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1 Description

This tutorial is designed to help researchers an-
swer the following sorts of questions about how
language usage varies over time:

e Are people happier on the weekend?
e What was 1861’s word of the year?

e Are Democrats and Republicans more differ-
ent than ever?

e When did “gay” stop meaning “happy”?

e Are gender stereotypes getting weaker,
stronger, or just different?

e Who is a leader, and who is a follower?

e How can we get internet users to be more po-
lite and objective?

Such questions are fundamental to the social
sciences and humanities, and scholars in these dis-
ciplines are turning to computational techniques
for answers (e.g., Evans and Aceves, 2016; Un-
derwood et al., 2018; Barron et al., 2018). Mean-
while, the ACL community is increasingly en-
gaged with data that varies across time (e.g.,
Rayson et al., 2007; Yang and Eisenstein, 2016),
and with the social insights that can be offered by
analyzing temporal patterns and trends (e.g., Tsur
et al., 2015). The purpose of this tutorial is to fa-
cilitate this convergence in two main ways.

First, by synthesizing recent computational
techniques for handling and modeling temporal
data, such as dynamic word embeddings, the tuto-
rial will provide a starting point for future compu-
tational research. It will also identify useful text
analytic tools for social scientists and digital hu-
manities scholars, such as dynamic topic models
and dynamic word embeddings.

Second, the tutorial will provide an overview
of techniques and datasets from the quantitative
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social sciences and the digital humanities, which
are not well-known in the computational linguis-
tics community. These techniques include hypoth-
esis testing, survival analysis, Hawkes processes,
and causal inference. Datasets include historical
newspaper archives, social media, and corpora of
contemporary political speech.

1.1 Format

The format of this three-hour tutorial will com-
bine lecture-style surveys of various research ar-
eas with interactive coding demonstrations. The
coding demonstrations will use Jupyter notebook
and the numpy, scipy, and pandas libraries. These
notebooks will be shared along with publicly
available data in a github repository for the tuto-
rial.!

1.2 Scope

This tutorial is focused on corpus-based meth-
ods for measuring and modeling changes in lan-
guage usage from time-stamped documents. An-
other body of research is built on type-level re-
sources, such as lists of aligned words across lan-
guages, which can support phylogenetic analysis
of language history (e.g. Gray and Atkinson, 2003;
Bouchard-Coété et al., 2013). Other researchers
use simulation to test the consequences of the-
oretical models of language change (e.g. Niyogi
and Berwick, 1997; Cotterell et al., 2018). Fi-
nally, sociolinguists make use of apparent time,
a technique for measuring language change by
comparing the speech of individuals of various
ages (e.g., Tagliamonte and D’ Arcy, 2009). These
three methods all contribute to our overall under-
standing of language change, but in the interest of
a compact and coherent presentation, this tutorial
will focus exclusively on corpus-based techniques.
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The tutorial will engage with statistical analy-
sis (e.g., hypothesis testing, causal inference) to a
greater extent than most NAACL papers. Every
effort will be made to make this material accessi-
ble to the typical NAACL attendee.

2 Topics

The bulk of the tutorial consists of hands-on explo-
ration of time-stamped textual data, which will be
conducted in the form of Jupyter notebooks. These
practical sessions will be book-ended by an intro-
duction to theoretical and methodological perspec-
tives on language change, and a brief discussion of
open questions for future work.

2.1 How and why to measure language
change?

The tutorial begins with a survey of theoreti-
cal questions and associated methodological ap-
proaches. Sociolinguists and historical linguists
are interested in changes to the linguistic sys-
tem (Weinreich et al., 1968; Pierrehumbert, 2010);
digital humanists model changes in text over time
to track the evolution of cultural and literary prac-
tices (Michel et al., 2011); computational so-
cial scientists use time-stamped corpora to un-
derstand the transmission and evolution of social
practices (Kooti et al., 2012; Garg et al., 2018)
and to identify causes and effects in social sys-
tems (Bernal et al., 2017; Chandrasekharan et al.,
2018). We will survey some of the ways in which
various disciplines approach language change, and
briefly discuss alternatives to the corpus-based
perspective taken in this tutorial.

2.2 Tracking changes in word frequency

Question: Are people happier on the weekend?
Data: Twitter sentiment (Golder and Macy, 2011)

Methods: hypothesis testing, regression, python
dataframes

In a seminal paper in social media analysis, Golder
and Macy (2011) use Twitter data to quantify
sentiment by time-of-day and day-of-the-week.
This provides an opportunity to apply fundamental
methods in quantitative social science to a time-
stamped corpus of text, while gaining familiar-
ity with the python data science stack. We will
replicate the results of Golder and Macy, and
then extend them, exploring Simpson’s paradox
and questions of representativeness (Biber, 1993;
Pechenick et al., 2015).
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2.3 Quantifying differences over time

Question: Are Democrats and Republicans more
polarized than ever?

