SkillBot: Towards Automatic Skill Development via User Demonstration

Yilin Shen, Avik Ray, Hongxia Jin, Sandeep Nama
Samsung Research America, Mountain View, CA, USA

{yilin .shen,avik.r,hongxia.jin, s. nama}@samsung .com

Abstract

We present SkillBot that takes the first step
to enable end users to teach new skills in
personal assistants (PA). Unlike existing PA
products that need software developers to
build new skills via IDE tools, an end user
can use SkillBot to build new skills just by
naturally demonstrating the task on device
screen. SkillBot automatically develops a
natural language understanding (NLU) engine
and implements the action without the need
of coding. On both benchmark and in-
house datasets, we validate the competitive
performance of SkillBot automatically built
NLU. We also observe that it only takes a few
minutes for an end user to build a new skill
using SkillBot.

1 Introduction

Artificially intelligent voice-enabled personal
assistants (PA) have been emerging in our daily
life, such as Alexa, Google Assistant, Siri, Bixby,
etc. Existing off-the-shelf personal assistants
serve different domains, in which each domain has
a large number of capabilities, called skills. A skill
refers to the understanding of various utterances
about one intent/task and the execution of this
intent/task.

Existing industrial PA products completely
rely on software developers to build new skills
by manually developing NLU engine and
implementing action fulfillment. On one hand,
while recent work CRUISE (Shen et al., 2018a)
and SIiQA-I (Shen et al., 2019) have introduced
automatic training utterance and question
generation approaches with lightweight human
workload, they still require the involvement
of software developers for NLU development
through IDE tools. Another line of research is to
personalize NLU engine in existing skills (Azaria
et al., 2016; Ray et al., 2018; Shen et al., 2018b;

105

Wang et al., 2018a), yet they cannot support
building new skills. On the other hand, developers
need to write a significant amount of code in order
to fulfill a sequence of operations to carry out the
task (DialogFlow, 2018; Alexa, 2018).

However, in practice, it is infeasible for
software developers to pre-build all possible
skills that satisfy all users’ needs. First,
the pre-collected training corpus usually cannot
exhaustively cover all possible varieties of
utterances. Second, due to the heavy workload
on fulfillment implementation, many actions are
not implemented to be supported in PA. Thus,
it is critically desirable to design an easy to use
system that can facilitate end users to quickly
build high quality new skills. Unlike existing IDE
for skill development, such system needs to be
more friendly and natural to ordinary end users
without any complex interfaces.

In this paper, we take the first step to
present SkillBot that enables end users to
initialize building PA skills. An ordinary user,
without either natural language expertise or
software development background, only needs
to demonstrate the task on his daily device
screen. SkillBot, without a complex IDE interface,
automatically learns the action by tracking user
operations and develops the NLU engine by
automatically generating training utterances based
on pre-built skills. Since users intend to
use spoken language to interact with PA, we
follow most industrial products (DialogFlow,
2018; Alexa, 2018) to use spoken language
understanding (SLU) as our NLU engine, which
understands user query by detecting its intent
(skill) and extracting semantic slots (slot filling)
(Liu and Lane, 2016; Kim et al., 2017; Wang et al.,
2018b). Even though our fully automated SkillBot
only aims to satisfy each user’s personal needs
rather than understand all various expressions

Proceedings of NAACL-HLT 2019: Demonstrations, pages 105-109
Minneapolis, Minnesota, June 2 - June 7, 2019. (©2019 Association for Computational Linguistics

“Find a five star hotel near San Jose”
“Please teach me”

' input search content

5

Lyp—
s+ click to search

* input location

* Review rating
* Review numbers
* Amenities

 Location name
® Distance type
© Amenities

qwertyuiop gwertyuiop

asdfghijk.l asdfghjkl

b b

4 zxcvbnma

(o]

s zxcvbnma

(o]

B\

[User Selection of Each Input Description]

(a) Learning via Demonstration: When PA asks for
teaching, the user operates step by step accordingly in
Yelp app. For each user input, SkillBot prompts to ask
user to select the most relevant description of this input.

