A bag-of-concepts model improves relation extraction in a narrow
knowledge domain with limited data

Jiyu Chen, Karin Verspoor and Zenan Zhai
School of Computing and Information Systems
The University of Melbourne, Australia

jiyuc@student.unimelb.edu.au, {karin.verspoor, zenan.zhail}@unimelb.edu.au

Abstract

This paper focuses on a traditional relation ex-
traction task in the context of limited annotated
data and a narrow knowledge domain. We ex-
plore this task with a clinical corpus consisting
of 200 breast cancer follow-up treatment let-
ters in which 16 distinct types of relations are
annotated. We experiment with an approach
to extracting typed relations called window-
bounded co-occurrence (WBC), which uses an
adjustable context window around entity men-
tions of a relevant type, and compare its per-
formance with a more typical intra-sentential
co-occurrence baseline. We further introduce
a new bag-of-concepts (BoC) approach to fea-
ture engineering based on the state-of-the-art
word embeddings and word synonyms. We
demonstrate the competitiveness of BoC by
comparing with methods of higher complex-
ity, and explore its effectiveness on this small
dataset.

1 Introduction

Applying automatic relation extraction on small
data sets in a narrow knowledge domain is chal-
lenging. Here, we consider the specific context of
a small clinical corpus, in which we have a va-
riety of relation types of interest but limited ex-
amples of each. Transformation of clinical texts
into structured sets of relations can facilitate the
exploration of clinical research questions such as
the potential risks of treatments for patients with
certain characteristics, but large-scale annotation
of these data sets is notoriously difficult due to the
sensitivity of the data and the need for specialized
clinical knowledge.

Rule-based methods (Abacha and Zweigen-
baum, 2011; Verspoor et al., 2016) typically de-
termine whether a particular type of relation exists
in a given text by leveraging the context in which
key clinical entities are mentioned. For instance,
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if two entities with type TestName and TestResult,
respectively, are observed in a given sentence, it
is likely that a relation of type TestFinding ex-
ists between them. However, construction of high-
precision rules defining relevant contexts is time-
consuming and expensive, requiring extensive ef-
fort from domain experts.

The state-of-the-art machine learning algo-
rithms such as neural network models (Nguyen
and Grishman, 2016; Ammar et al., 2017; Huang
and Wang, 2017) may over-fit in performing re-
lation extraction in this context, due to a limited
quantity of training instances.

In this work, we experiment with two automatic
approaches to semantic relation extraction ap-
plied to a small corpus consisting of breast cancer
follow-up treatment letters (Pitson et al., 2017),
comparing a simple rule-based co-occurrence ap-
proach to machine learning classifiers.

The first approach, simple co-occurrence (Ver-
spoor et al., 2016), is based on the assumption that
most relevant relations are intra-sentential, that is,
the relation between a pair of named entities is
expressed within the scope of a single sentence.
However, some relations may be expressed across
sentence boundaries, and thus a single sentence
may not be the ideal choice of scope, as shown in
prior work that considers inter-sentential relations
(also known as non-sentence or cross-sentence re-
lations) (Panyam et al., 2016; Peng et al., 2017).
We extend the co-occurrence approach to allow
explicit adjustment of context window size, from
one to two sentences, a method called Window-
Bounded Co-occurrence (WBC). The best window
size for a given relation is identified by choosing
the one which produces the highest score under
F;i-measure on a development set.

The second approach is based on supervised
binary classification. We transform the multi-
relation extraction task into several independent
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binary tasks. We build on a bag-of-concepts
(BoC) (Sahlgren and Coster, 2004) approach
which models the text in terms of phrases or pre-
identified concepts, extending it with word embed-
dings and word synonyms. We compare two dif-
ferent pre-trained word embedding models, and a
number of other model variations. We also explore
grouping of synonyms into abstracted concepts.

