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Abstract

This demo paper describes ADIDA, a web-
based system for automatic dialect identifica-
tion for Arabic text. The system distinguishes
among the dialects of 25 Arab cities (from Ra-
bat to Muscat) in addition to Modern Standard
Arabic. The results are presented with either
a point map or a heat map visualizing the au-
tomatic identification probabilities over a geo-
graphical map of the Arab World.

1 Introduction

The last few years have witnessed an increased
interest within the natural language processing
(NLP) community in the computational model-
ing of dialectal and non-standard varieties of lan-
guages (Malmasi et al., 2016; Zampieri et al.,
2017, 2018). The Arabic language, which is a
collection of variants or dialects, has received a
decent amount of attention in this regard with a
number of efforts focusing on dialect identifica-
tion, translation and other forms of modeling. In
this demo paper, we present ADIDA,' a public on-
line interface for visualizing fine-grained dialect
identification of Arabic text (Salameh et al., 2018).
The dialect identification system produces a vector
of probabilities indicating the likelihood an input
sentence is from 25 cities (Table 1) and Modern
Standard Arabic (MSA). ADIDA displays the re-
sults with either a point map or a heat map overlaid
on top of a geographical map of the Arab World.

2 Arabic and its Dialects

Although MSA is the official language across the
Arab World, it is not the native language of any
speakers of Arabic. Dialectal Arabic (DA), on the
other hand, is the daily informal spoken variety.

'https://adida.abudhabi.nyu.edu/
The Arabic word §. As /Sadida/ means ‘numerous’.
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DA is nowadays emerging as the primary language
of communication — not just spoken, but also writ-
ten, particularly in social media. Arabic dialects
are often classified in terms of geographical re-
gions, such as Levantine Arabic, Gulf Arabic and
Egyptian Arabic (Habash, 2010). However, within
each of these regional groups, there is significant
variation down to the village, town, and city lev-
els. The demo we present is based on the work
of Salameh et al. (2018), who utilize the MADAR
Project parallel corpus of 25 Arab cities plus MSA
(Table 1) (Bouamor et al., 2018).?

Arabic dialects differ in various ways from
MSA and from each other. These include phono-
logical, morphological, lexical, and syntactic dif-
ferences (Haeri, 1991; Holes, 2004; Watson, 2007,
Bassiouney, 2009). Despite these differences,
distinguishing between Arabic dialects in writ-
ten form is an arduous task because: (i) dialects
use the same writing script and share part of the
vocabulary; and (ii) Arabic speakers usually re-
sort to repeated code-switching between their di-
alect and MSA (Abu-Melhim, 1991; Bassiouney,
2009), creating sentences with different levels of
dialectness (Habash et al., 2008).

3 Related Work

3.1 Arabic Dialect Processing

While automatic processing of DA is relatively re-
cent compared to MSA, it has attracted a consid-
erable amount of research in NLP (Shoufan and
Al-Ameri, 2015). Most of it focuses on (i) collect-
ing datasets from various sources and at different
levels (Zaidan and Callison-Burch, 2011; Khalifa
et al., 2016; Abdul-Mageed et al., 2018; Bouamor
etal., 2018), (ii) creating processing tools (Habash
et al., 2013; Al-Shargi and Rambow, 2015; Obeid
et al., 2018) (iii) developing DA to English ma-

https://camel.abudhabi.nyu.edu/madar/
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Region Maghreb Nile Basin Levant Gulf Yemen
Sub-region | Morocco | Algeria | Tunisia| Libya |Egypt/Sudan | South Levant | North Levant Iraq Gulf |Yemen
Cities Rabat Algiers | Tunis | Tripoli Cairo Jerusalem Beirut Mosul Doha Sana’a

Fes Sfax Benghazi | Alexandria | Amman Damascus Baghdad | Muscat

Aswan Salt Aleppo Basra Riyadh

Khartoum Jeddah

Table 1: Different city dialects covered in ADIDA and the regions they belong to.

chine translation systems (Zbib et al., 2012; Saj-
jad et al., 2013), (iv) or performing dialect identifi-
cation (Zaidan and Callison-Burch, 2014; Huang,
2015; Salameh et al., 2018).

