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Abstract

Automated extraction methods are widely
available for vowels (Rosenfelder et al., 2014),
but automated methods for coding rhoticity
have lagged far behind. R-fulness versus r-
lessness (in words like park, store, etc.) is a
classic and frequently cited variable (Labov,
1966), but it is still commonly coded by hu-
man analysts rather than automated methods.
Human-coding requires extensive resources
and lacks replicability, making it difficult to
compare large datasets across research groups
(Yaeger-Dror et al., 2008; Heselwood et al.,
2008). Can reliable automated methods be
developed to aid in coding rhoticity? In this
study, we use Neural Networks/Deep Learn-
ing, training our model on 208 Boston-area
speakers.

1 Introduction

Despite advances in automation for phonetic
alignment and extraction of vowel formants, there
is still no reliable automated method for classify-
ing r-dropping, that is, whether a given word is
pronounced with an /t/ in words like park (pahk),
start (staht), and so on. R-dropping, also known
as non-rhotic speech, is an important sociolinguis-
tic variable in modern dialect research. But unfor-
tunately most researchers continue to depend on
human judgments (Nagy and Irwin, 2010; Becker,
2009; Nagy and Roberts, 2004), which is an in-
consistent and time-consuming method that lacks
replicability. Turning to the field of machine learn-
ing, our deep learning approach investigates a new
way to distinguish rhotic versus non-rhotic pro-
nunciations in recorded data. This is the first study
to use neural networks to classify rhotic versus
non-rhotic speech.

Although human-coding requires extensive re-
sources and lacks consistency and replicability
(Yaeger-Dror et al., 2008; Heselwood et al., 2008),
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making it difficult to compare large datasets across
different research groups, it is the only method
we have right now. How soon will computers be
able to quickly and reliably code rhoticity up to
this standard? In terms of other machine learn-
ing approaches, McLarty, Jones, and Hall work
on this challenge using Support Vector Machines
(SVMs) (Mclarty et al., 2018). The present study
uses Neural Networks/Deep Learning, one of the
most effective and fastest-growing approaches in
machine-learning. To our knowledge, this is the
first attempt to use neural networks for automatic
coding of any sociophonetic variable.

This new method was developed using audio
recordings from over 200 New England speakers
from Boston, Maine, and central New Hampshire
(Stanford, forthcoming), and is here compared to
other work on rhoticity (Heselwood et al., 2008;
Mclarty et al., 2018). In what ways can neural
networks be effective tools in assisting the cod-
ing of rhoticity? To what level can they perform
compared to traditional coding methods and other
approaches?

2 Background

The phoneme /r/ has been particularly difficult to
pin down because it may be articulated in different
ways, yet still produce the same acoustic signal.
As most phoneticians have come to agree, F3 is
one of the primary acoustic correlates of rhotic-
ity (Espy-Wilson et al., 2000; Hagiwara, 1995;
Thomas, 2011). The general consensus is that the
F3 measurement for /1/ is lower than that of other
non-rhotic vowels, but reliable standards for cod-
ing rhoticity are lacking.

In this paper, rhoticity will refer to post-vocalic
realizations of the phoneme /r/ which do not occur
before other vowels. For example, rhotic tokens
of interest would include park and father but not
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marry. British phonetician John Wells used the
term “rhotic”, which has been subsequently con-
sidered in the field as one of the most defining
traits of varieties of English (Wells, 1982).

Rhotic and non-rhotic dialects have been widely
studied as they relate to sociolinguistic features of
location, age, gender, and socioeconomic status.
However, we are still reliant on human analysts to
make judgements of rhotic vs. non-rhotic speech,
which can require a lot of time and money. Despite
advances in many areas of computational linguis-
tics, there is still not an accurate way to determine
rhoticity based on acoustic components alone; a
human must judge for themselves whether or not
an /r/ has been dropped. As expected, this is not
highly replicable as different speakers may per-
ceive things differently especially when it comes
to dialects that are not so clear-cut (Yaeger-Dror
et al., 2008). For this reason, an automated way to
determine rhotic/non-rhotic tokens would be espe-
cially helpful in these contexts.

3 Other work

3.1 Heselwood, Plug, and Tickle

Heselwood et al. (2008) extracted formant data
from the spectrograms on the Bark scale — usu-
ally, formant data F2/F3 is reported on the Hertz
scale. The Bark scale more closely correlates to
human perception of sounds, that is, on a logarith-
mic scale rather than absolute. After conversion,
F2 was labeled Z2 and F3 was labeled Z3, and a
series of perceptual experiments were performed
to ascertain rhoticity thresholds. Note that it was
conducted for the purposes of perceptual research
rather than coding applications.