User: “Find a hotel with good rating”

Agent:
“What is the
location name? ”

P —Y

User:
“San Francisco”

(b) Automatic Execution: After parsing the utterance
using NLU, PA executes the learned action step by step.
When finding a missing input, PA prompts for user input.

Figure 1: SkillBot Running Example: Learning and
executing new skill ”’find hotel” in Yelp

from any user, we show the competitive NLU
performance of SkillBot built skills in later
experiments. More importantly, in most cases it
only takes a user several minutes to build a new
skill using SkillBot. As such, SkillBot leverages
the existing skills to help end users automatically
and quickly build high quality skills to meet their
personal needs.

2 SkillBot System Overview
2.1 Our Settings

To satisfy user personalized needs in PA, SkillBot
aims to enable end users to build their own (long-
tail) skills only by demonstration on screen. That
said, an end user only naturally uses their device
as usual to build a new skill. In this first work, we
assume that there exist a set of pre-built popular
(head) skills in the ecosystem and these skills
contain both annotated training utterances and a
text description for each slot. In addition, we
target on teaching and executing actions on the
same mobile apps.

Figure 1 shows a running example in which

106

—— new skill —| Natural Language Understanding]ﬂ— update

existing skill

Utterance

Action Execution .
Generation

Action/Skill
Database

Prebuilt
Skills

Task Complete

bytecode

Action Learning via
User Demonstration

Slot Identification

Auto Action Fulfillment Auto NLU Development

Figure 2: SkillBot Architecture & Workflow: When
learning via demonstration (green arrows), automatic
action fulfillment (runs as a system service on each
user’s device) first tracks and captures system level event
sequence based on user operations. It outputs a bytecode
file with learned event sequence for this skill and saves
in database for future execution. After each user input
operation, automatic NLU development identifies the list
of possible slot descriptions for user to select and then
generates more training utterances by leveraging existing
training utterances in pre-built skills. At last, the NLU
engine is updated using all generated utterances. When
executing an existing skill (orange arrows), based on the
parsed skill from NLU, the corresponding bytecode is
retrieved to automatically execute all saved steps.

SkillBot helps an end user to build the new “find
hotel” skill in Yelp. For an end user, he uses PA
as usual via voice utterances. SkillBot prompts
the user to teach when PA cannot understand
and execute the user utterance correctly. As in
Figure 1la, all the end user needs to do is to
demonstrate on screen step by step how he wants
PA to execute. After each user input, SkillBot
identifies possible slot descriptions and asks user
to select the most relevant one. SkillBot then
automatically builds the new skill and outputs a
well-trained NLU engine and an action executable
file. A user could teach a new skill multiple
times where each skill is considered to have the
same on-screen operation sequence. Next time, in
Figure 1b, PA can correctly understand this user’s
different expressions of this intent and execute the
right action.

2.2 System Design

Recall that our target is to facilitate the end users
who have neither natural language expertise nor
software development knowledge. Thus, SkillBot
is designed to support these two automation
respectively. Specifically, SkillBot consists of two
main components, automatic action fulfillment

S R |

! Screen Ul Event Sequence

I

>
Extractor

App Screen

I

r

User
Demonstration

Event
Extractor

Event
Filtering

[User Selection] [User Utterance]— [Generated Utterances]
[—"
! Zero-shot ! Prebuilt
Slot Tagging | 4 Skills
1
1
| - I
1
1

“@slot2”

“San Jose”,

“options”: [“New York”, “LA”, ...]

Utterance
Segment
Combination

@location

Slot
Ensemble

- rr-na

Action Learning via Demonstration

Figure 3: New Skill Learning in SkillBot

and automatic NLU development. In addition,
SkillBot also has an action/skill database to
save the mapping between learned actions and
corresponding skills. Figure 2 shows SkillBot
architecture and work flow. Since we use the off-
the-shelf NLU models in this paper, auto NLU
development focuses on generating annotated
training utterances.

