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Abstract

The article dwell time (i.e., expected time that
users spend on an article) is among the most
important factors showing the article engage-
ment. It is of great interest to news agen-
cies to predict the dwell time of an article be-
fore its release. It allows online newspapers
to make informed decisions and publish more
engaging articles. In this paper, we propose a
novel content-based approach based on a deep
neural network architecture for predicting arti-
cle dwell times. The proposed model extracts
emotion, event and entity-based features from
an article, learns interactions among them, and
combines the interactions with the word-based
features of the article to learn a model for pre-
dicting the dwell time. We apply the proposed
model to a real dataset from a national news-
paper showing that the proposed model outper-
forms other state-of-the-art baselines.

1 Introduction

For online newspapers, it is desirable to predict
how user-engaging an article is before publish-
ing it so that editors have an idea about the pros-
perity of the article. This will help editors se-
lect more engaging articles to publish and also
make smarter decisions to increase revenue (e.g.,
displaying more advertisements with an engag-
ing article). Most of the previous studies focus
on predicting the page views (i.e., user clicks) as
the sole indicator of user engagement and arti-
cle success (Kim et al., 2016; Ioannidis et al.,
2016). However, click-based engagement model-
ing can be quite noisy (e.g., when a user clicks
on a wrong article) and may not show the actual
user engagement or satisfaction (Yi et al., 2014).
Alternatively, it is shown that the time that a user
spends on a page, known as the dwell time, is one
of the most significant indicators of user engage-
ment (Claypool et al., 2001; Fox et al., 2005; Kim
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et al.,, 2014). Thus, we consider dwell time as
an engagement measure and design an effective
model to predict the dwell time of an article based
on its content.

There are some studies on dwell time predic-
tion. Most of them predict dwell time for web-
pages instead of news articles. Liu et al. (Liu
et al., 2010) use regression trees to predict the
Weibull distributions of webpage dwell time us-
ing keywords and page size. Yi et al. (Yi et al.,
2014) predict web content dwell time using sup-
port vector regression based on the content length
and topic category across different devices. Kim
et al. (Kim et al., 2014) use a regression model to
estimate the Gamma distributions of page dwell
time based on the topic of the page, its length and
its readability level. To our knowledge, none of
the studies focuses on news articles nor investi-
gates whether high-level features such as events,
entities and emotions play an important role in the
user engagement of an article measured by dwell
time. We believe such high level features are im-
portant factors for dwell time prediction.

In this paper we focus on news articles and con-
sider events, emotions as well as people and orga-
nizations as main contributors to the article dwell
time. Both low-level (e.g., word-based) and high
level features (e.g., people) are used in our pre-
diction model. However, features such as people
and organizations have a very high dimensional-
ity resulting in sparse data representations. In ad-
dition, interactions between such features matter.
For example, articles mentioning two celebrities
(e.g., Prince Harry and Meghan Markle) may be
more engaging than articles mentioning only one
of them. To address such issues, we propose a
model based on the wide and deep neural network
architecture (Cheng et al., 2016) which memorizes
the low order interactions between the sparse fea-
tures (e.g., people in articles), and at the same
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time generalizes word-based content through the
deep component. In order to learn the interactions
between features, we adopt the factorization ma-
chine (Guo et al., 2017), which extracts feature in-
teractions automatically, as the wide component
in the proposed model. Our main contributions
are as follows. First, we design a novel frame-
work for predicting the dwell time of a news arti-
cle based on its content. Second, we propose an ef-
fective deep neural network model that combines
the low-order interactions between high-level fac-
tors (i.e., events, emotions and entities) and word-
based abstract features for article dwell time pre-
diction. Third, we apply the proposed model to a
real dataset from the Globe and Mail' and show
the effectiveness of the proposed model and the
usefulness of event, emotion and entity based fea-
tures and their interactions for dwell time predic-
tion.

2 Problem Definition

Assume that D = {a,—}i]\i1
T, = {tj};.\]:il, is a set of dwell times of article
a; € D (based on different users visits), and N; is
the number of visits which article a; has. To see
which type of distribution is most appropriate for
modeling article dwell time, we fit the dwell times
of articles into different distributions and calcu-
late the average log likelihood among all the ar-
ticles as the fitness scores. The negative log like-
lihood of Normal, Exponential and Weibull dis-
tributions for our real dataset from the Globe and
Mail dataset are 5100.57, 4447.62, and 4306.89
respectively. Therefore, Weibull distribution is se-
lected for modeling article dwell times. Thus, we
define the dwell time of article a;, denoted by y;,
as the expected value of the Weibull distribution of
dwell times in 7;. We utilize y; as the target value
and build a model to predict it.