3.2 Dialect Identification

Dialect Identification (DID) is a particularly chal-
lenging task compared to Language Identifica-
tion (Etman and Beex, 2015). Since Arabic di-
alects use the same script and share part of the vo-
cabulary, it is quite arduous to distinguish between
them. Hence, developing an automatic identifica-
tion system working at different levels of repre-
sentation and exploring different datasets has at-
tracted increasing attention in recent years. For
instance, DID has been the goal of a dedicated
shared task (Malmasi et al., 2016; Zampieri et al.,
2017, 2018), encouraging researchers to submit
systems to recognize the dialect of speech tran-
scripts for dialects of four main regions: Egyptian,
Gulf, Levantine and North African, and MSA.
Several systems implementing a range of tradi-
tional supervised learning (Tillmann et al., 2014)
and deep learning methods (Belinkov and Glass,
2016; Michon et al., 2018) were proposed.

In the literature, a number of studies have
been exploring DID using several datasets, rang-
ing from user-generated content (i.e., blogs, so-
cial media posts) (Sadat et al., 2014), speech tran-
scripts (Biadsy et al., 2009; Bougrine et al., 2017),
and other corpora (Elfardy and Diab, 2012, 2013;
Zaidan and Callison-Burch, 2014; Salameh et al.,
2018; Dinu et al., 2018; Goldman et al., 2018).
Shoufan and Al-Ameri (2015) and Al-Ayyoub
et al. (2017) present a survey on NLP and deep
learning methods for processing Arabic dialectal
data with an overview on Arabic DID of text and
speech. While most of the proposed approaches
targeted regional or country level DID, Salameh
et al. (2018) introduced a fine-grained DID sys-
tem covering the dialects of 25 cities from several
countries across the Arab world (from Rabat to
Muscat), including some cities in the same coun-
try.

3.3 Visualization

Map visualizations are used in multiple fields of
study including linguistics, socio-linguistics, and
political science to display geographical relations
of non-geographic data. Geographical visualiza-
tions may include point maps to display individ-
ual data points, choropleths and Voronoi tessala-
tion maps that cluster data points by region, and
heat maps and surface maps that interpolate data
over some geographical area.

In the general context of visualization of lan-
guage data, one example is the Visualizing Me-
dieval Places project (Wrisley, 2017, 2019), which
extracted place names from medieval French texts
and overlaid them over their physical locations as
a point map with a color ramp to display their
frequency. The Linguistic Landscapes of Beirut
Project (Wrisley, 2016) visualizes the presence
of multilingual written samples within the greater
Beirut area using different geographical visual-
izations to explore different aspects of its data.
Specifically in the context of dialectometric vi-
sualizations, most relevant to this paper, Scherrer
and Stoeckle (2016) provide surface and Voronoi
tessalation maps?> to visualize difference in Swiss
German dialects using data extracted from the
Sprachatlas der deutschen Schweiz. Similarly,
data collected from The Harvard Dialect Survey
(Vaux and Golder, 2003) used point maps to dis-
play phrase variation across American English di-
alects. Katz and Andrews (2013) provide further
visualization of The Harvard Dialect Survey using
heat maps to interpolate data from the survey.

4 Design and Implementation

4.1 Design Considerations

The underlying system we use for dialect identifi-
cation can work with any number of words (single
words, phrases or sentences) and produces proba-
bilities of occurrence in different locales in a one
dimensional vector (with 26 values in our case).
As such, we want an interface that can visualize

*http://dialektkarten.ch/dmviewer
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Figure 1: ADIDA Interface showing the output for a verse from an Egyptian Arabic song in the two display modes:
point map (right) and heat map (left). The subfigures (a), (b) and (c) correspond to different lengths of the verse:
(a) full, (b) first four words, and (c) the first word only.

the probability distribution into a two-dimensional
geographical map space allowing us to easily ob-
serve and debug connections and patterns relat-
ing to dialectal similarities and differences that are
harder to catch in the one dimensional output of
the system classifier. We also want to visualize

aggregations of probabilities of nearby cities that
give a sense of regional presence.

Our setup and needs are different from other di-
alect map visualization efforts discussed in Sec-
tion 3.3 which mostly focus on specific concepts
and their realizations in different forms.



