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Abstract

This paper presents a new approach to generat-
ing English text from Abstract Meaning Rep-
resentation (AMR). In contrast to the neural
and statistical MT approaches used in other
AMR generation systems, this one is largely
rule-based, supplemented only by a language
model and simple statistical linearization mod-
els, allowing for more control over the out-
put. We also address the difficulties of auto-
matically evaluating AMR generation systems
and the problems with BLEU for this task. We
compare automatic metrics to human evalua-
tions and show that while METEOR and TER
arguably reflect human judgments better than
BLEU, further research into suitable evalua-
tion metrics is needed.

1 Introduction

Abstract Meaning Representation, or AMR, is a
representation of a sentence as a rooted, labeled
graph. It provides a representation of the sentence’s
semantics while abstracting away from morphosyn-
tactic details such as tense, number, word order,
and part of speech (Banarescu et al., 2013).

Because of these abstractions, it can be very
difficult to generate from an AMR back to a flu-
ent English sentence which preserves the original
meaning. It is also difficult to accurately evalu-
ate the quality of generation results, since there is
typically only one reference sentence available to
compare results to, but one of the basic principles
of AMR is the fact that the same AMR is used to
represent many possible sentences; for example,
“he described her as a genius”, “his description of
her: genius”, and “she was a genius, according to
his description” would all correspond to the same
AMR (Banarescu et al., 2013).

The following represents an AMR graph for
the sentence “A key European arms control treaty
must be maintained.”:

(o / obligate-01

:ARG2 (m / maintain-01

:ARG1 (t / treaty

:ARG0-of (c2 / control-01

:ARG1 (a / arms))

:ARG1-of (k / key-02)

:mod (c / continent

:wiki "Europe"

:name (n / name

:op1 "Europe")))))

This example demonstrates several of the
challenges faced by an AMR generation system.
These include properly addressing constructions
that do not correspond closely to the words
in the reference, such as the use of the frame
obligate-01 to express ‘must’ and the specific
construction used for named entities such as
‘Europe’, as well as word order and the passive
construction ‘be maintained’. In fact, this system
successfully addresses some but not all of these
challenges, producing the output “Must maintain
Europe key arms control treaty .”

While most previous work in AMR generation
has used statistical and neural techniques, the cur-
rent work approaches the task with a combination
of rules and statistical methods; the rules are in-
tended to constrain possibilities, particularly the
possible realizations of concepts and which infor-
mation from the AMR is expressed. This allows for
greater control over the output; even if the overall
results do not score as well, on average, as those of
other approaches, this approach has the potential
to minimize the chances of significant adequacy
errors such as omission of key information or ad-
dition of information not contained in the AMR,
which are possible in machine-learning-based sys-
tems. Another advantage of a partially rule-based
approach is that it can work without large amounts
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of AMR-annotated data; it could thus be adapted to
a new language or an altered AMR scheme in situa-
tions where there is insufficient data for a machine-
learning-based system to achieve satisfactory per-
formance.

2 Related Work

2.1 AMR Generation Systems

Flanigan et al. (2016) introduced the first AMR gen-
erator (JAMR), which transforms an AMR graph
into a tree before using a weighted tree-to-string
transducer to generate the string. While most of its
rules are automatically extracted, these are supple-
mented with handwritten rules for some phenom-
ena including dates, conjunctions, and some spe-
cial concepts. An ablation experiment showed that
these handwritten rules contributed significantly to
the results.

AMR generation was included as a shared task
at SemEval-2017 (May and Priyadarshi, 2017).
The winner of the task, as determined by human
judgments, was the RIGOTRIO system (Gruzitis
et al., 2017), which uses handcrafted rules to con-
vert AMRs to Abstract Syntax Trees, which are
then realized as strings using existing Grammatical
Framework resources. However, this approach has
limited coverage, and is only used for about 12%
of sentences, while the system defaults to using
JAMR for other sentences.

