsed if there is a relation
between a word and its POS which is not attested in the learned corpus nor in the lexicon.
This adaptation allows, similar to the previous adaptation, to correct badly matched trees
and to insert deleted words. The largest possible sub-tree is chosen for the re-parsing in
order to have the largest possible context for the unmatched word and, secondly, to correct

possible errors in the surrounding which may have been caused by this mismatch.

)

v

X p
¥ [0

~ /r;-parse

(20

Figure 8: Re-parsing of the subtree form « to v, triggered by a mismatch in X.

It goes without saying that mismatches at the sentence top level cannot be corrected by
this adaptation strategy. The last adaptation, the structural adaptation, is applied to these

words.

3.2.5 Structural Adaptations

Structural Adaptations are triggered by the same unattested relations which also trigger the
re-parsing, i.e an unknown combination of a word and its POS given the POS of the head-
word. If the word is unknown, the assigned POS is maintained. In the future we intend to
combine this top-down unknown word guessing with a bottom-up unknown word guessing,
so that at this stage two kinds of analysis would have to be conciliated.

If the POS found in the current ET and that found in the lexicon or in the learned trees are
very similar, the POS is replaced by the attested known similar POS, however the semantic
role of the ET is maintained (assuming that it is compatible with the new POS). If the
POS is very different, a new POS and a new semantic role are searched for. POS and
semantic role should combine with the word in question and the POS of the head-word.
Such information has been collected during the training of the treebank, is however not

sensitive to the context (e.g. the role ”theme” might be assigned, although already present



in this phrase, cf. Appendix B, sentence 11).

In the future we hope to be able to handle metaphorical extentions of words at this level also.
Given the statistical relatedness of a semantic feature and a pattern (sentence) expressed by
the association measure, we may retain the semantic feature found in the ET if it is very
strongly related to the ET and add a POS of the word of the IS, which is normally not

compatible with this semantic feature.

4 Evaluation of Modules

4.1 Main Approach

The Evaluated Unit We have chosen the semantic role relation between a head-word
and its dependent words as the entity to be evaluated. The semantic role relation can be
though of as turning the phrase structure tree into a dependency tree the arcs of which are
labeled with semantic roles. Thus, given the tree in Fig.1, we evaluate the correctness of the
triples < head — word, relation, dependent — word >, (e.g. < zia3ng, experiencer,tal >,
< xta3ng, goal, shuol >, < shuol, agent, gelge > etc.

Assuming a hierarchy of increasingly hard evaluation measures (Fig.9), the correct assign-
ment of a semantic role between « and 3 implies the correct syntactic function, which requires
the correct identification of the dependency relation which again requires the bracketing of

a and [ into one phrase.

semantic relations (Streiter and Chen, 2000)
_syntactic functions (Carroll et al., 1998)
dependency relations (Lin, 1995)
labeled parseval (Manning, 1997)
unlabeled parseval (Brill, 1993; Charniak, 1996)

(non-head head

(modifier head)
(time head)

Figure 9: The chosen evaluated unit in a hierarchy of increasing hard evaluation units.

The Basic Measures Dividing the number of correctly identified semantic role relations
by the number of semantic role relations in the reference corpus, we obtain the recall. Di-
viding the number of correctly identified semantic role relations by the number of semantic
role relations in the parsing output we obtain the precision. Both scores are combined into

the f-score via the following formula.



precision- recall

fscore = 2- (11)

recall + precision
Beside specifying the recall, precision and f-score over the whole test corpus we specify

the f-score for each sentence length. This allows us to estimate not only the contribution
of a specific measure to the overall f-score but shows whether long or short sentences take

more or less advantage of them.

Derived Measures From the basic measures (recall, precision and f-score) we derive the
coverage and the reliability. The coverage describes the performance (in terms of the f-
score) on untrained ISs. The reliability as defined in (Streiter, 2000; Streiter et al., 2000)
is measured using the f-score obtained with trained + untrained items. Contrary to the
coverage, the reliability quantifies the ability of the parser to correctly retrieve learned items.
To correctly retrieve learned items is not evident for approaches which decompose during
training and re-compose during learning, including probabilistic phrase structure grammars,
hand-written grammars or even Translation Memories (Carl and Hansen, 1999). Reliability
values which are not 1 or close to 1 may explain bad performances with large training data.
In addition, such systems cannot be trained satisfyingly for a closed domain application
which requires 100% correctness. In order to determine the reliability we train the training

corpus together with reference corpus and test with the same test corpus (hide-and-seek).