PROBLEM STATEMENT: Given a set of articles
D = {ai}i]\:’ , and their respective dwell times, the
goal is to learn a model so that it can be used to
predict the dwell time of a new article.

is a set of articles, and

3 Detecting High Level Content Factors

3.1 Article-level Emotion Detection

Emotion detection from text has been widely stud-
ied in different contexts (Mohammad and Turney,
2013). However, it is not been investigated for
the dwell time prediction task. We consider 6

1https://www.theglobeandrnail.com
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basic emotions (i.e., happiness, sadness, disgust,
anger, surprise, and fear) which are widely used
in the emotion detection (Ekman, 1992; Agrawal
et al., 2018). We utilize a publicly available emo-
tion lexicon (Mohammad and Turney, 2010) as the
seed words of different emotions. Given an arti-
cle a; € D, and the word w € q;, the emotion
vector of word w is defined as: em(w) = [emw;],
where emw; is the average similarity” between the
pre-trained embedding vector of word w (Mikolov
et al., 2013) and those of the seed words of emo-
tion j. The emotion vector for article g; is calcu-
lated as:

: S emn) (1)

Xpy=———"-—"—
EM
| Xwea; emw)ly wea;

where the denominator is for the scaling purpose.
3.2 Article-level Event Detection

News and events are closely related to each other.
Most of the time, a news article reports one cen-
tral event and a mixture of associated subsidiary
events (Chakraborty et al., 2016). The central and
subsidiary events manifest themselves in the arti-
cle content through the event trigger words. De-
spite the importance of events in news analytics
applications (Agrawal et al., 2016), to the best of
our knowledge, no study has considered them in
article dwell time analysis.

We adapt the method proposed in (Yang and
Mitchell, 2016) to extract the events at the article
level. The method learns event structures and rela-
tions from a corpus and trains a Conditional Ran-
dom Field (CRF) to extract events. The learned
probabilistic models are integrated into a single
model to jointly extract events and entities (e.g.,
people and organizations) from a document. We
train the model on the ACE 2005 corpus’® (Walker
et al., 2006). We follow the same setting as (Yang
and Mitchell, 2016). We define the event vector
for each word w in article a; as follows: ev(w) =
[evw;], where evw; is 1 if w is assigned to the j'th
event, otherwise 0. The article level event vector
Xzizv for article a; is defined as:

S @

Xpy=———
EV |Zwea,: ev(w)|; wea;

We compute the entity vector for word w in a
similar fashion: eng(w) = [enw;], where enw;
is 1 if w is the j’th instance of entity k (where

2We use the positive cosine similarity (i.e., max{0,cosine
similarity }) as the similarity measure.
3https://catalog.ldc.upenn.edu/LDC2006T06



k is a type of entity, i.e., person or organization),
otherwise 0. For article a;, the article level entity
vector X, Ny is defined as:
. 1
XL, =— eng (w) 3
ENi | Xwea; enk (Wi W;i k ©)

We extract 31 events, 87083 people, and 79143
organizations from the the Globe and Mail dataset.

4 Content-based Correlation Analysis

In this section, we study how different factors of
an articles (i.e., entities, emotions, and events) im-
pact the dwell time of the article. We define the
engagement score of factor ¢ as follows:

1
Score(c) = 70 Z]I[C € a;]Xy; G}

where I is the indicator function and df (c) is the
number of articles containing c¢. The intuition is
that if a factor ¢ appears exclusively in some arti-
cles with high dwell time (i.e., y;), it should have
a high engagement score. For example, if Barak
Obama appears in articles with high dwell time, it
should receive a high engagement score.

To investigate the extend to which the engage-
ment score of each article factor could explain the
variability of the dwell time of articles, we do a
Pearson correlation analysis. In particular, we es-
timate the predicted dwell time of article a; by
averaging the engagement scores of all individ-
ual factors of the same type in the article a;, and
then calculate the Pearson correlation coefficient
between an article’s actual dwell time and its pre-
dicted value. Figure 1 shows the Pearson correla-
tion scores between the actual dwell times and the
predicted ones for each type of factor. As illus-
trated, the emotions (EMO) involved in the articles
show the most correlation with the article dwell
time. Moreover, location (LOC) and time (TIME)
have the least correlation with dwell times. This
observation motivates us to use emotion (EMO),
event (EVENT), person (PER) and organization
(ORG) as the augmented features in building the
dwell time prediction model.