Other submissions to the shared task included
FORGe, which uses graph transducers (Mille et al.,
2017); Sheffield, which treats AMR generation as
an inverse of transition-based parsing, transform-
ing the AMR graph into a syntactic dependency
tree before realizing it as a sentence (Lampouras
and Vlachos, 2017); and ISI, which uses phrase-
based machine translation (PBMT) methods (Pour-
damghani et al., 2016).

Beyond the shared task, other work in AMR
generation has approached the task as a Traveling
Salesman Problem (Song et al., 2016), with syn-
chronous node replacement grammar (Song et al.,
2017), and using a transition-based approach to
transform the AMR into a syntactic dependency
tree (Schick, 2017). Castro Ferreira et al. (2017)
compare the effect of different types of preprocess-
ing on the performance of AMR generation systems
based on PBMT and NMT.

The best results to date have been obtained
with neural methods, which excel when the small
amount of manually-annotated training data is aug-

mented with millions of unlabeled sentences which
have been automatically parsed. Konstas et al.
(2017) first used this approach to train a sequence-
to-sequence model, and and Song et al. (2018) later
adapted it to a graph-to-sequence model.

2.2 Evaluation

Most previous work in AMR generation has re-
ported results exclusively using BLEU scores (Pa-
pineni et al., 2002), with the original sentence as
the only reference. A notable exception is the five
systems included in the SemEval-2017 shared task,
which were additionally compared by human judg-
ments. The human evaluations were shown not
to correlate well with BLEU scores, raising ques-
tions about the suitability of the metric for this
task (May and Priyadarshi, 2017). In particular,
BLEU as used for AMR generation is intuitively
inappropriate because it strictly measures similar-
ity to one reference sentence, while by design, a
single AMR can correspond to many different En-
glish sentences. Thus, BLEU is in practice more
of a measure of how closely a system can replicate
the exact wording used in the original sentence
than of how adequately and fluently it expresses
the meaning of the AMR.

Ideally, evaluation of AMR generation would be
performed using human judgments or task-based
evaluations; unfortunately, however, it is some-
times necessary to rely on the practicality of auto-
matic metrics. We thus follow Castro Ferreira et al.
(2017) in reporting two additional automatic met-
rics alongside BLEU, which may provide slightly
more insight into system performance. The first is
METEOR, which has been shown to correlate more
strongly with human judgments of machine transla-
tion quality than BLEU does (Lavie and Agarwal,
2007; Denkowski and Lavie, 2014). It is a par-
ticularly appealing alternative to BLEU for AMR
generation because, instead of only giving credit to
exact word matches, METEOR also allows match-
ing based on stems, synonyms, and paraphrases.
This mitigates the issues associated with having a
single reference sentence in AMR, because it does
not penalize systems as harshly for not correctly
guessing the forms of morphological and syntactic
variants that are usually not specified within the
AMR. The final evaluation metric used is Trans-
lation Edit Rate (TER), which has been shown to
require only one reference sentence in order to
correlate as well with human judgments for ma-
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chine translation as BLEU does with four refer-
ences (Snover et al., 2006). This robustness against
lack of extra references makes it, too, likely to
be better suited to the AMR generation task than
BLEU is.

These metrics were all designed for evaluation
of machine translation; it may also be useful in
the future to explore evaluating AMR generation
with metrics from other NLG-related tasks, such as
referenceless measures developed for grammatical
error correction (e.g. Napoles et al., 2016; Choshen
and Abend, 2018).

3 Methods

The system introduced in this paper uses rules to
generate realization hypotheses, which are ranked
and combined by statistical methods.

We used the LDC2015E86 version of the AMR
corpus for training the linearization models, tuning
hyperparameters, and analyzing errors.

3.1 Algorithm

The system uses an algorithm based on cube prun-
ing (Huang and Chiang, 2007). Hypotheses are
generated by recursing down the AMR graph, ig-
noring subsequent mentions of variables that have
already been processed (reentrancies) and therefore
treating the AMR as a tree. The roles :wiki and
:mode are also ignored: :wiki provides extra in-
formation about named entities that does not need
to be expressed in the English realization. The
:mode relation could be used in future versions
of the system to generate particular sentence types
such as questions and imperatives; however, this
syntactic manipulation would require more compli-
cated rules than are used in this algorithm, and so
the relation is ignored for now.