28.0 2500.0
26.0 |
24.0 |

: 2000.0

22.0

200
18.0
16.0 |

1500.0

14.0
12.0
10.0 |

frequency
frequency

1000.0

8.0 -
60 | 500.0

a0

20 ¢ 0.0

00 e B0 100 120 130 16 156 o0 330 356 60 20 40 60 80 100 120 140 160 180 200 220 240 260
sentence length in words sentence length in words

Figure 10: The frequency distribution for the test corpus (left) and the training corpus
(right).

Test and Reference Corpus Our point of departure are 20.000 entries of the treebank.
As the treebank consists of different articles representing different subject domains and
different speech styles, we first have to shuffle the 20.000 sentences into a random order if we
do not want to learn the whole set of trees at once, otherwise the system would be trained
on text type A and tested on text type A, B and C. After shuffling the treebank using the
Fisher-Yates shuffle, we randomly selected 1% of the sentences for testing purposes while the

rest is used for training.* By this procedure we obtained 197 reference trees with an average

4Training and test corpora are kept small due to time constraints in the completion of this contribution.



length of 6.12 words used for automatic evaluation.

In addition we derive two kinds of test corpora (sentences to be parsed) from the reference
corpus, one containing the lexical tags and one which does not. The first 50 sentences of
the reference corpus are reproduced in the appendix A. The frequency distribution of the

test/reference and training corpus are shown in Fig.10.

4.2 Evaluating different Weights

In a first set of experiments we evaluated the NN-retrieval. More precisely, we turned
off all adaptation measures (except for the alignment which cannot be dispensed with) and
compared the coverage with different measures attached to the indices. 3.000 trees have been
learned for this experiment. The results in Table 4.2 reveal great differences between the
association measures. Neither the competence nor the performance measure yield the best
results. Instead those measures which normalize moderately for fg, and fg;p.s perform
best. However, no ”ultimate” measure can be established as some of them perform better
on frequent items and some perform better on infrequent items. The Cosine Coefficient will

be used throughout the following experiments.

| style | weight | derived from | f-score obtained |
coverage WP = L% mutual information (MI) 0.240
Ipos fq;ll'f%,pos
coverage Wi, = % conditional probability (CP) 0.280
0S8 i,p08
coverage Wi, = % Dice’s coefficient 0.295
coverage | WP = J9p.i.pos Cosine Coefficient 0.300
g Lpos \/Efqp)'\/zf‘h',pos)

Figure 11: Comparison of Different Weights for NN-retrieval with 3.000 Training Sentences.

4.3 Contribution of Adaptation: 4.000

| style | training | additional condition | recall | precision | f-score || time (sec.) |
coverage 4.000 alignment only 0.335 0.316 0.325 0.47
coverage 4.000 + struct. adapt. 0.356 0.336 0.346 0.43
coverage 4.000 + comb. adapt. 0.340 0.321 0.331 0.51
coverage 4.000 + recurs. adapt. 0.343 0.324 0.333 0.68
coverage 4.000 all adapt. 0.371 0.349 0.360 0.89
coverage 4.000 tagged input 0.398 | 0.3376 0.387 0.75
reliability | 4.000+197 all adapt. 1 1 1 0.49

Figure 12: The Coverage, reliability and mean parsing time for 4.000 trained sentences with
and without adaptation measures.

In order to evaluate the contribution of adaptation strategies we trained 4.000 trees and



established the coverage, reliability and the speed of the processing with and without adap-
tation steps. Results are presented in Fig.4.3 and Fig.13.
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Figure 13: The Impact of Adaptation: Parsing time in seconds and the coverage and relia-
bility measured as f-score for 4.000 training sentences.