We find that the intra-sentential rule-based ap-
proach outperforms the approach which allows for
a larger context window. The supervised learn-
ing models outperforms rule-based approaches un-
der F1 measure, and their results show that mod-
els using BoC features outperform models with
BoW, dependency parse, or sentence embedding
features. We also show that SVM outperforms
complex models such as a feed-forward ANN in
our low resource scenario, with less tendency to
over-fitting.

2 Background

At present, the two primary approaches to au-
tomatic relation extraction over biomedical cor-
pora are rule-based approaches (Verspoor et al.,
2016; Abacha and Zweigenbaum, 2011) and ma-
chine learning approaches based on learners such
as logistic regression, support vector machines
(SVM) (Panyam et al., 2016) and convolutional
neural networks (CNN) (Nguyen and Verspoor,
2018) together with sophisticated feature engi-
neering methods.

Verspoor et al. (2016) established a typical
intra-sentential co-occurrence baseline with
competitive performance comparing to a com-
prehensive machine learning-based system,
PKDE4J (Song et al., 2015), on the extraction
of relations between human genetic variants
and disease on the Variome corpus (Verspoor
et al.,, 2013). The sentential baseline is based
on the assumption that the scope of relations is
within one sentence, and further assumes that
any pair of two entities mentioned in the same
sentence and satisfying the type constraints of
a given relation, expresses that relation. For
example, if two entities with type TimeDescriptor
and EndocrineTherapy respectively, the relation
TherapyTiming will be extracted. The sentential
co-occurrence baseline set a benchmark for
relation extraction on Variome corpus.

Abacha and Zweigenbaum (2011) explored se-
mantic rules for the extraction of relations between
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medical entities on PubMed Central (PMC) arti-
cles using linguistic patterns. They provide an
example of implementing an end-to-end relation
extraction system, applying named entity recogni-
tion in the first stage, then followed by the stage
of relation extraction. They define several relation
patterns based on medical knowledge, and lever-
aging the dependency parse tree of sentences in
which entities occur. However, the linguistic pat-
terns and rules developed for their corpus likely
are not directly applicable to our semantically dis-
tinct context of clinical letters.

Machine learning methods vary based on the
choice of models and the features considered. In
model selection, the multi-type relation extrac-
tion task can be assigned to several independent
binary classifiers, each making the decision of
whether a certain type of relation exist or not.
A basic binary classifier such as logistic regres-
sion with ridge regularization is capable of per-
forming relation extraction in this scenario. Pa-
nyam et al. (2016) used support vector machines
(SVM) with a dependency graph kernel to per-
form relation extraction on two biomedical re-
lation extraction tasks, showing competitive re-
sults. Brown Clustering (Brown et al., 1992) is
a hierarchical approach to clustering words into
classes through maximizing mutual information
of bi-grams; it showed competitive performances
in many NLP tasks (Turian et al., 2010).Nguyen
and Verspoor (2018) implemented a method us-
ing character-based word embeddings which can
capture unknown words within the context, cou-
pled with CNN and LSTM neural network mod-
els. This approach obtained state-of-the-art perfor-
mance in extracting chemical-disease relations on
the BioCreative-V CDR corpus (Li et al., 2016).

For feature engineering, text features can gen-
erally be divided into the two categories of lexical
features and syntactic features. Typical features
used in other relation extraction tasks are summa-
rized here.

e Bag-of-words (BoW) features based on
white-space delimited tokens, are used in
many tasks as a starting point.

Bag-of-concepts (BoC) features (Sahlgren
and Coster, 2004) represent the text in terms
of concepts, that is, phrases in the text that
correspond to meaningful units. The cur-
rent methods for generating concepts are



based on techniques such as mutual in-
formation (Sahlgren and Coster, 2004), or
through dictionary-based strategies (Funk
et al., 2014). For clinical texts, the MetaMap
tool (Aronson, 2001) is often used to recog-
nize clinical concepts.