3 Learning via Demonstration

3.1 Action Learning

Action learning module has two main threads, as
shown in the left part of Figure 3. Following
user demonstration, at each screen, screen Ul
element extractor collects all UI elements in the
format of a DOM tree on the current screen that
the user is operating. In the meanwhile, event
extractor collects all events from user operates in
this screen.

Since there are typically a lot of system services
running on device, the extracted events usually
include many irrelevant ones that is not from user
demonstrated actions, such as ‘windows change’,
‘window state change’, ’system or other app
notifications’, etc. In order to filter the irrelevant
events, we first prune all events out of the current
front end app based on their event package name.
To further ensure some unexpected events within
app (e.g., location permission request in Yelp app),
we allow user to teach again at any point when
user sees any unusual popups or notifications. At
last, a bytecode is outputted including the event
sequence in which each event contains its UI
element information and the required slot value
input based on the identified slot in Section 3.2.1.

3.2 Automatic NLU Development

The key idea of training utterance generation is to
identify the slots in the user utterance and then use
them to generate more training utterances based on

107

the training utterances in existing pre-built skills.

3.2.1 Slot Identification

This module is invoked after each user input
during demonstration. As shown in the middle
part (blue) of Figure 3, after user inputs “San
Jose” in the example of Figure 1a, it receives the
user utterance and the optional values (e.g., “New
York”, “LA”, etc.) extracted from dropdown list of
the user input box (Yelp location textbox) during
action learning.

Taking the above input, we first construct the
set of natural language utterances by replacing
the input values with other optional values. For
each utterance, zero-shot slot tagging module
extracts its semantic slots based on each slot
description using the zero-shot model in (Bapna
et al., 2017) trained on pre-built skills. Slot
ensemble module performs a joint slot detection
across all constructed utterances by combining the
likelihood scores of each slot. The descriptions of
identified top ranked slots are sent to the user to
select the most relevant one.

3.2.2 Utterance Generation

In this first work, we assume that each training
utterance in pre-built skills has been decomposed
into segments by human expert or our proposed
CRUISE approach (Shen et al., 2018a). Each
segment contains a slot tag (two examples are
shown in the right side of Figure 4). We only
use the subset of segments associated with the
aforementioned identified slots.

We generate the utterance by combining
identified segments into long utterances by
concatenating them together (middle part in
Figure 4). To do so, we first use the off-the-
shelf Stanford parser to identify the verb and main
object in user utterance. In the sample utterance
of Figure 1, “find” and “hotel” are marked as
verb and object based on the parser tree. As

Map domain

. " “get direction” utterance
“find hotel” skill 8
verb Goto
@location | nearby
User utterance Generated utterance
object | gas station

verb. Find a verb Find a

Yelp domain

“find restaurant” utterance

@rating | five star @location | nearby

object | hotel object hotel

verb I would like a

@location | near San Jose @rating with high rating

object restaurant

* Each box stands for one utterance

* Each row is a segment in this utterance @rating | with high rating

Figure 4: Utterance Generation Example

the arrows show in Figure 4, we next generate
the permutations of segments before and after the
object based on their places in original utterances
with non-overlapping slots.

4 Automatic Execution

Figure 5 shows the flow of automatic execution
of a skill. NLU first parses the utterance and
outputs its intent and slots. The intent class
is used to query the action/skill database to
retrieve the bytecode of the corresponding action.
SkillBot executes the events one by one following
the sequence. For each event, the execution
consists of the following two threads: One thread
determines if this event requires a slot input based
on the saved meta data during learning. If so, we
extract on the slot results parsed by NLU. If this
information is missing in utterance or NLU fails
to parse, we prompt the follow-up question to ask
user. The other thread first locates the UI element
based on its saved coordinates. It then inputs slot
values and simulates the user operation by using
gesture control based on the element coordinates
(e.g., MotionEvent in Android devices).