At each node, a priority queue of scored hypothe-
ses is generated.

In particular, at each leaf node, one or more
hypotheses are created for the realization of the
node, according to the process described in 3.2,
and each of these partial hypotheses is scored by a
language model.

At each non-terminal node, priority queues are
recursively generated containing hypotheses for the
realizations of each of the node’s children, as well
as one for the node itself. Each of these is pri-
oritized by language model score. An additional
priority queue represents possible linearizations of
the current node and each of its children, scored as

discussed in 3.4. Thus, for a node with n children,
a total of n+2 priority queues are created, simu-
lating an n+2-dimensional hypercube. k nodes of
the cube are then expanded and rescored by the
language model.

When the root node of the AMR is reached, a
period is added to the end and the k hypotheses are
rescored by the language model, this time treated
as a complete sentence. The realization associated
with the best-scored hypothesis is postprocessed to
capitalize the first letter, then returned.

3.2 Realization1

For each node, one or more possible strings are
generated to realize the node’s associated concept
or constant and, in some cases, its relation. The
system uses specific rules for some special cases,
and more generalized rules for most nodes.

Special Cases: Special rules are used for a few
constructions. In particular, the constructions for
named entities and for people with relationships
and roles in organizations (have-rel-role-91
and have-org-role-91) are represented in
AMR with some concepts that do not typically
align with words in the text; rules prevent these and
certain other AMR-specific concepts from being
realized.

In addition, a ‘-’ representing negative polarity
is realized as ‘not’ or as one of several negative con-
tractions; numbers in ordinal or month-name con-
structions are realized accordingly, and pronouns
are realized as their possessive form in possessive
constructions and may be realized as their subjec-
tive or objective forms otherwise. Finally, a handful
of concepts whose names don’t correspond to the
English strings they typically represent are mapped
to more likely English translations. These repre-
sent some conjunctions, modals, and other relation-
ships that are associated with particular concepts
in AMR; for example, contrast-01 is realized
as ‘but’ and obligate-01 as ‘can’.

Frames: Frames not dealt with in the special
rules are likely to correspond to verbs, or occasion-
ally adjectives, adverbs, and verb-derived nouns,
and are treated as such. These are represented
in English as they appear in the concept name,
with frame numbers removed and words joined by
spaces rather than hyphens. In addition to this base

1See the code, available at https://github.com/
esmanning/emmAMR, for full details on the realization
rules that could not be explained exhaustively due to space
constraints.

https://github.com/esmanning/emmAMR
https://github.com/esmanning/emmAMR
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concept name, several variations are generated, cor-
responding to different possible verbal, adjectival,
and nominal forms. Verbal and adjectival forms are
created by combining optional auxiliaries with verb
forms such as those ending in ‘-ing’, ‘-s’, and ‘-
ed’, (with several variations depending on the base
form, such as removing a final ‘e’ before adding
an ending when appropriate). Nominal variants
are similarly created with variations on the suffixes
‘-ment’ and ‘-tion’, and adverbs with ‘-ly’.

In many cases this generates forms that are im-
plausible; this is not a problem because they are
ranked by language model score, so forms that
are unattested or very infrequent in the language
model’s training corpus receive poor scores and
will be pruned out at a later stage. Nevertheless,
this strategy inevitably misses some valid forms,
such as those of many irregular verbs; this could be
addressed in the future by integrating external re-
sources that can produce inflections and derivations
of a given word.

Non-Frame Concepts: Remaining non-frame
concepts are given a treatment similar to the frames
discussed above, except that they are assumed more
likely to be nouns or elements of noun phrases
(such as adjectives), and are given corresponding
realizations. They may also represent other parts
of speech, such as adverbs; in these cases, again,
the language model can rule out any implausible
forms that are spuriously generated.