Syntactic features take sentence structure
into account. For example, RelEx (Fundel
et al., 2006) uses dependency parse trees as-
sociated with small numbers of rules in ex-
tracting relations from MEDLINE abstract
and reaches an overal 80% precision and
recall. Approximate Sub-graph Matching
(ASM) (Liu et al., 2013) enables sentences to
be matched by considering the similarity of
the structure of dependency parse subgraphs
that connect relevant entities to subgraphs in
the training data.

Word embeddings aim to capture word se-
mantics through lower-dimension projections
of word contexts and can be used to find
word synonyms by measuring cosine sim-
ilarity between word vectors. There are
two widely used approaches to train word
embeddings, co-occurrence matrix based
methods such as GloVe (Pennington et al.,
2014), and learning-based methods using
skip-grams (Mikolov et al., 2013b) and
CBOW (Mikolov et al., 2013a).

3 Methods

We improve the approaches described above to
achieve better efficiency in relation extraction in
our context of a narrow knowledge domain with
limited data, specific to cancer follow-up treat-
ment.

3.1 Corpus

We consider a previously introduced corpus re-
lated to breast cancer follow-up treatment, ran-
domly sampled and manually annotated by two
physicians (Pitson et al., 2017). The corpus con-
tains around 1000 sentences and 47,186 tokens.
Despite its small size, the corpus is richly an-
notated with 16 medical named entity types and
16 types of semantic relations linking those enti-
ties with over 1,500 relation occurrences. Entities
within the corpus are related to clinical therapies,
temporal events, diseases, and so on. The annota-
tion of clinical relations includes the associations
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between identified entities. For example, in the
context ’She remains on Arimidex tablets.”, ’re-
mains on” is a TimeDescriptor, and ”Arimidex”
is a EndocrineTherapy. The relation TherapyTim-
ing holds between these two entities in this con-
text (e.g., TherapyTiming(TimeDescriptor, En-
docrineTherapy)). For conciseness, we use ab-
breviations to refer to the entity types; hence
we will use TD to represent the entity type of
TimeDescriptor. While the dataset hasn’t been
published yet, the full terminology list of entity
types can be found in Pitson et al. (2017). To focus
exclusively on the relation extraction task, we de-
couple the named entity recognition task from the
relation extraction task by utilizing the gold stan-
dard entity annotations from the corpus.

3.2 Method 1: Typed Sentential
Co-occurrence

The simplest rule-based approach, given typed
named entities, is to extract every pair of entities
in a document that satisfies the type constraints
of a relation. Such an approach yields high re-
call but poor precision, due to lack of use of con-
text needed to ensure that a specific relation is ex-
pressed as holding between the entities. For exam-
ple, in our data, only the semantic relation of Tox-
icity is defined as connecting a Therapy to a Clini-
calFinding (expressing that a therapy was found to
cause a specific toxic effect) and so it might seem
reasonable to assume that a Toxicity event is be-
ing expressed in a document where both a Therapy
and a ClinicalFinding are mentioned. However,
the occurrence of these two entity types together
in a document do not strictly indicate an occur-
rence of Toxicity relation between them; the enti-
ties may be connected to other mentioned entities
via different relations. Hence assuming a Toxic-
ity relation between them would result in a false
positive.

We used intra-sentential constraints as de-
scribed by (Verspoor et al., 2016) to improve
precision by only considering that named enti-
ties that co-occur in the same sentence can have
valid semantic relations. With this intra-sentential
co-occurrence constraint, the relation extraction
performance of the sentential baseline achieved
strong recall and competitive precision, as well as
reasonable overall F-score, on the Variome corpus
(Verspoor et al., 2013).

