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Abstract

We present FLAIR, an NLP framework de-
signed to facilitate training and distribution of
state-of-the-art sequence labeling, text classi-
fication and language models. The core idea
of the framework is to present a simple, uni-
fied interface for conceptually very different
types of word and document embeddings. This
effectively hides all embedding-specific engi-
neering complexity and allows researchers to
“mix and match” various embeddings with lit-
tle effort. The framework also implements
standard model training and hyperparameter
selection routines, as well as a data fetching
module that can download publicly available
NLP datasets and convert them into data struc-
tures for quick set up of experiments. Fi-
nally, FLAIR also ships with a “model zoo”
of pre-trained models to allow researchers to
use state-of-the-art NLP models in their appli-
cations. This paper gives an overview of the
framework and its functionality.

The framework is available on GitHub at
https://github.com/zalandoresearch/flair.

1 Introduction

Classic pre-trained word embeddings have been
shown to be of great use for downstream NLP
tasks, both due to their ability to assist learning
and generalization with information learned from
unlabeled data, as well as the relative ease of in-
cluding them into any learning approach (Mikolov
et al., 2013; Pennington et al., 2014). Many re-
cently proposed approaches go beyond the ini-
tial “one word, one embedding” paradigm to
better model additional features such as sub-
word structures (Ma and Hovy, 2016; Bojanowski
et al., 2017) and meaning ambiguity (Peters et al.,
2018a). Though shown to be extremely power-
ful, such embeddings have the drawback that they
cannot be used to simply initialize the embedding
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layer of a neural network and thus require specific
reworkings of the overall model architecture.
Hierarchical architectures. A common exam-
ple is that many current approaches combine clas-
sic word embeddings with character-level features
trained on task data (Ma and Hovy, 2016; Lample
et al., 2016). To accomplish this, they use a hier-
archical learning architecture in which the output
states of a character-level CNN or RNN are con-
catenated with the output of the embedding layer.
While modern deep learning frameworks such as
PYTORCH (Paszke et al., 2017) make the con-
struction of such architectures relatively straight-
forward, architectural changes are nevertheless re-
quired for something that is fundamentally just an-
other method for embedding words.
Contextualized embeddings. Similarly, recent
works—including our own—have proposed meth-
ods that produce different embeddings for the
same word depending on its contextual usage (Pe-
ters et al.,, 2018a; Akbik et al., 2018; Devlin
et al., 2018). The string “Washington” for in-
stance would be embedded differently depending
on whether the context indicates this string to be a
last name or a location. While shown to be highly
powerful, especially in combination with classic
word embeddings, such methods require an archi-
tecture in which the output states of a trained lan-
guage model (LM) are concatenated with the out-
put of the embedding layer, thus adding architec-
tural complexity.

These examples illustrate that word embeddings
typically cannot simply be mixed and matched
with minimal effort, but rather require specific re-
workings of the model architecture.

Proposed solution: FLAIR framework. With
this paper, we present a new framework designed
to address this problem. The principal design goal
is to abstract away from specific engineering chal-
lenges that different types of word embeddings
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raise. We created a simple, unified interface for
all word embeddings as well as arbitrary combi-
nations of embeddings. This interface, we argue,
allows researchers to build a single model archi-
tecture that can then make use of any type of word
embedding with no additional engineering effort.

To further simplify the process of setting up
and executing experiments, FLAIR includes con-
venience methods for downloading standard NLP
research datasets and reading them into data struc-
tures for the framework. It also includes model
training and hyperparameter selection routines to
facilitate typical training and testing workflows. In
addition, FLAIR also ships with a growing list of
pre-trained models allowing users to apply already
trained models to their text. This paper gives an
overview of the framework.

2 Framework Overview

2.1 Setup

FLAIR only requires a current version of Python
(at least version 3.6) to be available on a system or
a virtual environment. Then, the simplest way to
install the library is via pip, by issuing the com-
mand: pip install flair. This downloads the
latest release of FLAIR and sets up all required li-
braries, such as PYTORCH.

Alternatively, users can clone or fork the cur-
rent master branch of FLAIR from the GitHub
repository. This allows users to work on the lat-
est version of the code and create pull requests.
The GitHub page' has extensive documentation on
training and applying models and embedding.

2.2 Base Classes

With code readability and ease-of-use in mind,
we represent NLP concepts such as tokens, sen-
tences and corpora with simple base (non-tensor)
classes that we use throughout the library. For in-
stance, the following code instantiates an example
Sentence object:

2.3 Embeddings

Embeddings are the core concept of FLAIR.
Each embedding class implements either the
TokenEmbedding or the DocumentEmbedding in-
terface for word and document embeddings re-
spectively. Both interfaces define the .embed()
method to embed a Sentence or a list of Sentence
objects into a specific embedding space.