The plain concept name is formed by simply re-
placing any hyphens in the original concept name
with spaces, although concepts at this stage are usu-
ally already a single word. The hypotheses created
are for the plain concept name, as well as variations
which append ‘the’, ‘a’, or ‘an’ before the name or
plural suffix ‘s’ at its end, and a hypothesis which
adds both ‘the’ and the plural ‘s’.

Relations: In addition to the variable realiza-
tions, a handful of relations are realized by strings
attached before or after the realization of their asso-
ciated variable. These are given in Table 1. Many
of these represent prepositions, including the gen-
eral :prep-X relation, which is realized as the
given preposition.

3.3 Language Model

A 5-gram language model was created to score hy-
pothesis strings. It was trained on the English Gi-
gaword Fifth Edition Corpus (LDC2011T07) using
KenLM (Heafield, 2011; Heafield et al., 2013). For

Concept Realization Type
:prep-X X prefix (+space)
:accompanier with prefix (+ space)
:destination to prefix (+ space)
:purpose to prefix (+ space)
:condition if prefix (+ space)
:compared-to than prefix (+ space)
:poss ’s suffix

of prefix (+space)
:domain is suffix (+ space)
:location in prefix (+ space)

at prefix (+ space)
by prefix (+ space)

Table 1: Realizations for relations.

time and space efficiency, the model was pruned:
singleton 2-grams were removed, as well as 3-, 4-,
and 5-grams that appear 3 or fewer times.

3.4 Linearization

The linearization model contains two components,
the pair-order model and the coreness model. These
may be used in combination, in which case the
scores they assign are averaged, or either one may
be used alone. There is also a simpler baseline,
described below, which is used by default when
both models are disabled. Each of the models is
trained on the alignments provided with the training
data.

When non-baseline linearization scoring is used,
all permutations of a node and its children are
scored, assuming the node has no more than 5 chil-
dren (producing at most 6! = 720 combinations
to score). This covers the vast majority of cases,
but on the occasion that a node has more children,
only the three orderings generated by the baseline
linearization are considered. Unlike baseline lin-
earization, these three candidates are still scored
by the model(s) rather than being assigned identi-
cal scores. This limiting of possibilities serves a
practical purpose in limiting the maximum num-
ber of permutations that must be calculated and
scored; however, it is likely that it does not hurt
performance, since nodes with a large number of
children often represent lists, where preserving the
original order of the children is likely to match the
original sentence.

Pair-Order Model: The pair-order model is de-
signed to capture the intuition that particular rela-
tions are likely to be realized to either the left or the
right of other particular relations, or of their par-
ent, represented here as the special relation ROOT.
For example, :ARG0, which usually represents an
agent, occurs before its ROOT 77% of the time,
while :ARG1, usually a patient, precedes its ROOT
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in only 25% of cases.

The model is trained by counting ordered pairs
of relations when it can be determined that one
is realized before the other based on the provided
alignments. Counts are then normalized into the
probability of a particular order for any pair of
relations, using add-1 smoothing to avoid assign-
ing probabilities of 0 to unattested orderings. The
model scores a hypothesized ordering by combin-
ing the scores of each pair of relations in the order-
ing.

Focusing only on relations allows for a small,
simple model and avoids data sparseness; however,
there are situations where a lexicalized version of
this model may provide useful information that is
lost here, such as the fact that some frames are
more likely than others to have :ARG1 realized
to their left. A version of this model that could
capture such information is left for future work.

Coreness Model: The second component to the
linearization model is the coreness model, which at-
tempts to capture the intuition that in addition to the
left-to-right ordering represented by the pair-order
model, some relations are more ‘core’ and are more
likely to be realized closer to their parent than oth-
ers. For example, whether :ARG1 appears before
or after its parent, it is likely to be close to it, while
a relation like :time or :purpose will usually
appear farther away, either very early or very late
in a sentence. Thus, the model stores a single score
for each relation representing its average absolute
distance from the root, as a proportional distance
relative to other children. A hypothesis’s score is
penalized based on the difference between each
child’s observed and expected distance from the
root.