We introduce the approach of Window-



Bounded Co-occurrence (WBC) to explore the im-
pact of relaxing the constraint that the sentence
boundary defines the scope of a relation. WBC
defines a context window for a relation as the ex-
pansion to a base window of the sentence where
an entity of the appropriate type occurs, and the
adjustment of tokens beyond that sentence within
which the related entity appears. We assume the
occurrence of an inter-sentential relation relies on
the distance of two entities, where distance is de-
fined based on the number of tokens considered
beyond the base sentence in which an entity oc-
curs. We introduce a hyperparameter, p, to rep-
resent the distance of an entity pair in a context,
namely the number of tokens allowed in exceeding
the single base sentence. p = 0 denotes the entity
pair is intra-sentential; p = x denotes the second
entity in a pair is x number of tokens away from
the base window. If p is large than the length of the
second context window, then the context window
will set to the scope of two sentences by default.
Figure 1 shows an example when p = 5, WBC
allows for the extraction of the semantic relation
of TestToAssess across the base window contain-
ing the entity of ClinicalFinding, and into the
expanded window encompassing the subsequent
sentence and containing the TestName entity.

|TestToAssess |

base window

%
Her major concern has been signiiicant ClinicalFinding and | note from
lour records she has lost 18kg in‘weight over the last 13 months.

& (]
Srie a:lgso hgd 3 Testl"r;lame iand an MRCP in December that was clear.

[}
F
lower-bound

‘
Figure 1: Example of length-awareness sliding window

upper-bound
of WBC in TestToAssess relation case

3.3 Method 2: Supervised Binary
Classification Approach

We adopt a traditional pipeline as the architecture
of the relation extraction system. Each stage is in-
troduced below.

3.3.1 Data Preparation

Considering the semantic variation in the texts,
and the small number of examples, training sev-
eral independent binary classifiers is more robust
for mining individual type of semantic relation
patterns. Therefore, we transform the original
dataset into 16 independent subsets, by grouping

instances by their relation type. An instance con-
sists of a typed entity pair, one or two sentence(s)
with the relevant named entities inside as con-
text, a label as an indication of relation occur-
rence, and a treatment letter id for mapping its
position in the original dataset. We remove four
relation types with fewer than 10 annotated in-
stances, specifically the relations Intervention, Ef-
fectOf, RecurLink and GetOpinion.

We apply context selection for generating in-
stances during data transformation. One instance
represents the occurrence of a single semantic re-
lation, containing one relevant entity pair. The
context for each instance is the entire raw text
of the sentence where the entity pair appears. In
cases where more than one entity pair occurs in
the same text context, we generate an indepen-
dent instance for each entity pair. Where cross-
sentence relations occur, we concatenate the two
sentences containing the relevant entities into a
single sentence, structurally indicating that the two
sentences are related. In each instance, we replace
the two named entity phrases with their type. In
the case of overlapping named entities, such as
where one named entity partially or completely
collides with another entity, both types are re-
tained, adjacent to each other in the text. Other
entities mentioned in the context not relevant for
the specific relation are left in their original tex-
tual form.

We use NLTK (Bird et al., 2009) to perform tok-
enization and lemmatization to normalize the rep-
resentation of the text, and strip punctuation. We
use the Snowball English stopword list ' to remove
stopwords.

Further details are presented in the feature engi-
neering section below.

3.3.2 Feature Engineering

We implement a set of traditional semantic fea-
tures and three main feature sets based on ASM,
BoC, and sentence embeddings in the sections be-
low.

e Traditional Semantic Features
The traditional semantic features includes bag-
of-words (count-based), lemmas (base, unin-
flected form of a noun or verb), algebraic ex-
pressions, named entity type (derived from the

Ihttp ://anoncvs.postgresqgl.org/
cvsweb.cgi/pgsgl/src/backend/snowball/
stopwords/
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gold-standard), POS tags and dependency parse
based on Stanford CoreNLP (Manning et al.,
2014), and a transformation from dependency
parse tree to graph using NetworkX (Hagberg
et al., 2008) where edges are dependencies and
nodes are tokens/labels.

ASM features

The classical ASM measurement was developed
by Liu et al. (2013), and was later extended to
kernel method by Panyam et al. (2016). The
ASM kernel was applied to the chemical in-
duced disease (CID) task (Wei et al., 2015) and
Seedev shared tasks (Chaix et al., 2016). The
performance of ASM significantly depends on
the result of POS-tagging and dependency tree
parsing. All nodes are normalized to their lem-
mas. Here, Stanford CoreNLP (Manning et al.,
2014) is used for POS tagging and dependency
tree parsing of the text. The context is split into
sentences before dependency parsing is applied
on individual sentences.