3.2 McLarty, Jones, and Hall

Mclarty et al. (2018) trained a Support Vector Ma-
chine (SVM) on pre-vocalic /r/ and vowels, and
their approach did quite well in classifying prevo-
calic /t/s. They then took this pre-trained model
and applied it to classifying postvocalic /r/ tokens,
which classified 84% as vowels, and 15% as /1/.
As they describe, this is likely because all postvo-
calic segments still contain vowel-like properties;
furthermore, their training set excluded postvo-
calic /r/ so the accuracy is expected to decrease.

However, their method did not perform as well
in comparison to humans. On tokens where there
was no ground truth, humans only agreed with the
SVM classification about 55% of the time.
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4 Methods

In this initial study, we used Boston-area field
recordings of 208 speakers, 100 tokens per
speaker (107 women/101 men, born 1915-1997).
These on-the-street interviews ( 15-20 minutes
each) are typical sociolinguistic recordings in
terms of speech styles (word-list, sentences, read-
ing passage, free speech) and occasional back-
ground noise. We chose to omit free speech be-
cause its token variability between speakers would
present another challenging factor, leaving us
with recordings where participants were reading
(word-list, sentences, passage). Given word tran-
scriptions, we used the Montreal Forced Aligner
(McAuliffe et al., 2017) and modified Praat scripts
(DiCanio, 2014; Koops, 2013) to align and extract
vowel+(r) sequences, e.g., park, short. However,
note that because non-rhotic dialects are less com-
mon, and some of our recordings had background
noise, it could be possible that alignments were
not perfect for all of our tokens.

Two human analysts listened to recordings and
judged each vowel+(r) token as r-ful or r-less. The
human analysts agreed on 89.9% of the tokens,
similar to human agreement elsewhere (Nagy and
Irwin, 2010). Like other studies, we omitted to-
kens when the human analysts disagreed ( 10%).
So overall, 1700 tokens were discarded because of
speaker disagreement, and 6500 rhotic tokens and
5300 non-rhotic tokens remained for analysis.

4.1 Preliminary Investigations

In early testing, we attempted classification into r-
ful, r-less, and unknown, but this did not provide
strong results so we simplified to a binary classi-
fication. From the beginning of this project, we
knew we wanted to use a machine learning ap-
proach, so before using neural networks we tried
some easier classifiers. However, we did not get
encouraging results. For example, our Random
Forest Classifier only gave about 54% accuracy.
When we tried simpler neural networks, these
gave much more promising results to we chose to
pursue this method.

4.2 Data Extraction and Model Specifications

Following standard methods of Automatic Speech
Recognition, we converted the audio to 12 Mel-
Frequency-Cepstral-Coefficients (MFCCs). We
used the 12 MFCCs, similar to Mclarty et al.. For
each vowel+(r) sequence, we normalized across



the length to extract 100 time-points per token, as
shown in figure 1. In the training, MFCCs were
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Figure 1: Model architecture.

more effective than traditional sociophonetic /r/
correlates F2 and F3 (Thomas, 2011). These sam-
ples were used in the model architecture as shown
in figure 1, where there are 100 samples for each
vowel + /1/ sequence. The Gated Recurrent Unit
is shown in more detail in figure 2, where we can
see the input from the previous timestep and layer,
and how this is filtered through gates using tanh
and sigmoid activation functions.

What is a Gated Recurrent Unit?
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Figure 2: Gated Recurrent Unit (GRU) architecture.

Importantly, no work on coding rhoticity has
made use of Recurrent Neural Networks, and we
believe our methods are a promising step. We
used Gated Recurrent Units (Cho et al., 2014;
Chung et al., 2014) to train our system to classify
vowel+(r) tokens as r-ful or r-less. Following stan-
dard methods in machine-learning, we split the
data in order to train with 80% of the data and test
with 20%.

We chose hyperparameters based on a grid
search using 3-fold cross validation (only 3 due
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to the small dataset). We saved the test set to val-
idate results. The hidden layer size was 50 nodes,
and dense layer size was 200 nodes. For regular-
ization we used a kernel L2 regularization for the
dense layer and we used both activation L2 and
Recurrent L2 for the GRU layer. All of the alphas
for this regularization are 0.01. The optimization
method was RMSprop, and the learning rate was
0.001.