Baseline Linearization: When neither of the
statistical linearization models are available, only
three orderings are considered. The children are
kept in the order they appear in the penman rep-
resentation of the AMR, with the parent inserted
either initially, penultimately, or finally. The penul-
timate option is considered because this is typically
the appropriate place when the parent is a conjunc-
tion like ‘and’. This is particularly useful in cases
where the baseline is used as a default due to a node
having a large number of children, since these often
represent a long list of conjuncts. These hypothe-
ses are given equal scores, meaning that all will
be combined with realization hypotheses to cre-
ate new hypotheses, and only the language model

determines which are best.

4 Experiments

4.1 System Evaluation

First, several variations on this system with dif-
ferent hyperparameters were tested on the 1368
AMRs in the dev data. As discussed in 3.4, the
linearization model contains two separate compo-
nents, each of which is optional, resulting in four
different linearization configurations. The prun-
ing parameter k was tested at values of 5, 10, and
100. In total, 12 different versions of the system
were tested on dev data. Based on these results, an
optimal version of the system was chosen, which
was then evaluated quantitatively on test data with
automatic metrics. This system’s output on dev
data was also evaluated qualitatively by reviewing
a small sample of its sentences, and quantitatively
by comparing the number of tokens and frequency
of parts of speech to those of the references.

4.2 Evaluation Metrics for AMR Generation

As discussed in 2.2, AMR Generation is usually
evaluated only with BLEU, but one shared task
obtained human judgments of five systems which
were shown not to correlate well with BLEU scores
(May and Priyadarshi, 2017). We tested the sys-
tem outputs from this task with BLEU2 as well as
METEOR3 and TER4 to determine whether these
metrics would correspond more closely to human
judgments; results are presented and discussed in
5.5.

5 Results

5.1 Intra-System Variation

Table 2 shows the performance of each variation of
the system on the dev data.

Systems using the pair-order model for lineariza-
tion always perform better than their counterparts
without it. While the coreness model’s results are
more mixed, it seems overall to hurt more than it
helps. Increasing the stack size k always improved
BLEU and METEOR scores, and doesn’t hurt TER
scores except in the +P+C condition, where the

2Using the multi-bleu-detok.perl script provided with the
MOSES toolkit (Koehn et al., 2007)

3Using version 1.5, downloaded from http://www.cs.
cmu.edu/˜alavie/METEOR/

4Downloaded from http://www.cs.umd.edu/
˜snover/tercom/

http://www.cs.cmu.edu/~alavie/METEOR/
http://www.cs.cmu.edu/~alavie/METEOR/
http://www.cs.umd.edu/~snover/tercom/
http://www.cs.umd.edu/~snover/tercom/
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Model BLEU METEOR TER
+P+C,k=5 7.51 27.9 76.1
+P+C,k=10 8.12 28.1 75.9
+P+C,k=100 8.8 28.3 76.1
+P-C,k=5 7.76 28.0 76.0
+P-C,k=10 8.13 28.1 76.0
+P-C,k=100 9.03 28.4 76.0
-P+C,k=5 6.18 26.9 81.4
-P+C,k=10 6.48 27.0 81.4
-P+C,k=100 7.70 27.7 80.4
-P-C,k=5 5.99 26.6 79.1
-P-C,k=10 6.87 27.0 78.3
-P-C,k=100 7.71 27.4 77.9

Table 2: System performance on dev data with vari-
ous hyperparameter combinations. ‘+P’ is used to des-
ignate systems using the pair-order model and ‘-P’ to
designate those without it; similarly, ‘+C’ and ‘-C’ are
used to designate whether or not the coreness model
was used. In the ‘-P-C’ configuration, baseline lin-
earization is used. The best score for each metric is
shown in bold. The shaded row represents the configu-
ration of the system selected for further evaluation.

k=10 condition achieves a slightly better TER score
than either k=5 or k=100.

Because it performs best according to BLEU
and METEOR, and achieves barely short of its best
TER score, the system using only the pair-order
linearization model and k=100 was selected as the
best version. These are the hyperparameter values
that are used for the following quantitative and
qualitative analyses.