We produce the ASM features following Pa-
nyam et al. (2016). Where the context includes
two sentences, a dummy root node is introduced
to connect the root nodes of two dependency
parse trees. Figure 2 shows an example. After
pre-processing, the dependency tree structure is
transformed into a graph where nodes are lem-
mas with their POS tags, edges are dependen-
cies across lemmas within sentence. Then, a
shortest path algorithm is applied on the depen-
dency graph to generate flat features. In cases
where sentences are very long, processing time
is unacceptable, and no ASM features are gen-

erated.

~:!e;:nt:r:vt:|em‘:g.I ~:!e;:nt:r1.vt:hv:m‘:g.I
parse parse
tree tree
1 [
...ClinicalFinding... ...TestMame...

similarity based on shared surrounding context.
The size of the surrounding context, known
as window size control, varies the representa-
tion of word embeddings from more semantic
(shorter window size) to more syntactic (longer
window size). Synonyms can be identified by
identifying two words with similar embeddings,
based on cosine similarity measurement. Over-
fitting can occur for word embeddings, where
a training corpus is not large enough or a cor-
pus is limited to a narrow domain of knowledge.
Therefore, instead of training word embeddings
on our corpus, we use two publicly available
pre-trained word embeddings, GloVe (Penning-
ton et al, 2014) and a Wikipedia-PubMed-
PMC embedding (Moen and Ananiadou, 2013)
to capture more clinically relevant vocabulary.
The vocabulary of word embeddings denotes
the total number of words that are represented.
In our experiment, only the top 20,000 most fre-
quent lemmas are selected. Gensim (Rehurek
and Sojka, 2010) is used to find the synonyms
of a lemma from the vocabulary by measuring
similarity between GloVe word vectors.

We then implement an algorithm for build-
ing BoC. Using a word2concept algorithm (see
Equation 1), we map a lemma (key) to a con-
cept (value) based on the embedding of the
lemma expressed as E(lemma) and the similar-
ity threshold expressed as p as a tunable hyper-
parameter.

CONCEPT = f(E(lemma), ) (1)
The algorithm starts by extracting BoW features
for each generated instance after data prepara-
tion process into a list L. Then, starting from
the first lemma w; from L, we retrieve its em-
bedding z,,, = E(w;). We then retrieve a
new lemma w; and its embedding z,, from
the vocabulary V, and calculate the similarity
score S = cos(Ty,, Tw,). If S >= p, cre-
ate mappings between w; — concept; and
w; — concepty. If no w; satisfies the condition
of § >= u, then w; will be kept in its original
form. Next, we move to the second word ws in

Figure 2: Illustration of concatenation of two sentence
parsing results using dummy root in TestToAssess re-
lation setting

L, check whether wy has already been mapped
to a concept concept,, and if so, directly create
the mapping ws — concept,. Otherwise, we
iterate.

Note that in this model, named entities will ef-
fectively be treated as out-of-vocabulary terms,

e Bag-of-Concepts features
Word embeddings are used to capture word
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since they have been mapped to and replaced
with the names of the relevant entity types (e.g.,
“TestName” which is not a token that would be
expected to be represented in any pre-trained
word embedding model).