S Deep Dwell-time Prediction Model

To learn a dwell time prediction model, we rep-
resent an article using both the words in the ar-
ticle and its augmented features (i.e., emotions,
events, people and organizations). However, the
people and organization features are sparse and
high-dimensional. Thus, special attention should
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Figure 1: Correlation between the true dwell time and
predicted dwell time based on different factors.

be paid to deal with such input features. Deep
neural networks can learn feature representations
and alleviate need for feature engineering by em-
bedding sparse features into a low-dimensional
dense space. However, the embedding space may
be over-generalized and produce poor results in
prediction tasks, when the interactions between
high-dimensional features are sparse (Cheng et al.,
2016). But such interactions are important for pre-
dicting dwell time. For example, an article about
two celebrities attending the same event is more
likely attracting more readers. Thus, we propose a
deep neural network architecture which leverages
the augmented features and their interactions in
combination with the document (i.e., article) rep-
resentation to predict the article dwell time.
Inspired by (Guo et al., 2017), we utilized the
factorization machine (Rendle, 2010) to capture
the augmented feature interactions. However, the
proposed model is different from (Guo et al.,
2017) in the following aspects: (1) we augment the
article content with emotion, event and entity fea-
tures (2) our model allows multiple factorization
machines (each feature is represented with multi-
ple embedding vectors in the factorization layer).

5.1 The Architecture

Figure 2 shows the proposed architecture for the
article dwell time engagement prediction task.
The architecture consists of two main compo-
nents: the deep and the factorization machine
components. While the deep competent learns
the high order feature interactions and general-
izes the article content through a multilayer en-
coder, the factorization machine captures the low
order interactions among the highly sparse aug-
mented features. In particular, suppose that each
article is represented by the TFIDF (Salton and
McGill, 1986) vector X., which is fed into the
deep component, and augmented vector Xy =
[Xev:; Xesm:; XEn], which goes to the factoriza-
tion machine component, where Xgy, Xgps, and



00000.. 0000

(00000 ..000000)

X.

|

(article content)

WV VQL,,,‘/:“/

(00e00o .000000)]

Feature Augmentation
\—‘ Xy = [Xpv, Xeum, XeN)

(augmented)

Figure 2: The architecture for article dwell time en-
gagement prediction (left side is deep component and
right side is the factorization machine).

Xen = [XENper: XENore ] are event, emotion,
and entity vectors respectively. The whole model
is specified by the following equation:

H = Concat(Hc, Hf)
y=WH+b

)
(6

where H., Hy are the latent vectors learned by
deep and the factorization machine components,
H is the concatenation of these two vectors, and
W, and b are weight and bias parameters.

5.1.1 Factorization Machine Component

A simple strategy to capture the interactions be-
tween features is to learn a weight for each com-
bination of two features. However, this naive ap-
proach does not work when the input feature space
is sparse. Factorization machine solves the prob-
lem by modeling the pairwise feature interactions
as the inner product of low dimensional vectors.

The first layer in the factorization machine com-
ponent is the embedding layer. Given the sparse
(augmented) input vector Xy = [x;]ax1, it learns
multiple vectors Vix = [virilmxi (kK =1...K) for
each input dimension, where V;; is the k’th vec-
tor for dimension i, and v;z; is the [’th elements
of V;r. Then, these factors are fed into the interac-
tion layer to capture the first order and the second
order interactions. The interaction layer operation
along with the k’th dimension can be formalized
as follows:

d d
hfx =k +Wi-Xp+ D > Vi Vigxix)) (D)
T isljEidl T
D ®
where hf; is the k’th elements of factorization

machine component output Hy = [hf ]xx1, Wi =
[Wiimlaxi (Wkm is the m’th element of W) and by
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are the parameter vector and the bias to be learned
and f is the activation function. The & and ® sym-
bols in Figure 2 refer to the first order and the sec-
ond order interaction operations respectively. In
fact, factorization machine replaces the interaction
weights between feature x; and x; with the in-
ner product of respective embedding vectors (i.e.,
Vik - Vii). From modeling perspective, this is pow-
erful since each feature ends up in an embedding
space where similar features in this space are close
to each other.