5 Results

In figure 3, we see the Normalized Confusion Ma-
trix, which summarizes our results by lining up
true labels and predicted labels for our rhotic and
non-rhotic tokens. We consider this binary classi-
fication either rhotic (positive) or non-rhotic (neg-
ative). In this way we can see the proportion of
true positives (predicted to be rhotic and indeed
truly rhotic), false positive (predicted to be rhotic
but actually non-rhotic), true negative (predicted
to be non-rhotic and actually non-rhotic), and false
negative (predicted to be non-rhotic and actually
rhotic). In deciding which model to use, we tried a
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Figure 3: Normalized Confusion Matrix.

few different configurations. We used the sampled
MEFCC:s (as described earlier, figure 1) as well as
Bark measurements that were extracted also at 100
time-points across the vowel. Because our MFCC
data is multi-dimensional and time-dependent, we
wanted to see how a Convolutional Neural Net-
work would perform (table 1), but it turned out not
to be as high in performance as our earlier model.

Figure 4 shows the Receiver Operating Charac-
teristic (ROC) for our model (created using scikit-
learn), which is fairly good by machine learning
standards. The Area Under the Curve (AUC, as
noted in Table 1) is 0.892, and as evident from the



graph, is much closer to 1. Our system had 81.1%
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Figure 4: Receiver Operating Characteristic.

accuracy with the human analysts in judging to-
kens as r-less or r-ful, scoring 0.829 for F-measure.

Accuracy | Precision | Recall | F1 AUC
Gru-Mrcc | 0.811 0.829 | 0.830 | 0.829 | 0.892
GRU-Bark 0.806 | 0.844 | 0.856 | 0.850 | 0.869
onN-mMrce | 0.746 | 0.796 | 0.815 | 0.805 | 0.808

Table 1: Metrics showing the performance of different
models — our top performing model was using GRUs
with MFCC:s as input (as described previously).

We also used the Heselwood et al. approach
(section 3.1) of classifying front or back vowels to
see how accurately it would perform on the same
test dataset. This classification gave an average
speaker accuracy of 63.3% and an average token
accuracy of 62.1% (Table 2), much lower than our
best model’s overall accuracy (i.e. average across
all tokens) of 81.1% (Table 1).

63.3%
62.1%

Average Speaker Accuracy
Average Token Accuracy

Table 2: Heselwood et al. approach on test dataset (us-
ing Bark thresholds Z2 and Z3)

6 Discussion

The initial results of this study are promising. Our
results are quite strong, as shown by the metrics
in Table 1. When testing the Heselwood et al. ap-
proach (Table 2), it only predicted correctly ap-
proximately 60% of the time; our model performs
significantly better, at an accuracy of 81.1% (Table
1). It seems that we are also slightly better at pre-
dicting rhotic tokens than non-rhotic (Figure 3),
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which likely has to do with the fact that we have
more rhotic tokens in total.

We aimed to reach human levels — considering
that analyst agreement is 89.9% for our dataset (as
mentioned above), our accuracy of 81.1% is quite
good. However, these numbers are not strictly
comparable as we discarded tokens that proved
difficult for human analysts.

In future development of this method, we want
to consider any sources of error on our part.
For example, some audio and text files could be
misaligned so we might consider hand-correcting
these alignments. However, the nature of the neu-
ral network could correct for this in that it learns to
forget irrelevant or noisy data. By gathering more
data, we would expect that our accuracy would im-
prove and eventually reach a plateau where addi-
tional speakers would not affect anything.

Additionally, a study that involves cross-corpus
analysis could provide greater insight into how
this model might be applicable on a larger scale,
and how well our model actually performs. Fur-
thermore, if we had 3 analysts rather than 2, we
could have used a majority vote for classifying to-
kens, and would not have to discard tokens where
rhoticity was ambiguous.

A shortcoming of this study is that it only in-
volves speech that is elicited through reading —
ideally future studies would involve free speech in
order to use more natural speech.

R-dropping is a crucial sociolinguistic variable
for English dialect research in the US Northeast,
Great Britain, Australia, New Zealand, Singapore,
and other locations. Our neural network model
takes a significant step toward automation of this
key variable. In the future, we will continue op-
timizing and improving our model. Other groups
have studied automated methods for coding soci-
olinguistic variables (Yuan and Liberman, 2011;
Bailey, 2016), and there are great ideas to be
found in these works. When automated methods
for rhoticity reach the accuracy level of humans,
along with consistency and full replicability, this
will open the floodgates to large amounts of /r/
data and greatly expand sociolinguistic knowledge
of dialect variation around the world, efficiently
allowing studies to be replicated across research
groups.
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