5.2 Comparison to Other Systems

Table 3 summarizes the best BLEU and (when
available) METEOR and TER scores reported for
this system and various others. This table excludes
the results of participants in the SemEval shared
task, which were evaluated on a separate test set
and whose scores are given below in Table 6.

The best BLEU score of this system is substan-
tially lower than that of others. However, the ME-
TEOR score does appear a little more competitive,
outperforming Castro Ferreira et al.’s NMT system
by a point, and it is currently unknown how most
other system’s METEOR and TER scores compare
with this one.

While automatic metrics are not ideal for com-
paring systems, they do seem to indicate that this
system is not currently competitive with state-of-
the-art systems. While it could certainly be im-
proved in many ways given more time, this may
indicate that rules augmented only with limited sta-
tistical models are not as well-suited to this task as
other approaches, particularly the state-of-the-art
neural models (Konstas et al., 2017; Song et al.,

2018). Still, as discussed in Section 1, the partially
rule-based approach has potential to be useful in
situations where greater control over output is nec-
essary or where training data is particularly limited.

5.3 Error Analysis

The system’s output on a random sample of 25
sentences from the dev data was analyzed. Sen-
tences were subjectively coded for quality into
four categories: ‘excellent’, ‘good’, ‘fair’, and
‘poor’. Descriptions, counts, and examples of each
of these categories are given in Table 4. Crucially,
unlike the automatic evaluations, this evaluation
was based on how fluently and adequately the sys-
tem output expresses the meaning of the AMR,
not on how closely it matches the reference string.
For example, a reference-based automatic metric
would count ‘Kinkel’ in the third example as in-
correct, because it does not match the misspelling
‘Kinkerl’ in the reference set; this evaluation, based
on the AMR itself, recognizes the system’s output
of ‘Kinkel’ as correct.

Most sentences, especially those classified as fair
and poor, include both linearization and realization
errors. An example of a linearization error is in the
fourth example in the table, where the linearization
in the system output incorrectly implies that jcboy
was the speaker, rather than the addressee. How-
ever, linearization that differs from the reference
is not always considered incorrect: in the second
example, the system places the ‘even if...’ clause
before the main clause of the sentence, which is a
valid ordering even though it differs from that of
the reference.

Further insight into the limitations of this system
can be gained by looking at the lengths of output
sentences and the frequency of different parts of
speech. To analyze these discrepancies, the sys-
tem output and references were both automatically
tagged, using the NLTK tagger (Bird et al., 2009)
and part of speech tags from the Penn Treebank
(Santorini, 1990). Table 5 summarizes the counts
of each part-of-speech tag found in system output
and in the references.

One striking finding is that the system output
has noticeably fewer tokens in total than the ref-
erence. Part of this is due to punctuation: while
the system output contains more periods than the
references due to adding a period to every sentence,
it has no rules to output other punctuation such as
commas, colons, parentheses, and quotation marks.
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LDC2014T12 LDC2015E86 LDC2016E25

System BLEU METEOR TER System BLEU METEOR TER System BLEU METEOR TER

Pourdamghani (2016) 26.9 - - Flanigan (2016) 22.1 - - Castro Ferreira (2017)5

Schick (2017) 28.9 - - Song (2016) 22.4 - - -NMT 18.9 26.6 66.2
Song (2017) 25.2 - - -PBMT 26.8 34.7 59.4

Konstas (2017) 33.8 - -
Konstas (2017)6 31.1 37.5 46.9

Song (2018) 33.0 - -

This System 8.7 28.2 76.0 This System 8.6 28.0 76.2

Table 3: Comparison of test scores achieved by this system and others.

Further investigation into adding punctuation might
not only improve scores from automatic metrics,
but also increase readability of more complicated
sentences if done correctly.