As can be seen from the data, the adaptation is time consuming and the gain sometimes
very limited. The structural adaptation performs best. The run-time behavior of the recursive
adaptation is almost uncontrollable, as in the worst case, 2+ 3+4+ ...+ n words have to be
parsed instead of n words (e.g. 209 words instead of 20), however with long sentences, the
parsing results may improve considerably. Only if the quality of the match increases, the
re-parsing is no longer that time consuming (or no longer performed), as can be seen from
the tagged or learned input. The reliability of the parser is very high, i.e. the system can be

perfectly trained for a closed domain application.



4.4 Contribution of Adaptation: 12.000

The above experiments are repeated with a training corpus of 12.000 sentences in order to

illustrate the impact of more training data on the behavior of the parser.

| style | training | additional condition || recall | precision | f-score | time (sec.) |
coverage 12.000 alignment only 0.378 0.360 0.369 0.70
coverage 12.000 + struct. adapt. 0.402 0.383 0.392 0.70
coverage 12.000 + comb. adapt. 0.383 0.366 0.374 0.56
coverage 12.000 + recurs. adapt. 0.401 0.378 0.389 0.71
coverage 12.000 all adapt. 0.423 0.4 0.411 0.92
coverage 12.000 tagged input 0.454 0.433 0.443 0.98
reliability | 12.000+197 all adapt. 1 1 1 0.75

Figure 14: The Impact of adaptation for 12.000 training sentences.
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Figure 15: Parsing time in seconds and coverage and reliability for 12.000 training sentences.
Although parsing times increased with more training data, longer sentences require less

time as a) the number of keywords grows and b) the recursive adaptation is applied less

frequently.



4.5 All Training Data : 19.803

The above experiments are repeated with the complete training corpus. In order to judge
the quality of the parse independent from the statistical deviation from the reference corpus

refer to Appendix B, where parsing results are shown.

| style | training | additional condition || recall | precision | f-score | time (sec.) |
coverage 19.803 alignment only 0.399 0.389 0.394 1.10
coverage 19.803 + struct. adapt. 0.423 0.413 0.418 1.13
coverage 19.803 + comb. adapt. 0.402 0.392 0.397 1.13
coverage 19.803 + recurs. adapt. 0.408 0.392 0.401 1.01
coverage 19.803 all adapt. 0.428 0.413 0.420 1.78
coverage 19.803 tagged input 0.424 0.413 0.419 1.57
reliability | 12.000+197 all adapt. 1 1 1 1.29

Figure 16: The Coverage, reliability and mean parsing time for 19.803 training sentences.
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Figure 17: Parsing time in seconds and the coverage and reliability measured as f-score for
19.803 training sentences.

As can be seen in the data plots, the reliability remains high while the coverage increased



slowly with more training data. Some sentences however perform worse with more training
data than in the previous experiments, showing that the selection of ETs is not optimal and
still requires improvements. It may also be the case that sentences are over-indexed, i.e. no
intersection of the keywords can be found.

The yet unmentioned internal confidence value based on the score of the NN-retrieval allows
for a quite reasonable a-priori estimation of the outcome of the parsing results. As a con-
sequence, this internal confidence value might be used in the future in order to trigger or
block specific adaptation mechanism (for sentences they seem or do not seem to be adequate
for). It might be used further for the interaction with other parsers or for the automatic

acquisition of parsing trees.

5 Related Research

Since the first appearance of treebanks, there have been attempts to use such resources for
parsing. A standard approach is to convert the subtrees represented in the treebank into
stochastic phrase structure grammars. Such grammars generally outperform hand-written
grammars.

Charniak (1996) derives a probabilistic context-free grammar from a 1.000.000 word hand-
annotated corpus. The parsing is performed by a probabilistic chart parser. No lexical
material except the lexical POS is integrated into the phrase structure rules. Using this
strategy about 16.000 rules are derived from the corpus. 10.000 of them have a frequence
of 1 and proved irrelevant for the parsing results. Using unlabeled parseval (cf. Fig.9) to
evaluate the recall and precision of the parser scores between 80% and 90 % are achieved,
depending on the size of the sentence.