Sentence embedding features

Apart from being a tool for finding word syn-
onyms and generating BoC data representation,
word embeddings can also be used to obtain
sentence embeddings through weighted average
pooling. If S denotes a sentence, E(S) de-
notes the embedding of sentence S. E(w;) de-
notes the embedding of the first word w; of sen-
tence S, Score(w;) denotes the TF-IDF score
of word w1, the sentence embeddings based on
weighted average pooling can be expressed as
Equation 2. We calculate TF-IDF scores of each
word using the original documents, as each in-
stance has an index to its original document
id. Out-of-vocabulary tokens and gold standard
named entities will be ignored. However, en-
tity information has been considered during that
data preparation stage, because the generation
of instances takes gold standard entities into ac-
count.

n

ZE(wl) x Score(w;) (2)

1=1

E(S)

1
n
3.4 Supervised Learning Models

We build individual binary classifiers for each re-
lation type. We introduce the SVM classifiers and
Feed-forward ANN models briefly here.

e Support Vector Machine We select the gen-
eral SVM model (Hearst, 1998) and kernels
provided by scikit-learn (Pedregosa
et al., 2011). For SVM kernels, we integrate
ASM kernel as part of feature engineering,
to avoid colliding with the use of the linear
kernel and the RBF (Radial Basis Function)
kernel.

Feed-forward ANN We use Keras (Chol-
let et al., 2015) to construct a simple feed-
forward neural network model with two fully
connected layers as shown in Figure 3.

The dimension of each input and the number of
hidden units in each layer is the same as the dimen-
sion of feature vectors under each type of relation.
The activation function for the first dense layer is
ReLU, and for the second dense layer is softmax.

48

2xDense
(Hidden)

=
<
=

Qutput

|

Dimension
depends _|
on
task

Soft-
Max

RelU

(O 0000000 F

(O 0000000

(O 0000000

Figure 3: Architecture of FNN

3.5 Experiment Design

Considering the dataset is small, we split the trans-
formed dataset into three independent combina-
tions of training, development, and test sets with
the ratio of 6:1:3.

In training stage, we train independent mod-
els for each specific relation type. We use cross-
validation and grid search to tune the hyperparam-
eters of the classifiers.

In prediction stage, the decision of applying
sentence-bounded or window-bounded approach
is made by setting the size of sliding window. Set-
ting the window size to O will apply the sentence-
bounded co-occurrence constraint. We choose
window sizes of 0, 5, 10 to explore the value of
additional context. In supervised binary classi-
fication approach, utilizing a similarity threshold
of 1 leads to strict use of BoW (word) features,
while relaxing the similarity threshold p of 0.9,
0.8 will generate BoC (concepts). We compare the
influence of different word embeddings in gener-
ating BoC based on their relation extraction per-
formance on the test set.

Both rule-based approach and supervised binary
classification approach will make predictions on
the same test set, which allows empirical compar-
ison between rule-based and machine learning ap-
proaches.

We compare the impact of increasing data size
for BoW and BoC by sub-sampling the train-
ing set into nine instance-incremental and non-
overlapping sub-sets (combining them into sets
representing 10% to 90% of the original training
set) and visualize the performance variation. We
explore whether word embeddings as a medium
for generating BoC are more effective than the di-
rect use of sentence embeddings in cases where
the dataset is small and knowledge domain is re-
stricted to the specific domain of breast cancer



treatment. We also explore the combination of
BoC and sentence embeddings feature, in order to
investigate how best to make integration of them

Finally, we explore the possibility of applying
more complex models for analysis of our small
and specific knowledge domain dataset. We start
from simple linear models including logistic re-
gression and lin-SVM, then apply rbf-SVM, feed-
forward ANN on Keras with 32 batch per time,
and epochs of 2, 10, 100, and 500 for each rela-
tion type.

3.6 Evaluation

We evaluate both overall and per relation type per-
formance. Evaluation of the two approaches is
performed on the same test set derived from the
data preparation stage. In addition, considering
the dataset is small, we calculate the mean score
from three independent combinations of training,
development and test sets. We evaluate results us-
ing micro Fi-measure since the number of posi-
tives and negatives were highly imbalanced across
all relation types. We finally evaluate the perfor-
mance growth over nine sub-sampled training sets
of increasing size.