5.1.2 Deep Component

In the proposed architecture, the deep component
is a dense feed-forward neural network. Each arti-
cle is vectorized using the TFIDF approach (af-
ter removing stop words), then is fed into this
component. The feed-forward layers convert this
sparse vector into low-dimensional dense real-
valued vectors.

6 Empirical Evaluation

6.1 Dataset and Set up

All the experiments are conducted on a real dataset
from the Globe and Mail dataset. The data collec-
tion platform in this company records a timestamp
whenever an article page is requested. The differ-
ence between two consecutive page click times-
tamps is used to calculate the articles dwell times.
As usual in web analytics the last article in a visit
is ignored as we cannot estimate the dwell time
for it. Clickstream data is usually noisy. Thus, as
a cleaning step, the articles with less than 10 views
and dwell time more than 30 minutes are removed
resulting in 28502 articles published over period
of 2014-01 to 2014-07. Moreover, all the exper-
iments in this section are based on the 10-fold
cross validation. We set M and K in the proposed
model to 100 and 10 respectively. We used the
code in (Pedregosa et al., 2011) with default pa-
rameter setting for non-neural networks, and neu-
ral network models are implemented using Keras
with tensorflow backend (Chollet et al., 2015).

6.2 Baselines

We compare the proposed model with the fol-
lowing baselines including both shallow and deep
models as well as Random Forest based models.

Linear Regression (LR): This is a simple base-
line used the topics or document vectors as the fea-
tures and the linear regression method to predict



article dwell times. We extract the articles topics
based on the LDA approach (Blei et al., 2003). We
set the number of topics to 70 based on the best co-
herence scores proposed in (Roder et al., 2015).
Moreover, we learn the vector representation of
each article using the doc2vec method proposed
in (Le and Mikolov, 2014). We set the vector size
to 100 in all experiments.

Random Forest Regression (RF): Random For-
est regression performs well in many applications.
It trains an ensemble of uncorrelated decision trees
(10 trees in our experiments, which is the de-
fault setting in the sklearn code (Pedregosa et al.,
2011)), and outputs the average result in the pre-
diction. We used the topic or doc2vec vectors as
the input to the Random Forest regression model.
Word Embedding + CNN: We adopt the ap-
proach proposed in (Kim, 2014) for the dwell time
prediction task. The architecture is comprised of
one layer of convolution on top of word vectors
pre-trained from an unsupervised neural language
model. We use the word vectors* trained on 100
billion words of Google News (Mikolov et al.,
2013) to initialize the embedding vectors, then fine
tuned them in the learning phase. We change the
last layer of the architecture (i.e., softmax) to a
fully connected (i.e., dense) layer for our task. The
final architecture includes convolution, max pool-
ing and fully connected layers.

LSTM + Attention: This is the attention mech-
anism on top of LSTM layer. The attention layer
is designed according to (Raffel and Ellis, 2015).
The input of the LSTM are word vectors initialized
to pre-trained vectors in (Mikolov et al., 2013).
We use a fully connected layer on top of the at-
tention layer to produce the final output.
Multilayer Perception (MLP): This is the multi-
layer feed-forward network with 3 fully connected
(dense) hidden layers. In the model architecture
we set 300, 200, and 100 as the hidden layer sizes
respectively. This is the deep component in the
proposed deep and wide model.

6.3 Evaluation Metrics

We utilize the following metrics to evaluate the
performance of different models. Given the ac-
tual dwell time y; and predicted dwell time y; for
article a; i = 1,2,... N). We calculate the Mean
Square Error (MSE) as fcl)vllows:

_ 1 a2
MSE = ;m i) ®)

Method || MSE | RAE (%)
LR +LDA 4835.74 | 90.75
LR + Doc2Vec 4857.26 | 91.21
RF + LDA 4750.10 | 87.96
RF + Doc2Vec 4566.38 | 86.44
Word2Vec+CNN 4564.80 | 85.58
LSTM + Attention 4553.85 | 90.66
MLP 4122.35 | 80.79
MLP+Flat Augmented Features 4483.34 | 85.77
(without FM)

Proposed Model 3883.13 | 78.51
(MLP+Augmented Features+FM)

Table 1: Evaluation of different methods.

Moreover, we calculate the Relative Absolute Er-
ror (RAE) as: Zil\il lvi = ¥il

N Ay =il
where y; = % Zfil y;. Note that RAE € [0, o).
6.4 Experimental Results
Table 1 shows the MSEs and RAEs of differ-
ent baseline approaches as well as the proposed
model. As shown, the proposed model outper-
forms all the baselines. For shallow (i.e., LR-
based) and RF-based models we learn the features
using LDA or Doc2Vec approaches and then train
the model with Linear Regression (LR) and Ran-
dom Forest (RF) respectively. As shown, among
such models RF+Doc2Vec performs the best.