The author mentions two drawbacks related to this approach. The first is the lack of
lexicalization. Such grammars express only with difficulty relations between lexemes. In
most cases, the lexemes are removed during the extraction of rules. The author hopes to
obtain better results if more lexical information is integrated into the phrase structure rules.
In fact, this claim is confirmed in Bod (1999). A higher degree of lexicalization equally
might solve the second problem, i.e. the problem of over-generations. As the parser assigns
a parse to almost every combination of POSs, it has difficulties to determine the best
sub-parse from the chart with which the parse has to be continued, often resulting in an
incorrect or failing parse. Parsing using all sub-parses stored in the chart seems impossible
given the high redundancy of the grammar. Lexicalization thus seems to be the method to
overcome the over-generation. Improvements to this standard approach are suggested in
(Manning, 1997; Manning and Hinrich, 1999).



Tree Adjoining Grammars (TAGs) are equally extracted from treebanks (Xia, 1999; Chen
and Vijay-Shanker, 2000) and used for grammar development and testing (Sarkar, 2000;
Xia and Martha, 2000). It seems however, that the grammar extraction does not take full
advantage of the treebanks, as the trees are split into elementary trees without retaining,
in addition to the elementary trees, the unsplit (sub)tree, e.g ”eat hot soup with a spoon”.
That the knowledge contained in these unsplit trees is critical for high quality parsing has
been shown repeatedly (Rayner and Christer, 1994; Srivinas and Joshi, 1995; Bod, 1999;
Streiter, 2000).

Data-oriented parsing (DOP) (Bod, 1992; Bod and Kaplan, 1998; Hoogweg, 1999) repre-
sents a parsing approach which promises to do away with the deficiencies in lexicalization.
This approach consists of breaking the learned trees into all possible sub-trees and using all
these sub-trees during the parsing. That parse which is obtained most frequently is chosen
as final parse. It goes without saying that such an approach, as interesting as it may be,
leads to a crazy computational complexity (Manning and Hinrich, 1999). Whether or not
this approach becomes tractable by building up random samples of parses (Monte Carlo
Parsing) and what the effect on the performance is, is a topic of current research. Practical
systems following this approach cannot be expected in the near future.

Approaches which do not involve standard parsers while converting a treebank into a
parser are hard to find. An interesting approach is presented by Lepage (1999). Sentences
are analyzed with the help of analogy relations. Triples of ETs are extracted from a treebank
the sentences to which they belong stand in a relation of analogy to the IS. The parse of the
sentence is supposed to be the analogous tree derived by this triple. Although this method
is extremely elegant, the system does not know on the basis of which ETs the analogy has to
be made. As a consequence, a sentence may produce, depending on the size of the treebank
almost as many parses as there are ETs. The selection of the best parse and the question
whether this parse is a correct parse, as well as the efficiency of the algorithm are yet unsolved

problems.

5.1 Summary and Conclusions

In this paper we present a approach to the analysis of natural language which does not follow
any traditional parsing approach. Differently from standard approaches we do not attempt a
local identification of forms, functions and meaning. We try instead to identify large sentence
patterns by comparing the input sentence with examples from the treebank and concentrate
on individual word meanings after the global structure has been established. We claim that

this approach can maintain the highest degree of lexicalization while remaining efficient.



In order to identify the main sentence patterns, the system makes use of a fuzzy matching
strategy. The inexact matches are worked over by a set of adaptation strategies. Thus,
instead of considering mismatches to be harmful exceptions, they constitute a fundamental
part of our approach, resulting in an extremely robust and adaptive system (there is no
sentence which cannot be parsed).

Although parsing results are not especially good for long sentences in open domains,
perfect parsing results are achieved in closed domains, independent of the size of the domain
and independent of the size of the tree. This is not possible for any approach which during
parsing re-composes subtrees, even for small domain areas.

The evaluation of different adaptation strategies has shown that the structural and re-
cursive adaptation should be retained, as they improve the parsing results in open domains
significantly. The combinatorial adaptation does not seem to be as performing. However,
the combinatorial adaptation may provide a good interface for the cooperation with other
(still hypothetical) parsers running in parallel. Such parsers running in parallel could fill the
lattice with (partial) results until the example-based parser has completed the lattice and
starts the evaluation.