Beyond punctuation, the system under-produces
many types of function words, particularly deter-
miners (DT), existentials (EX), prepositions and
subordinating conjunctions (IN), possessives (POS,
PRP$), the word ‘to’ (TO), and all types of WH-
words (WDT, WP, WP$, WRB). In the nominal
domain, the system realizes too many nouns as
singular rather than plural for both common and
proper nouns, which is probably due to a combina-
tion of some irregular plurals being missed by the
realization rules, and the language model perhaps
preferring singular forms more than is appropriate
for these reference sentences. In the verbal domain,
the system outputs more ‘-ing’ forms (VBG) than
are found in the references, and under-produces all
other verb types, especially base forms (VB). This
last is somewhat surprising, since the base form
should always be accurately generated as an option
by the realization rules; it is likely that its prob-
ability is underestimated by the language model,
perhaps because the infinitival ‘to’ is not usually
generated in hypotheses.

5.4 Future Work
The prevalence of linearization errors in the output
sampled indicates that improving the linearization
models would substantially improve system perfor-
mance. As mentioned in 3.4, a lexicalized version
of the linearization model would likely improve
performance, especially if the data sparseness is
mitigated by using augmented training data, similar
to the approaches used by Konstas et al. (2017) and

5Castro Ferreira et al. report results for 8 versions of each
of system (NMT and PBMT), using different combinations of
preprocessing steps. For each system, we select the version
that performs best according to two of the three metrics to
represent here.

6Data provided to me by Konstas in personal communica-
tion; scores determined by the same tests used for my system’s
data.

Song et al. (2018). Additionally, it may help to
base the linearization models on the alignments of
Szubert et al. (2018), which provide more complete
coverage of the AMRs.

Realization errors mostly arise from the fact that
the restrictive realization rules do not allow for all
valid possibilities; for example, there is no rule to
allow relative clauses such as the ‘the ones who...’
construction used in the reference of the second
example sentence. The analysis of part of speech
and overall token frequency also shows the need for
more realization options involving function words,
such as prepositions, which are currently not pro-
duced in many situations where they should be.
These problems can be improved by the addition of
more realization options to the handcrafted rules,
although this is a time-consuming process.

5.5 Evaluation Metrics

In the SemEval shared task, only BLEU scores
were originally reported alongside measures of hu-
man rankings. To explore how well each of the
three automatic metrics used in this paper correlate
with human judgments, we tested the output of all
the systems that participated in the task with each
of these metrics. Table 6 shows these new results,
alongside the results of the human rankings.

All four measures agree that RIGOTRIO and
CMU are the best two systems out of the task par-
ticipants, but METEOR and TER both agree with
humans in rating RIGOTRIO highest, while CMU
obtains a higher BLEU score. This provides some
evidence for the claim that METEOR and TER may
be better suited than BLEU to evaluating AMR gen-
eration, especially when it comes to distinguishing
among stronger systems. However, none of the
metrics fully match the ranking given by humans—
in particular, while humans considered FORGe the
third-best system, all of the automatic metrics rank
it lower. Thus, while these alternatives may be an
improvement over BLEU, more research is nec-
essary to determine a more accurate way to auto-
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Excellent (1): Human-like quality; fluently presents all
meaning
(t / tool

:mod (m / machine)
:purpose (s / set-up-03

:ARG1 (f2 / facility)
:location-of (f / fabricate-01)))

REF: Machine Tools for setting up a fabrication facility.
SYS: Machine tools to set up fabrication facility .
Good (5): Adequately and intelligibly expresses all or
nearly all meaning with minor disfluencies
(m / multi-sentence

:snt1 (s / suffer-01
:ARG0 (p / person
:mod (o2 / ordinary)))

:snt2 (f / fish
:ARG1-of (s2 / salt-01)
:mod (s3 / still)
:domain f2
:concession (e / even-if
:op1 (t / turn-01

:ARG1 (b / body
:poss (f2 / fish
:ARG1-of (s4 / salt-01)))

:direction (o3 / over)))))

REF: the ones who are suffering are the ordinary people:
even if the body of a salted fish is turned over, it is still a
salted fish ...
SYS: An ordinary person suffer . salted fish is still salted
fish even if the body turns over .
Fair (6): Meaning is partially intelligible
(s / say-01