S Experiments

In this section, we focus on evaluating SkillBot
built NLU engine given that auto action learning
and execution are restricted to the same app.

We test on both benchmark and in-house
datasets/domains: (1) ATIS (4978 training, 893
test) with 17 intent labels and 79 slot labels
(Hemphill et al., 1990); (2) In-house Yelp (1968
training, 911 test) with 5 intents and 10 slots.
To evaluate both datasets which are not generated
by CRUISE, we segment each utterance using
dependency parser and slot annotations (each
segment ends with a slot). The noisy segments
are further removed by human experts. In the
experiment, we assume that user always select
the correct slot description after each input to
ensure the correct slot identification. We use the

108

NLU

Action Execution Prompt for User Input

intent slots

e —
Action/Skill
Database

Event Sequence
1

Ul Element
Operation

Ul Element
Locating

Figure 5: Automatic Skill Execution in SkillBot

benchmark BiRNN based joint NLU model (Liu
and Lane, 2016).

In each dataset (with k intents), for each intent
I, we assume the user teaches this intent I given
the remaining k£ — 1 intents as pre-built skills. Let
T be the subset of training data w.r.t. intent /,
and 7/ be utterances w.r.t. the remaining k& — 1
intents. Our baseline NLU engine is trained on this
training set 7, of remaining k£ — 1 intents. Next,
we randomly sample 5 user utterances (assuming
a user teaches the new intent 5 times) from set
Tr, and use our utterance generation algorithm to
auto generate dataset A for intent /. Our SkillBot
built NLU (called SkillBot NLU) is trained on
the combined training data 77 U A;. Both the
NLU engines are tested on the original test dataset
(having all k intents).

Table 1 presents the results. For ATIS, we
show the results for top 8 intents, which contain
at least 0.9% of the overall training utterances (the
third column displays this fraction). SkillBot NLU
achieves a large gain in intent accuracy over the
baseline in both datasets. Moreover, we observe
that the accuracy gain is also roughly correlated
to the fraction of all test utterances in each intent.
This indicates that the SkillBot NLU can correctly
learn most of the test utterances in the newly added
intent. SkillBot NLU also improves the slot filling
F1 score in most intents. In cases when SkillBot
NLU completely misses a slot, it can directly ask
a follow-up question to allow user provide the
slot value before action fulfillment. Therefore,
SkillBot with follow-up user clarification further
improves the F1 score and obtains performance
gain in last column.

6 Discussion & Future Work

We present the first SkillBot that enables end
users to build skills in PA. SkillBot automates
both action fulfillment and NLU development. In

Table 1: SkillBot NLU Experimental Results

| | Train | Intent (Accuracy) | Slot Filling (F1 Score)
Domain | Intent/Skill | g;; () | Baseline SkillBot Gain (%) | Baseline SkillBot SkillBot+Follow-up Gain (%)
atis_flight 7434 | 27.00 60.40 3340| 85.13 8745 89.37 4.24
atis_airfare 8.59| 9040 92.40 2.00| 9743 96.96 97.39 -0.04
atis_ground _service 5.13| 9240 97.20 4.80| 96.69 96.99 97.36 0.67
atis_airline 3.14| 94.00 96.40 240| 9743 97.54 97.98 0.55
ATIS | atis_abbreviation 290| 9420 95.60 1.40| 97.04 9745 97.88 0.84
atis_aircraft 1.56| 94.80 96.40 1.60| 9754 97.46 97.92 0.38
atis_flight_time 1.00| 9540 97.60 220| 97.07 97.37 98.06 0.99
atis_quantity 091 9540 97.20 1.80| 9737 97.05 97.56 0.19
search_restaurant 23.23| 78.16 88.04 9.88 | 92.50 92.85 94.71 2.21
get_directions 2420| 7278 85.40 12.62| 9329 92.10 94.36 1.07
Yelp bookmark 2275| 7673 84.96 8.23| 94.13 94.90 96.90 277
reservation 12.53| 89.13 95.06 593| 9353 94.06 96.15 2.62
call_restaurant 16.60| 82.66 92.54 9.88 | 93.31 92.12 94.46 1.15