Future work is manifold and overwhelming. First of all, the coverage has to be increased
by optimizing scores, parameters and thresholds. Secondly, we intend to investigate experi-
mentally the usefulness of this parser for sublanguage applications
Our claim that metonymies and maybe metaphors may be treated in this framework still
awaits an experimental confirmation. We further intend to apply this parsing approach to a
free word-order language, using the Russian corpus developed at IPPI (Boguslavskij et al.,
2000). The integration of a bottom-up unknown word classifier as well as the cooperation

with other parsers complete the set of future tasks.

6 Resources

The parser is written in Perl and has been developed under Linux. With minor changes
the parser may run also under commercial operating systems. Experiments have been per-
formed with 200 MHz CPU. The parser is a multi-tasking server which can be accessed
via the TCP/IP. A demo-system and a download of a parsing-client can be found under

http::/ /rockey.iis.sinica.edu.tw/oliver /parser.
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25) 5 (thens:Nhaa: #7| tine:Ndabd: 57 [Head :V_2: F | rangs :VP (Head - VJ3: 38F | range:Mvd - =) )
26) NP (property:GP « B9(head:GP (DUMMY -lab: fAFE | Head :Ne: %) |Head :DE: BY) | Head :tba: 6 T)
27) VP(contrast:Cbea: &EI| epistenics:Dbaa: € | Head : VHL L : #7& | duration: DMz —&)
28) 5(thens:Nba: T H1EF])|epistenice: Dbaa: &&| tine:PP (Head: P21 : 78| DIMMY :Ndaba: 4 |Head V01 : £ | goal:NP(
property:hba: B AFK|Head:Nab: —55))
29) NP (quantifier:DM:3E42| predication:VP « B (head:VH11: B8E%|Head :IE: BY) | property:ab: S| Head - Nab: & )
300 3(theme:Nhab: 8877 | topic: PP (Head: P31 - £5| DIMMY - VP (marmer : Dh: 30l | Head - VO2 - #8542 | goal NP (property :Mea: BEETE|
Head:Mac: &4 |tine:Dd: 17| Head:WJ3: %H | range :NP (quantifisr:Neqa: & F | Head:Nac: B B))
310 PP(Head:P21:7E|DIMMY = GP (DUMMY NP (quantifier:dep: | Head - Ndabf: @LH) |Head :Ne: =700
32) VP(Head:VK1:#%E| goal:NF (property: P « B9 (head: Moo : | Head : DE: 8Y) |Head :Nab: FF))
33) &(reason:Cbaa: B theme: MNP (quantifier:Nep: | Head:Neb: E&) | time :Ndabf: R85 |Head :WJ3: 3 3l| range P (theme: NP (DY NP (