2.3.1 Classic Word Embeddings

The simplest examples are classic word embed-
dings, such as GLOVE or FASTTEXT. Simply in-
stantiate one of the supported word embeddings
and call .embed() to embed a sentence:

# init GloVe embeddings
glove WordEmbeddings('glove')

# embed sentence
glove.embed(sentence)

# init sentence
sentence = Sentence('I love Berlin')

Each Sentence is instantiated as a list of Token
objects, each of which represents a word and has
fields for tags (such as part-of-speech or named
entity tags) and embeddings (embeddings of this
word in different embedding spaces).
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Here, the framework checks if the requested
GLOVE embeddings are already available on lo-
cal disk. If not, the embeddings are first down-
loaded. Then, GLOVE embeddings are added to
each Token in the Sentence.

Note that all logic is handled by the embedding
class, i.e. it is not necessary to run common pre-
processing steps such as constructing a vocabulary
of words in the dataset or encoding words as one-
hot vectors. Rather, each embedding is immedi-
ately applicable to any text wrapped in a Sentence
object.

2.3.2 Other Word Embeddings

As noted in the introduction, FLAIR supports a
growing list of embeddings such as hierarchical
character features (Lample et al., 2016), ELMo
embeddings (Peters et al., 2018a), ELMo trans-
former embeddings (Peters et al., 2018b), BERT
embeddings (Devlin et al., 2018), byte pair embed-
dings (Heinzerling and Strube, 2018), Flair em-
beddings (Akbik et al., 2018) and Pooled Flair
embeddings. See Table 1 for an overview.

Importantly, all embeddings implement the
same interface and may be called and applied just
like in the WordEmbedding example above. For in-
stance, to use BERT embeddings to embed a sen-
tence, simply call:

# init BERT embeddings
bert BertEmbeddings ()

# embed sentence
bert.embed(sentence)
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Class Type Pretrained?
WordEmbeddings classic word embeddings (Pennington et al., 2014) yes
CharacterEmbeddings character features (Lample et al., 2016) no
BytePairEmbeddings byte-pair embeddings (Heinzerling and Strube, 2018) yes
FlairEmbeddings character-level LM embeddings (Akbik et al., 2018) yes
PooledFlairEmbeddings pooled version of FLAIR embeddings (Akbik et al., 2019b) yes
ELMoEmbeddings word-level LM embeddings (Peters et al., 2018a) yes
ELMoTransformerEmbeddings  word-level transformer LM embeddings (Peters et al., 2018b) yes
BertEmbeddings byte-pair masked LM embeddings (Devlin et al., 2018) yes

DocumentPoolEmbeddings
DocumentLSTMEmbeddings

document embeddings from pooled word embeddings (Joulin et al., 2017)  yes

document embeddings from LSTM over word embeddings

no

Table 1: Summary of word and document embeddings currently supported by FLAIR. Note that some embedding types are
not pre-trained; these embeddings are automatically trained or fine-tuned when training a model for a downstream task.

2.3.3 Stacked Embeddings

In many cases, we wish to mix and match sev-
eral different types of embeddings. For instance,
Lample et al. (2016) combine classic word embed-
dings with character features. To achieve this in
FLAIR, we need to combine the embedding classes
WordEmbeddings and CharacterEmbeddings. To
enable such combinations, e.g. the “stacking” of
embeddings, we include the StackedEmbeddings
class. It is instantiated by passing a list of em-
beddings to stack, but then behaves like any other
embedding class. This means that by calling the
.embed() method, a StackedEmbeddings class
instance embeds a sentence like any other embed-
ding class instance.

Our recommended setup is to stack
WordEmbeddings with FlairEmbeddings,
which gives state-of-the-art accuracies across
many sequence labeling tasks. See Akbik et al.
(2018) for a comparative evaluation.

2.3.4 Document Embeddings

FLAIR also supports methods for producing vec-
tor representations not of words, but of entire doc-
uments. There are two main embedding classes
for this, namely DocumentPoolEmbeddings and
DocumentLSTMEmbeddings. The former applies
a pooling operation, such as mean pooling, to all
word embeddings in a document to derive a docu-
ment representation. The latter applies an LSTM
over the word embeddings in a document to output
a document representation.

2.4 NLP Dataset Downloader

To facilitate setting up experiments, we include
convenience methods to download publicly avail-
able benchmark datasets for a variety of NLP tasks
and read them into data structures for training. For
instance, to download the universal dependency

Dataset Task Language(s)
CoNLL 2000 NP Chunking en

CoNLL 2003 NER dt, es

EIEC NER basque
IMDB Classification en

TREC-6 Classification en

TREC-50 Classification en

Universal Dependencies  PoS, Parsing 30 languages

WikiNER
WNUT-17

NER
NER

9 languages
en

Table 2: Summary of NLP datasets in the downloader.
References: CoNLL 2000 (Sang and Buchholz, 2000),
CoNLL 2003 (Sang and De Meulder, 2003), EIEC (Alegria
et al.), IMDB (Maas et al., 2011), TREC-6 (Voorhees and
Harman, 2000), TREC-50 (Li and Roth, 2002), Universal De-
pendencies (Zeman et al., 2018), WikiNER (Nothman et al.,
2012) and WNUT-17 (Derczynski et al., 2017).

treebank for English, simply execute these lines:

# define dataset
task = NLPTask.UD_English

# load dataset
corpus = NLPTaskDataFetcher.load_corpus(
task)
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Internally, the data fetcher checks if the requested
dataset is already present on local disk and if not,
downloads it. The dataset is then read into an ob-
ject of type TaggedCorpus which defines training,
testing and development splits.