future work, we will evaluate SkillBot in more
real and larger-scale scenarios: allow end users
to teach more naturally with less clarification
by improving the accuracy of slot identification;
support building a brand new domain by enabling
slot identification to map more varieties of slots
in other domains; incorporate with other non-
CRUISE pre-built skills without pre-segmented
utterances; enhance the robustness of action
learning to tackle the dynamics in mobile device
system; expand cross app action teaching in which
we will design machine learning algorithms for
event filtering and UI semantic mapping.

Acknowledgments

The authors would like to thank Abhishek Patel
and Xiangyu Zeng for useful discussion and their
help of demo implementation and video shooting.

References

Amazon Alexa. 2018. https://developer.
amazon.com/docs/custom-skills/
handle-requests—-sent—-by-alexa.
html.

Amos Arzaria, Jayant Krishnamurthy, and Tom M
Mitchell. 2016. Instructable intelligent personal
agent. In AAAI, pages 2681-2689.

Ankur Bapna, Gokhan Tiir, Dilek Hakkani-Tiir, and
Larry Heck. 2017. Towards zero-shot frame
semantic parsing for domain scaling. In Interspeech,
pages 2476-2480.

DialogFlow. 2018. https://dialogflow.com/.

Charles T Hemphill, John J Godfrey, George R
Doddington, et al. 1990. The atis spoken language
systems pilot corpus. In Proceedings of the DARPA

109

speech and natural language workshop, pages 96—
101.

Young-Bum Kim, Sungjin Lee, and Karl Stratos. 2017.
ONENET: joint domain, intent, slot prediction for
spoken language understanding. In ASRU, pages
547-553.

Bing Liu and Ian Lane. 2016. Attention-based
recurrent neural network models for joint
intent detection and slot filling. arXiv preprint
arXiv:1609.01454.

Avik Ray, Yilin Shen, and Hongxia Jin. 2018. Learning
out-of-vocabulary words in intelligent personal
agents. In IJCAI, pages 4309-4315.

Yilin Shen, Avik Ray, Abhishek Patel, and Hongxia Jin.
2018a. CRUISE: cold-start new skill development
via iterative utterance generation. In ACL, System
Demonstrations, pages 105-110.

Yilin Shen, Yu Wang, Abhishek Patel, and Hongxia Jin.
2019. Sliqa-i: Towards cold-start development of
end-to-end spoken language interface for question
answering. In ICASSP.

Yilin Shen, Xiangyu Zeng, Yu Wang, and Hongxia
Jin. 2018b. User information augmented semantic
frame parsing using progressive neural networks. In
Interspeech, pages 3464—3468.

Yu Wang, Abhishek Patel, Yilin Shen, and Hongxia
Jin. 2018a. A deep reinforcement learning
based multimodal coaching model (decm) for slot
filling in spoken language understanding(slu). In
Interspeech, pages 3444-3448.

Yu Wang, Yilin Shen, and Hongxia Jin. 2018b. A bi-
model based RNN semantic frame parsing model for
intent detection and slot filling. In NAACL-HLT,
pages 309-314.

https://developer.amazon.com/docs/custom-skills/handle-requests-sent-by-alexa.html
https://developer.amazon.com/docs/custom-skills/handle-requests-sent-by-alexa.html
https://developer.amazon.com/docs/custom-skills/handle-requests-sent-by-alexa.html
https://developer.amazon.com/docs/custom-skills/handle-requests-sent-by-alexa.html
https://dialogflow.com/