property:Nab: 1L|Head :Nab:3%) |Head :Caa: #o| DUMMY 2 : NP (property: vl : i H | Head :aa: 7)) |nominal: Str: 8| Head : Med - 383
34) VP(Head:VLd: #1{#| goal: NP (DUMMY1: NP (property:Nac: #88| property:Nad - 3854 | property:Nac: 3% | property:ivl : BE|
Head:Naeb: 52180 |Head :Caa: Fo| DIMMY 2 :aeh : BEh) | theme VP (tine:Dd: 73| deontics: Dbab: & | quantity:Nega: 78| Head :VC31:3EE))
35) PP(Head:P(3: &7 |DUMMY :VHL1 - —iSEEA)
36) S (thems:NP (property:Nasb: BAE | Head:Nacb: B#E8) |Head : VP (Head : VP (Head : VHIE: ¥ H0| quant 1fier: NP (quantity:Daa: 3iF|
Head :DM: FLIEST) ) |Head :VP (Head :VG2: 25| rangs:IH: 25 21871) 1)
37) VP (time:PP (Head:P13: # | DUMMY : 5 (theme: P (property:ihab: #4175 | Head :Mab: #8=) |negation:Do: < | Head :WH11:¥5) ) | time: Dd - $548|
Head:VD2: 38| theme:Nac: 53
38) VP (manner:PP (Head:P11: 24| DIMMY :MP (Head : Mew (DUMMY] : Nen: —| Head - Caa: bb| DIMMY2:Meu: —) ) ) | Head -WHL1 - 8659
39) VP (Head:WJ2: 224548 | goal:VP (tine: NP (quantifier:DM: &HE| Head :N (Head :Mac: ERA| Head :MdabT: B H) ) | quantity:Dab: #8)
Head:VC1: £|gzoal:Necb: SBFEEE) |particle:Ta: A7)
40) & (agent :ad: 7588 | Head - VC31 - BEH | theme :NP (property: VP « 2 (head:VP (narmer: Dh: 35| Head : UH11: 82%) |Head :DE: =) |
Head:Waa: 2<4E))
41) VP (zoal:PP (Head:PO7: 5| DIMMY - Nab: = E) | quantity:Mega: 235 | Head V02 TR
43) NP (Head:Ndabo: 7L 47)
43) NP (predication:VP « BYhead:VP (Head:VC31: E|aspect :Di: 38| theme NP (possessor - iP (property:iba: L4484 | Head :ab: ) |
Head:MNab: %5 )) |Head :DE:BY) |Head : Nabz A)
44) YP(deontics:Dbab: 8| Head:VC2: B38| goal:Nab: B
45) 5 (topic:bP (quantifier: DM: FRIEI| Head :tlab: 5F) |agent - P02 : 38| Head :VC 2 81| goal: NP (predication: VP « B3 (head:VP(
evaluation:Dbb: 3| negation: De: 77| Head - VH1S: 538) |Head :DE:67) |Head :lac: £22E))
46) VP (Head:W02: 38| aspect :D1: T | goal:NP (quantifier :IM: 18| quantifisr :Neqa: #| Head:MNab: 58) | complenent.-VHI 1 : 2 28LE)
47) & (agent NP (quantifier:DM: EO+4| property:Nad : . EREE | Head :Nab: FaE8) | tine :Ndabd: 57| Head : VE2: 57)
48] PP(Head:P31 [+part] - 1| DIMMY 0P (property:Nba: %% | Head :Mad : $i%) |Head : P31 [+part] : T &)
49) VP (time:DM: #i /AR tine: Id: B | frequency: NP (quantifier:Mes: | Head :IM: =17) |Head -V02: 122)| goal:Nab: =£8)
50) NP (DUMMY - Mea: ##AFE| Head: Cab: %)