Table 2 gives an overview of all datasets that are
currently downloadable. Other datasets, such as
the CoNLL-03 datasets for English and German,
require licences and thus cannot be automatically
downloaded.

2.5 Model Training

To train a downstream task model, FLAIR includes
the ModelTrainer class which implements a host
of mechanisms that are typically applied during
training. This includes features such as mini-
batching, model checkpointing, learning rate an-
nealing schedulers, evaluation methods and log-
ging. This unified training interface is designed to




Task Dataset

Language(s) Variant(s)

4-class NER CoNLL 2003 (Sang and De Meulder, 2003) en, de, nl, es default, fast, multilingual
4-class NER WikiNER (Nothman et al., 2012) fr default

12-class NER Ontonotes (Hovy et al., 2006) en default, fast

NP Chunking CoNLL 2000 (Sang and Buchholz, 2000) en default, fast

Offensive Language Detection =~ GermEval 2018 (Wiegand et al., 2018) de default

PoS tagging Ontonotes (Hovy et al., 2006) en default, fast

Semantic Frame Detection PropBank (Bonial et al., 2014) en default, fast

Sentiment Analysis IMDB (Maas et al., 2011) en default

Universal PoS Universal Dependencies (Zeman et al., 2018) 12 languages  multilingual

Table 3: Summary of pre-trained sequence labeling and text classification models currently available. The “default” variant
are single-language models optimized for GPU-systems. The “fast” variant are smaller models optimized for CPU-systems.
The “multilingual” variants are single models that can label text in different languages.

facilitate experimentation with standard learning

parameters.

The ModelTrainer can be applied to
any FLAIR model that implements the
flair.nn.Model interface, such as our se-

quence tagging and text classification classes.
Refer to the online tutorials for examples on
how to train different types of downstream task
models.

2.6 Hyperparameter Selection

To further facilitate training models, FLAIR in-
cludes native support for the HYPEROPT library
which implements a Tree of Parzen Estima-
tors (TPE) approach to hyperparameter optimiza-
tion (Bergstra et al., 2013). Hyperparameter se-
lection is performed against the development data
split by default. This allows users to first run hy-
perparameter selection using the training and de-
velopment data splits, and then evaluate the final
parameters with the held-out testing data.

3 Model Zoo

In addition to providing a framework for embed-
ding text and training models, FLAIR also includes
a model zoo of pre-trained sequence labeling, text
classification and language models. They allow
users to apply pre-trained models to their own text,
or to fine-tune them for their use cases. A list of
currently shipped models is provided in Table 3.

For example, to load and apply the default
named entity recognizer for English, simply ex-
ecute the following lines of code:

# make a sentence
sentence Sentence('I love Berlin

)
# load the NER tagger
tagger SequenceTagger.load('ner'")

# run NER over sentence
tagger.predict(sentence)
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This first checks if the corresponding model is al-
ready available on local disk and if not, downloads
it. Entity tags are then added to the Token objects
in the Sentence. In this specific example, this will
mark up “Berlin” as an entity of type location.
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We distribute different variants of models with
FLAIR (see Table 3). The default variant are
single-language models intended to be run on
GPU, typically using embeddings from language
models with 2048 hidden states. The fast variant
models use computationally less demanding em-
beddings, typically from LMs with 1024 hidden
states, and are suited to be run on CPU setups.
We also include multilingual models for some
tasks. These are “one model, many languages”
models that can predict tags for text in multiple
languages. For instance, Flair includes multilin-
gual part-of-speech tagging models that predict
universal PoS tags for text in 12 languages. See
Akbik et al. (2019a) for an overview of multilin-
gual models and preliminary evaluation numbers.

Model Variants

4 Conclusion and Outlook

We presented FLAIR as a framework designed to
facilitate experimentation with different embed-
ding types, as well as training and distributing se-
quence labeling and text classification models.
Together with the open source community, we
are working to extend the framework along mul-
tiple directions. This includes supporting more
embedding approaches such as transformer em-
beddings (Radford et al., 2018; Dai et al., 2019),
InferSent representations (Conneau et al., 2017)
and LASER embeddings (Artetxe and Schwenk,
2018), and expanding our coverage of NLP
datasets and formats for automatic data fetching.
Current research also focuses on developing
new embedding types, investigating further down-



stream tasks and extending the framework to facil-
itate multi-task learning approaches.
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