4 Result and Discussion

We present experiment results with micro F; mea-
surement. After experimenting with different sim-
ilarity threshold values to generate BoC features,
the best performance is achieved when the thresh-
old is set to 0.9 (results not shown). Word em-
beddings derived from Wiki-PubMed-PMC out-
perform GloVe-based embeddings (Table 1). The
models using BoC outperform models using Bow
as well as ASM features.

As shown in Table 2, the intra-sentential co-
occurrence baseline outperforms other approaches
which allow boundary expansion. This is because
a majority of relations in the corpus are intra-
sentential.

A visualization of the growth in performance
for both BoW and BoC-based models as training
set size increases, over 12 relation types, based
on micro Fp, is shown in Figure 4. The re-
sults of BoC in this figure is collected from lin-
SVMWiki-PubMed-PMC, =009 and BoW is collected
from lin-SVM. We find BoC tends to outperform
BoW with only a small number of training in-
stances, and also performs better than BoW with
incremental training instance.
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Figure 4: Performance variation of BoW and
BoC(wiki-PubMed-PMC, 1« = 0.9) With increasing data frac-
tions, under 1inSVM, F; measure.

The reason that Wikipedia-PubMed-PMC em-
beddings (Moen and Ananiadou, 2013) outper-
forms GloVe (Mikolov et al., 2013a) in the extrac-
tion of most relation types (Table 1) is because its
training corpus has a more similar domain and vo-
cabulary as our dataset. Therefore, it leads to more
relevant models of the distributional semantics of
words. On the other hand, the GloVe embeddings
are derived from a more general corpus; thus the
semantics of domain specific terms in our dataset
are not captured.

By observation, most lemmas that map into
concepts are digits, time stamps, common verbs
and medical terminologies. For example, in
TimeStamp(tpTp), drugs with similar effects
such as “letrozole” and “anastrozole” map into
“CONCEPT3”; all single digits, ranges from 0-
9 map into “CONCEPTsyg; year tags such as
72011, 2009” map into “CONCEPT5s”. We
consider the cause of differences between the
BoW and BoC representations. In the normaliza-
tion process for BoW, stop-words collected from
general knowledge domain are not well-suited to
the knowledge domain for our specific task, while
limited data does not allow the construction of
an appropriate stop-words list from the data. In
contrast, BoC models normalize the differences
between individual words with shared meaning.
While intuitively this should support an improve-
ment over BoW models, we find BoW outper-
forms BoC when extracting certain relations such
as TestTiming(tn1p), TestToAssess(tnTr) With
gold standard named entities as arguments. The
reason is that synonyms may express slightly dif-
ferent meanings; concept mapping discards such
differences and leads to information loss, poten-
tially causing more mis-classifications. The deci-



Feature LR SVM ANN
P R Fq P R Fq P R F1

+BoW 093 091 092|094 092 093|091 091 091
+B0oC (Wiki-PubMed-PMC) 094 092 093|094 092 093|091 091 091
+BoC (Giove) 093 092 092|094 092 093|091 091 0091
+ASM 090 0.85 0.88 090 0.86 0.88 |0.89 0.89 0.89
+Sentence Embeddings(SEs) | 0.89 0.89 0.89 | 0.90 0.86 0.88 | 0.88 0.88 0.88
+BoC(wiki-pubMed-PMc)+SEs | 0.92 092 092 | 094 092 093 | 091 091 0091

Table 1: Performance of supervised learning models with different features.