Among the deep neural network based base-
lines, we observe that MLP performs better than
the other two. One reason could be that our dataset
is not very big (with 28502 articles) and as a result
the complex models such as CNN and LSTM may
overfit to the training data.

To investigate the effect of learning feature in-
teractions with factorization machines, we created
another baseline that use MLP with both words
and augmented features as input without using fac-
torization machines (denoted as ‘MLP + Flat Aug-
mented features" in Table 1). We choose MLP be-
cause it is the best among the baselines. As can be
seen, the naive approach of adding the augmented
features to MLP without using factorization ma-
chines leads to poor results.

Table 2 shows the effect of different types of
augmented features on the performance of the pro-
posed model. As we observe, using all the aug-
mented features in the proposed model results in
the best performance.

RAE = )

6.5 Hyper parameter study

Figure 3 shows the model performance in terms of
the number of hidden vectors per feature dimen-

4 Available at: https://code.google.com/archive/p/word2vec/ sion. We increase the number of hidden vectors
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Augmented Features || MSE | RAE (%)
PER 3966.15 | 79.49
PER+ORG 3963.55 | 79.36
PER+ORG+EVENT 3933.71 | 79.10
PER+ORG+EVENT+EMO 3883.13 | 78.51

Table 2: Effect of different augmented features.
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Figure 4: The architecture shapes.

(i.e., K) in the factorization machine component
and calculate the errors accordingly. As can be
observed, the errors decrease significantly by in-
creasing K from 1 to 5, then becomes stable. This
suggests that a value between 5 to 10 would be a
good choice for this parameter.

To see the effect of different deep component ar-
chitecture shapes on the error measures, we keep
the number of nodes constant (i.e., 600), and
change the number of nodes in the hidden layers.
Figure 4 shows the effect of selecting different ar-
chitectures on the errors. As can be seen, the 250-
100-250 is the worst among all architecture and
300-200-100 is slightly better than the others.

In order to study the effect of activation func-
tions on the overall errors, we keep the last layer
activation function to ReLU (as it outputs a dwell
time value which is always a positive real number)
and change the other activation functions to T'anh
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and Sigmoid, and then ReLU. Figure 5 shows
the model errors for different activation functions.
Among these activation functions, ReLU gives the
best performance and Simod performs consider-
ably worse than the others.

Figure 6 shows the effect of the hidden vec-
tor size (i.e., M) of factorization machine compo-
nent on the overall errors. We observe that errors
slightly decrease by increasing hidden vector size
form 20 to 40, and then does not show any signif-
icant improvement for M between 40 to 100. As
such, the proposed model is not sensitive to vec-
tor size and this parameter can be set with a value
between 40 to 100. Figure 7 shows the prediction
errors for different numbers of layers of the deep
component. As can be seen, the errors decrease as
we increase the number of hidden layers from 1 to
2 and is the best when it is 3.

In order to study the effect of neurons on pre-
diction errors. We start from 300 — 200 — 100 ar-
chitecture and increase the hidden layer size by a
certain percentage (i.e., 10%, 20%,. . .), then cal-
culate the errors for each architecture. Figure 8
shows the performance of the model for different
percentage of node number increase. We observe
that the errors remain almost at the same levels
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when the node numbers in each layer increase by
30%, then starts to get worse from 30% to 100%.
This could be due to the overfitting problem.

7 Conclusion

We proposed a novel model to predict the dwell
time of a news article based on its content. We first
extracted events, emotions, people and organiza-
tions from news articles, and then used a deep and
wide neural network architecture to learn a pre-
diction model from both the word-based features
(via the deep model) and the interactions among
the pre-extracted features (via factorization ma-
chines). We applied the proposed model to a real
dataset from a national newspaper, and showed
that using events, emotions, people and organiza-
tions and their interactions as features greatly im-
proves article dwell time prediction. The perfor-
mance of our model is better than using only the
deep models for learning abstract features from
document representations such as topics, word
embedding or TFIDF-based features. As dwell
time is a commonly used article engagement mea-
sure, the proposed method is of great practical
value for news agencies. In addition, the proposed
model can be used for other text regression tasks

(e.g., predicting revenues from reviews).
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