Figure 18: Appendix A: The 50 first trees of the reference corpus.



1) S(time:Dd: 3RF | Head :VG2: 8| range: VHL 1 - 328Y)
21 S (agent: NP (property:lP « 87 head: NP (contrast:Chea: #8 | Head :Noda: <-H) |Head :DE: 8 |Head : Wad : F2558) |Head :VC2: (8| goal :lP(
predication: VP « Blhead:VHL1 - 830 | Head : DE- &) |Head [kl - 22500
31 S(theme:VP (Head:VC2: BE| goal :Mba: S48 |Head - VHI1 - —#5)
41 3 (contrast:Choa: | Head -VC2: B2 | goal ;WP (agent 0P (property: WP (DUMMY - Cab: 2| Head : Cab: ) |Head : M1 - 0] |Head ;A4 - BREN)
51 VP (Head-¥C33: FH| theme - WP (property:Wba: $81F % | reason: Cab: % | quantifier:Heu: H | Head -Mab: A) |mammer: &: =% | thene:Nad : —38)
B VP (Head:VH11: BRE | theme - NP (DUMMY1 - 0P (property: il - 5988 | Head - Mad: 77 | Head : Caa: 8| DUMMY 2 - 0P (there : Mad - E% | Head - thed : 23200
71 &(evalvation: Dbb: 8848 | theme:Nhaa: #F| quantifier:DM: #6842 | Head :VC1: 78| location: PP (Head : P21 78| DUMMY - NP (property:lab: B |
Head:Neda: £)))
8) S(theme:NP(quantifier:DM:3E%&|property: P « B (head:NP (property:Nad: BTiG| Head:Nac: BE) |Head: DE: BY) |Head :Hud: 225 |
Head:VK2:38%)
9) NP (property: VP (evaluation: Dbb: ZURE (Head:VH11 : 3E) | property:Mhd : 32| Head :Nab: /&) |Head - Te: H )
100 Silquantity:Daa: #F | tine:Dd: 2 |Head V01 Bl aspect -D1: 7| goal WP (predication:VP « BY(head:VHI1: 53540 F | Head :DE-BY) |
Head :Mad - i) )
110 8 (theme: NP (property:lza: B 3E| Head - MP (predicatlon:VEF « BY(head WP (mamner: 4: %85 |Head - VHL1 : 518%) |Head :DE-87) | Head :Mab- B24F3) ) |
theme:Nad: B | thems - V1 325% | Head - V811 - 89| goal - loda: B
12) &(quantity:Dab: 582 | Head ;W2 - 48 | goal:MF (quantifier:Mep: B |Head - thd : F27E))
13) & (Head:VL4: 1| goal: [l - FF=F| thems VP (negatlon: Do s & | Head - VH14 : 38| theme - Nac: iRiR) )
14) &(agent:Nba: 32 | quantity:Daa: 3| Head :WC31 - 881 | theme :NP (quantifier:DM: +P95T | Head :Mac: 24T))
15) NP(property:VF « 8Y(head:VP (nanner:VH11: AAEE| Head :VH11 : S M) | Head :DE: 8Y) |Head -Nad: #548)
16) &(agent:Nhaa: #1M| Head :VH1 1 : $2A%] zoal:VP (Head:VH11 : T2 | duration: DM —T))
17 S(Head:VE2: 48| goal:NP (property:Nad: S+ | Head :Nab: B52%) )
18) Siquantity:Dab: 7| theme: Ml : B2 goal:PP (Head: P11z LI DUMMY :Nac: B LER) |Head:VI2: &E)
19) conjunction(Head:Choa: B
200 Sigoal:Nhaa: #t|marmer VP « BY(Head NP (property:W031: €| particle:Ta: 7) |Head :DE: —4) | agent - PP (Head: P49: 8| DIMMY - NP (
property: ad: B & Head :Nad - B45%) ) | agent -Mad ; 2588 | Head - V02 - 300
210 S(agent:Nac: 558 | marmer - PP (Head : P11 ; 24| DUMMY - 0P (Head : e (DOMMY L :Meu: | Head - Caa: bk DOMMY 2:Men: 75000 |Head ;W02 - &2RT|
goal:lba: &=
221 & (Head:VC2: ¥—3E| goal:WF (apposition:Mab: 3| Head :Wha: #55%) | complement - VF (Head - Va1l 38 | particle:Ta: 7))
231 &lexperiencer:bhaa: | Head :WF1 - T30 goal:5 (nammer - Dh: 68 | Head - Va4 - JEEE) )
24) 5 (agent NP (property:Nea: ¥4 Head:Nab: B 8) |evaluation:Dbb: Bi| Head :VE2: F277)
25) & (thene:NP (apposition:ihaa: 17| Head :dde: 535 |Head:V_2: | range: WP (quantifier:Nes: 3% | Head:Nab: &)
26) NP(property:GF « 87 (head:GP (DIMMY :Nab: F=AFE| Head :Wg: 75) | Head :DE: BY) | Head :Nba: BE7E 1)
27 Slcontrast:Chea: FHY epistenics: Dbaa: € Head: WHL1 (property:VHL1 : 77 & | Head :IM: —2F))