:ARG0 (p / person :wiki "Klaus_Kinkel"
:name (n2 / name :op1 "Kinkel"))

:ARG1 (a / and
:op1 (c / correct-02
:ARG1 (t / thing

:ARG1-of (d / decide-01
:ARG0 (m / military
:wiki "NATO"
:name (n3 / name
:op1 "NATO")))))

:op2 (n4 / need-01
:ARG1 t)))

REF: Kinkerl said that NATO ’s decision was “ correct
and necessary ” .
SYS: Said Kinkel NATO decided things correctly and
needs .
Poor (13): Meaning is barely or not at all intelligible
(s / say-01

:ARG1 (c / correct-02
:ARG1 (y / you))

:ARG2 (p / person :wiki -
:name (n / name :op1 "jcboy")))

REF: @jcboy, You are correct.
SYS: You correct jcboy said .

Table 4: Description and example for each of the four
quality categories.

matically evaluate AMR generation. In particular,
due to the limitations of reference-based evalua-
tion, we plan to focus on developing referenceless
automatic metrics in future work.

Tag System Ref Tag System Ref
$ 2 22 NNS 1847 2079
“ 0 57 PDT 4 5
” 0 42 POS 253 71
( 0 106 PRP 345 541
) 0 105 PRP$ 22 129
, 1 823 RB 887 876
. 1431 1230 RBR 53 28
: 0 255 RBS 25 2
CC 859 856 RP 81 63
CD 853 777 SYM 0 1
DT 820 2663 TO 155 663
EX 0 50 UH 3 9
FW 7 5 VB 451 910
IN 1425 3215 VBD 887 1029
JJ 1806 2144 VBG 838 521
JJR 73 84 VBN 427 656
JJS 38 55 VBP 431 508
LS 0 1 VBZ 430 569
MD 200 312 WDT 10 110
NN 4399 3883 WP 2 86
NNP 3131 2931 WP$ 0 12
NNPS 65 83 WRB 30 80

Table 5: Comparison of counts of part-of-speech tags
in system output vs. references.

System Trueskill BLEU7 METEOR TER
RIGOTRIO 1.03 18.6 32.3 80.1
CMU 0.819 19.0 31.4 82.4
FORGe 0.458 2.8 20.0 92.0
ISI -1.172 10.9 28.9 98.7
Sheffield -2.132 1.2 20.0 87.5
This System - 6.7 28.7 79.4

Table 6: Comparison of evaluation metrics to Trueskill
(measure of human rankings) for shared task data and
systems. This system’s performance on the same data
according to automatic metrics is provided for compar-
ison.

6 Conclusion

Given that the relatively small amount of available
data and the difficulty of the task have made it diffi-
cult for statistical and neural approaches to achieve
truly satisfactory results in AMR generation, we
hypothesized that a partially rule-based system,
combined with some simple statistical methods,
might be able to effectively harness human linguis-
tic knowledge to achieve comparable results.

Judging by automatic metrics, this method does
not seem able to compete well with state-of-the-
art systems—although this system’s scores could
doubtless be improved somewhat with further de-
velopment, especially if the primary goal were to
optimize toward metrics like BLEU by providing
more realization candidates that might better match
the reference sentence’s n-grams. However, we
also argue that BLEU scores are a poor metric for

7These numbers differ slightly from the previously re-
ported BLEU scores, presumably due to differences in BLEU
configuration, but the ranking of systems is the same.
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the AMR generation task. While METEOR and
TER appear to do slightly better than BLEU at least
at distinguishing among better-performing systems,
none of these metrics fully reflect human rankings,
making it difficult to fully determine how this sys-
tem compares to others without human evaluation.

As research moves forward in AMR generation,
it is essential to ensure that we are truly moving in
a direction that will help us generate English real-
izations that both adequately and fluently express
the meaning represented in an AMR. It is clear that
the automatic metrics that have been used for this
task fail to achieve these goals. More research is
necessary to develop new metrics that are better
suited to this task.
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