Relation type Count | Intra-sentential co-occ. | BoC(wiki-PubMed-PMC)
p=0 p=5 p=10| LR SVM ANN
TherapyTiming(tptp) 428 0.84 0.59 047 ]0.78 0.81 0.78
NextReview(Foliowup,TP) 164 0.90 0.83 0.63 086 0.88 0.84
TOXiCity(Tp,CF/TR) 163 0.91 0.77 0.55 0.85 0.86 0.86
TestTiming(TnN TD/TP) 184 0.90 0.81 042 | 096 097 095
TestFinding(Tn TR) 136 0.76 0.60 044 1082 079 0.78
Threat(o,cr/TrR) 32 0.85 0.69 054 1095 095 092
Intervention(Tpyr) 5 0.88 0.65 0.47 - - -
EffectOf(com.cF) 3 0.92 0.62 0.23 - - -
Severity(crcs) 75 0.61 0.53 047 |052 055 051
RecurLink(YR,YR/cp) 7 1.0 1.0 0.64 - - -
RecurInfer(Nr/yr TR) 51 0.97 0.69 043 099 099 098
GetOpinion(Referral,Cp/mher) 4 0.75 0.75 0.5 - - -
Context(pis DisCont) 40 0.70 0.63 0.53 0.60 041 0.57
TestToAssess(TN,CF/TR) 36 0.76 0.66 0.36 092 092 0091
TimeStamp(tp Tp) 221 0.88 0.83 050 | 0.8 085 0.83
TimeLink(tp1p) 20 0.92 0.85 0.45 091 092 090
Overall 1569 | 0.90 0.73 0.45 092 093 091

Table 2: F; score results per relation type of the best performing models.

sion of whether to use the BoC or BoW will de-
pend on the characteristics of particular relation
types.

Table 1 also shows the combination feature of
BoC and sentence embeddings outperforms sen-
tence embeddings alone, but do not exceed the
upper boundary of BoC feature, in which again
demonstrating the competitiveness of BoC feature.

Since this corpus is much smaller than other
narrow knowledge domain corpus such as CID
(Wei et al., 2015) and Seedev shared task (Chaix
et al., 2016), the training instances are not enough
for the learners to generalize well using syntactic
representation. Therefore, the models using ASM
kernel (Panyam et al., 2016) do not outperform the
simple linear classifiers.

As the results of applying the co-occurrence
baseline (p 0) shows (Table 2), the seman-
tic relations in this data are strongly concentrated
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within a sentence boundary, especially for the re-
lation of RecurLink, with an F; of 1.0. The ma-
chine learning approaches based on BoC lexical
features effectively complement the deficiency of
cross-sentence relation extraction.

Lin-SVM outperforms other classifiers in ex-
tracting most relations. The feed-forward ANN
displays significant over-fitting across all relation
types, as the performance decreases when increas-
ing the training epochs. Specifically, with only
two training epochs, the performance of ANN is
still slightly worse than 1in-SVM. The result of
lin-SVM present its robustness of avoiding over-
fitting compares to feed-forward ANN with BoW,
BoC, ASM flat features and sentence embeddings.



5 Conclusion and Future Work

We proposed two ways to perform relation ex-
traction for a narrow knowledge domain, with
only small available data set. We implemented a
window-based context approach and experiment
with determining the best context size for the rela-
tion extraction in the rule-based settings. The typ-
ical sentential co-occurrence baseline is competi-
tive when most relations are intra-sentential. We
implemented a BoC feature engineering method,
by leveraging word embeddings as a tool for find-
ing word synonyms and mapping them to con-
cepts. BoC feature outperforms BoW, ASM syn-
tactic feature and sentence embeddings derived
by weighted average pooling across word embed-
dings in small dataset with respect to its signifi-
cant improvements in micro F; score. In addition,
it would be expected to show competitive results
on other relation extraction tasks where it is useful
to generalize specific tokens such as digits or time
stamps.

We also explored the performance of models
with different level of complexity, such as logistic
regression, lin-SVM, rbf-SVM, and a simple feed-
forward ANN. The results highlight that strategies
to avoid over-fitting must be considered since the
number of training instances is limited.

In future work, we will explore a number of
directions, including some unsupervised learning
approaches. We will test the performance of BoC
on other corpora, to explore BoC vs. BoW as
a baseline data representation. We will address
comparisons between BoC and other word clus-
tering methods such as Brown Clustering (Brown
et al.,, 1992). Finally, the integration of current
named entity recognition tools and end-to-end re-
lation extraction, to remove the reliance on gold
standard named entity annotations, will also be ex-
plored.
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