28) Slagent:Nba: FAMEE] epistenics: Dbaas 2| tine: PP (Head:P21: 7€ | DIMMY - WP (time:Ndaba: EE | Head V01 F+ £ |
Head:VC31: B AME|goal:Nab: —5)
29) NP (DUMMY :MP (quantifier:DM: 381 | predication:VP « BY(head :VH11: 88| Head :DE: BY) | Head -Nab: SH#) |Head: To: &)
300 Bitheme:bhab: 887 | toplc: PP (Head: P31 - £ DUMMY : VP (mamner : Dh: 30487 | Head :VCE - 83| goal WP (property:lca: #ETEE|
Head :Mac: 248 1) | time:Dd: 73| Head ;W J3: F2F | range - WP (quant1fler:Heqa: & |Head :Mac- BL B )
310 PP(Head:P21:7E|DUMIY : P (DUMMY - WE (property :Nep: It | Head - MdabT : #Lt) | Head :Hg: 500
321 WP (predication:VEl: %28 | predication:VP « BY(theme:Moo: tH78| Head: DE: BY) | Head -Mab: T
331 Slagent:lP (reason: Chaa: & | DUMMY :Nep: 1) | Head :VEZR - B | goal: NP (DUMMYL - 0P (property: Mdabf: F85| Head :Wash: 2 |Head: Caa: |
DY 2 :NP (property: NP « BY(head: NP (DIMMY 1 -Nab: 3| Head : Caa: #2| DUMMY 2 :NP (property:lv] - &1 | Head :Maa: $27K) ) | Head:DE: 69} |
Head : Ml 3856 )
34) & (Head:VL4: ¥4 goal ;NP (property: NP (property:Nac: #E8 | property:Nad: #5554 | Head :Nac: #4458) | property: i : B9E|
Head :Naeb: 7218) | thene VP (thems :INP (reason:Caa: #0| Head :Nasb: BE4Y) | time:Dd: 15| Head :VEE: | goal :Neqa: K& | goal:Wul - ECT))
35) PP(Head:PO3: &7 |DOMMY-VALIZ: —R¥EA)
36) 5 (theme:NP (property:Nach: 8| Head :Nach: 8%%88) |nanner :HL6 - 3640 | quantity: Daa: 3| theme: DM: FUIEST | Head :WG2: &)
range:IM: 25 2187)
37) 8(time:PP (Head:P13: #| DUMMY - S (theme : NP (property:Nhab: ¥175 | Head:Nab: 3%3) | negation: Doz | Head :VH11:¥8)) | time:Dd: 84E|
Head :WD2: #8 | thems:Mac: -7
381 WP (marmer:FP (Head: F11: kL] DOMMY - WP (Head : Beu (DITMY1 zNeu: — | Head - Caa: bk | DY 2:Neu: —)1) |Head : VHL 1 - 86°F)
39) VP BY(head: VP (benefactor:PP (Head - PO3: 354548 | DIMMY : NP (quantifier: Dl &8 Head:Nac: 2HH)) |Head :VC31: B H | theme: NP
quantity:Dab: #%| property:loda: b |Head: Neb: SEF1$48)) |Head :DE- £)
40) 3 (Head:VL1: 782 | goal:VP (Head :VC31: B4t | 2oal-VP (Head :W52: B | range: NP (predication: VP « B head:VHI1: 87| Head:DE- ) |
Head:Maa: %48) 1))
41) &(theme:PP (Head :PUT: #F| DIMMY :Nab: &) |Head:VG1 - 28F| rangs :Mhd : 5T
42) NP (Head:Ndabb: 7LF 4)
43) NPipredication:VP « BY(head:VP (Head :NC31: | location: GP (DIMMY 1P (posseasor: NP (degree:[fa: 38| Head :Nba: - 44) |Head :Nab: BSR) |
Head:Ng: &R )) |Head:DE:AY) |Head:Mab: A)
44) S(Head:VEZ: | zoal:VP (Head :WC2: 1E3#E | goal:Nad: FIHE))
451 B theme: WP (DY - WP [quantifier: DN: FRiBl| Head - lab: 5F) |Head -0z - 3%) | theme - VC2: #R4E | Head ;W1 - 3F | range [P (property: VB « B(
head :VF (negation: Do | Head:VHLS: 538) | Head :DE: &) |Head : Mac : B2 )
461 Si(Head:VC2: 38| aspect :D1: T | goal: WP (quantifier:D: (8| quantifier:Neqa: ¥ property:Nab: 38| Head : vl - £ 2&E)
471 PP(Head : P43 P2 | DUMMY - 5 (agent - 0P (apposition: WP (property:tlad : R E&EE | Head - Nab: B588) |Head :Mdabd : 27 |Head - VE2: 57))
481 Si(Head:VC2: #| goal: P (property: Mba: 3% property:Nad: 815 | Head :Ndabd : 50
49) 3 (theme: NP (quantifier:DM: 77/ Head:lbo: B) | Head:V_2: F | range NP (quantifier:i: =% |predication:V02: 22| Head: Nab: =&8) )
50} WP (DIMMY :Naa: 7P | Head: Cab: =)

Figure 19: Appendix B: Coverage with 19.803 training sentences.