4.2 The ADIDA Interface

The ADIDA interface is publicly available
at https://adida.abudhabi.nyu.edu/.
Figure 1.(a, left side) presents the basic structure
of the interface. At the top there is a box to in-
put the Arabic text to dialect identify. The web
page automatically fills the box with a randomly
selected song verse from a set of well known songs
from different dialects. This is intended to make it
easy for the user to understand the task of the inter-
face. After the user clicks on the Identify button, a
geographical map of the Arab world is shown with
one of two toggleable overlays: (1) a point map
displaying one point per city scaled to the prob-
ability of attribution to the city (default mode),
or (2) a heat map that plots the probabilities as
Gaussians centered on each city with proportional
intensities that aggregate any nearby points at a
given zoom level. The point map only shows
cities that have an attribution probability larger
than 0.1% while the heat map displays Gaussians
for all cities. Both visualization modes exclude
MSA as there is no geographical location that can
represent it. The heat map should not be inter-
preted to make claims about the attribution prob-
abilities of regions between the considered cities.
The falloff of each Gaussian and their aggregates
are used solely as a high-level visualization aid
through allowing aggregation of probabilities of
nearby cities. Additionally, the interface presents
the top five cities with their probabilities, together
with that of MSA and of the remaining probability
mass assigned to Other. We discuss the rest of the
screen shots in Figure 1 in Section 4.4.

4.3 Implementation

Back-end The ADIDA back-end was imple-
mented in Python using F1ask® to create a Web
API wrapper for the dialect ID code. The core di-
alect ID application is based on the best perform-
ing model distinguishing between 26 classes (25
dialects and MSA), described in Salameh et al.
(2018). The application makes use of scikit-
learn (Pedregosa et al., 2011) to learn a Multi-
nomial Naive Bayes (MNB) classifier using the
MADAR corpus (Bouamor et al., 2018), a large-
scale collection of parallel sentences built to cover
the dialects of 25 cities from the Arab World (Ta-
ble 1), in addition to MSA. The model is fed with a
suite of features covering word unigrams and char-

*nttp://flask.pocoo.org/

acter unigrams, bigrams and trigrams weighted
by their Term Frequency-Inverse Document Fre-
quency (TF-IDF) scores, combined with language
model scores.The output of the MNB model is
a set of 26 probability scores referring to the 25
cities and MSA. Results on a test set show that the
model can identify the exact city of a speaker at
an accuracy of 67.9% for sentences with an aver-
age length of 7 words. Salameh et al. (2018) re-
ported on an oracle study showing that accuracy
can reach more than 90% with 16-word inputs.

Front-end The front-end was implemented us-
ing Vue.js> for model view control. We
use Leaflet® with Mapbox’ to provide the
geographical map display. We also use
heatmap. js® to generate the heat maps.

4.4 Example

Figure 1 demonstrates the output of ADIDA for
a verse from an Egyptian Arabic song (Hafez,
1963). The left side of Figure 1 shows the default
point-map mode, while the right side shows the
heat-map mode. In Figure 1.(a), the full verse of
11 words is returns a correct preference for Cairo
at a high degree of confidence (99.5% probability).
In Figure 1.(b) and (c), the length is reduced first to
the first four words, and then to the very first word
only. In all three cases, Cairo is the top choice,
but with decreasing confidence correlating with
the length of the input: 99.5% > 92.5% > 20.4%.
Additionally we see a great diffusion of the prob-
ability score, with the case of one word input re-
sulting with more probability mass in the other 20
cities that are not shown than in the first choice.

5 Conclusion and Future Work

We presented ADIDA, a public online interface for
visualizing a system for fine-grained dialect iden-
tification. This system produces a vector of proba-
bilities indicating the likelihood an input sentence
is from 25 cities and MSA. ADIDA displays the
results as a point map or a heat map overlaid on
top of a geographical map of the Arab World.

In the future, we plan to continue improving our
dialect identification back-end. We also plan to ex-
tend the interface in a number of ways: (a) provide

Shttps://vuejs.org/

*https://leafletys.com/

"https://www.mapbox.com/

Shttps://www.patrick-wied.at/static/
heatmapjs/
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a display mode that better serves color-blind indi-
viduals, (b) provide a feedback mode that can be
used to collect additional data provided by users
with their quality judgments, and (c) gamify the
interface to allow the use of it as a tool to identify
more cities in the Arab World.

The data we use in building the back-end is
made available as part of a shared task on Arabic
fine-grained dialect identification (Bouamor et al.,
2019).
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