Data: Legislative floor speeches (Gentzkow et al.,
2016)

Methods: topic models, information theory, ran-
domization

Many observers have concluded that American
politicians are increasingly polarized. = Voting
records are the main empirical foundation for this
claim (e.g., Bateman et al., 2016), but legislative
votes may be taken for non-ideological reasons,
such as party discipline (Peterson and Spirling,
2018). Text analysis has therefore been proposed
as a technique for quantifying ideological differ-
ences across groups, via either individual word
frequencies (Monroe et al., 2008; Gentzkow et al.,
2016) or latent topics (Tsur et al., 2015; Barron
et al., 2018). Similar techniques can be used to
track similarity and difference across literary gen-
res (Underwood et al., 2018), academic confer-
ences (Hall et al., 2008), and social media com-
munities (Danescu-Niculescu-Mizil et al., 2013).
In this section, we will apply language models,
topic models, and information theory to a dataset
of legislative speech, quantifying the textual dis-
tance between U.S. political parties over time.

2.4 Detecting changes in meaning

Question: When did money become something
you can launder?

Data: Legal opinions from courtlistener.
com

Methods: dynamic word embeddings

Word embeddings capture lexical semantics
in vector form, but word meaning can change
over time through a variety of linguistic mech-
anisms (Tahmasebi et al., 2018). This section
will survey methods for computing diachronic
word embeddings, which are parameterized by
time (Wijaya and Yeniterzi, 2011; Kulkarni et al.,
2015; Hamilton et al., 2016; Garg et al., 2018;
Rudolph and Blei, 2018; Rosenfeld and Erk,
2018). We will investigate the application of one
such method to a corpus of historical texts, identi-
fying words with particularly fluid semantics, and
teasing apart these different meanings.

2.5 Distinguishing leaders and followers

Question: Who is setting the terms of the debate?


courtlistener.com
courtlistener.com

Data: 2012 Republican primary debates (Nguyen
et al., 2014)

Methods: Granger causation, Hawkes Process

Language changes have leaders and followers,
and there is considerable interest in identifying the
specific individuals and types of individuals who
drive change (Dietz et al., 2007; Gerrish and Blei,
2010; Kooti et al., 2012; Eisenstein et al., 2014;
Goel et al., 2016; Gerow et al., 2018; Del Tredici
and Ferndndez, 2018). We will explore data from
the 2012 Republican primary debates (Nguyen
et al., 2014), applying a Hawkes process model
to try to identify individuals whose language most
shaped the terms of the debate. This section will
also cover epidemiological models that attempt to
predict who will be affected next in a cascade,
and to quantify the factors that make an individ-
ual more or less susceptible (Soni et al., 2018).

2.6 Predicting the future

Question: Which innovations will persist?

Data: Reddit neologisms (Stewart and Eisenstein,
2018)

Methods: survival analysis

Some changes pass the test of time, but oth-
ers are ephemera (Dury and Drouin, 2009). Is it
possible to predict what will happen in advance?
By attacking this problem, we hope to better un-
derstand the social and linguistic mechanisms that
underlie language change (Chesley and Baayen,
2010; Del Tredici and Fernandez, 2018; Stewart
and Eisenstein, 2018). The dataset for this eval-
uation will consist of a set of lexical innovations
from Reddit. We will build models to predict not
only which will survive, but for how long.

2.7 Causation and the arrow of time

Question: Can internet policies make people be
nicer?

Data: Counts of hate speech lexicons on Red-
dit (Chandrasekharan et al., 2018)

Methods: interrupted time series

Because causes precede effects, it is natural to
ask whether temporal data can support causal in-
ferences. This section will begin by reviewing the
potential outcomes framework, which is the clas-
sical approach to causal inference from observa-
tional data (Rosenbaum, 2017). This framework
is based on three main concepts: treatment (the
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manipulation of the environment whose effect we
want to test), outcome (the quantity to measure),
and confounds (additional variables that are prob-
abilistically associated with both the treatment
and effect). We will discuss how the potential
outcomes framework can apply to temporal data
through the interrupted time series model (Bernal
et al., 2017), and we will experiment with the im-
pact of a discrete policy treatment on textual out-
comes in social media (Chandrasekharan et al.,
2018; Pavalanathan et al., 2018). This section will
also briefly survey approaches to modeling text
as a treatment (Fong and Grimmer, 2016; Egami
etal., 2018).

2.8 What’s next?

We will conclude with a discussion of open re-
search questions for the analysis of language
change and diachronic textual corpora (Nerbonne,
2010; Eisenstein, 2013; Maurits and Griffiths,
2014; Perek, 2014).

3 Presenter

Jacob Eisenstein is Associate Professor in the
School of Interactive Computing at the Georgia In-
stitute of Technology, which he joined in 2012. He
is on sabbatical at Facebook Artificial Intelligence
Research in Seattle. His research on computa-
tional sociolinguistics is supported by an NSF CA-
REER award and by a young investigator award
from the Air Force Office of Scientific Research
(AFOSR). Results from this research have been
published in traditional natural language process-
ing venues, in sociolinguistics journals, and in
more general venues. Jacob’s Georgia Tech course
on Computational Social Science covers some of
the same themes as this tutorial, and includes some
additional material.> He recently completed an in-
troductory textbook on natural language process-
ing.
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