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Abstract

Named Entity Recognition (NER) has been
mostly studied in the context of written text.
Specifically, NER is an important step in
de-identification (de-ID) of medical records,
many of which are recorded conversations be-
tween a patient and a doctor. In such record-
ings, audio spans with personal information
should be redacted, similar to the redaction of
sensitive character spans in de-ID for written
text. The application of NER in the context of
audio de-identification has yet to be fully in-
vestigated. To this end, we define the task of
audio de-ID, in which audio spans with entity
mentions should be detected. We then present
our pipeline for this task, which involves Auto-
matic Speech Recognition (ASR), NER on the
transcript text, and text-to-audio alignment. Fi-
nally, we introduce a novel metric for au-
dio de-ID and a new evaluation benchmark
consisting of a large labeled segment of the
Switchboard and Fisher audio datasets and
detail our pipeline’s results on it.

1 Introduction

Personal data in general, and clinical records data
in particular, is a major driving force in today’s sci-
entific research. Despite its abundance, the pres-
ence of Personal Health Identifiers (PHI) hinders
data availability for researchers. Therefore, data
de-identification (de-ID) is a critical component in
any plan to make such data available. However,
the amount of data involved makes it prohibitively
expensive to employ domain experts to tag and
redact PHI manually, providing a good opportu-
nity for automatic de-identification tools. Indeed,
high performance tools for the de-identification of
medical text notes have been developed (Dernon-
court et al., 2017a; Liu et al., 2017).

Due to the rise of tele-medicine (Weinstein
et al., 2014), clinical records consist of many other
types of data, such as audio conversations (Chiu
et al., 2017), scanned documents, video, and im-

Figure 1: High level audio de-ID pipeline

ages. In this work, we direct our attention towards
the task of de-identifying clinical audio data. This
task is expected to become increasingly more im-
portant, as Machine Learning applications in tele-
medicine are growing in popularity. Given an input
audio stream, the objective is to produce a modi-
fied audio stream, where all PHI is redacted, while
the rest of the stream is kept unchanged. To the
best of our knowledge, de-identifying audio is a
new task, requiring a new benchmark.

We define and publish1 a benchmark consist-
ing of the following: 1. A large labeled subset of
the Switchboard (Godfrey et al., 1992) and Fisher
(David et al., 2004) conversational English audio
datasets, denoted as SWFI. 2. A new evaluation
metric, measuring how well the PHI words in the
input audio were identified and redacted, and how
well the rest of the audio was preserved.

To better understand the challenges of the
audio de-id task, we evaluate it both end-to-end
and by breaking it down and solving it using
individual components. Our pipeline (Fig. 1) first
produces transcripts from the audio using ASR,
proceeds by running text-based NER tagging, and
then redacts PHI tokens, using the aligned token
boundaries determined by ASR. Our tagger relies
on the state-of-the-art techniques for solving the
audio NER problem of recognizing entities in
audio transcripts (Lample et al., 2016; Ma and
Hovy, 2016). We leverage the available Automatic
Speech Recognition (ASR) technology, and use
its component of alignment back to audio.

1
https://g.co/audio-ner-annotations-data

https://g.co/audio-ner-annotations-data
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Finally, we evaluate our pipeline and de-
scribe its performance, both end-to-end and per-
component. Although results on audio are worse
than NER performance on text, the pipeline
achieves better results than expected despite the
compounding pipeline errors. Last, we analyze our
performance and provide insights for next steps.

2 Related Work

2.1 NER for Speech

Prior work addressed entity recognition for audio
recordings via the audio NER task: the detection
of entities in the text transcript of the audio in-
put. The majority of these works used a pipeline
approach, in which ASR is first applied to the au-
dio and then NER is applied on the noisy textual
output of the ASR. These works include discrim-
inative models (Sudoh et al., 2006), incorporating
OOV word indicators (Parada et al., 2011), hierar-
chical structure (Raymond, 2013), and conditional
random fields (Hatmi et al., 2013).

Many audio NER works learn from and mea-
sure performance on French datasets, such as ES-
TER (Galliano et al., 2009) and ETAPE (Galibert
et al., 2014). This may indirectly affect the overall
quality of these systems because the ASR compo-
nent, which is crucial in the pipeline approach but
is typically used “off-the-shelf”, has lower perfor-
mance in languages other than English.

An alternative end-to-end approach was pro-
posed by Ghannay et al. (2018), in which the
model accepts audio as input and outputs a tagged
word sequence which consists of normal words
and the NER labels in HTML-like tag encod-
ing. Their model did not attain reasonable perfor-
mance, perhaps due to the small training set.

We emphasize that both pipeline and end-to-end
approaches output tagged word sequences, and do
not propagate the recognized entity labels back for
redaction on the audio itself, which is the end goal
of our proposed audio de-ID task.

2.2 De-identification in the Health Domain

Previous efforts of de-ID in health care focused on
redaction of textual medical records. The main ap-
proach involves applying NER techniques to the
text, including rule-based (Ruch et al., 2000; Nea-
matullah et al., 2008) and machine learning (Guo
et al., 2006; Yang and Garibaldi, 2015) methods.

Adoption of neural network models boosted the
performance of NER on text without requiring

hand-crafted rules and complex feature engineer-
ing (Collobert et al., 2011; Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016; Dernon-
court et al., 2017a). Dernoncourt et al. (2017b) ap-
plied the model proposed in Lample et al. (2016)
to medical de-ID, achieving state-of-the-art per-
formance on the I2B2-2014 (Stubbs and Uzuner,
2015) de-ID challenge dataset. We have chosen
this architecture for the NER component of our
pipeline method (Section 5).

3 The Audio De-identification Task

The goal of the Audio de-ID task is to convert an
input audio stream into a modified audio stream
where the PHI words are redacted. In essence, the
goal of the task is to limit the ability of a listener
to identify the entities of the conversation while
leaving as much information as possible in order
to keep the audio understandable.

Formally, the input audio stream is a function
A(t) of time, that can be transcribed into a se-
quence of words W = {wj}, where wj is mapped
to the time interval in the audio Tj = [tstartj , tendj ).
We consider each word to be either PHI or non-
PHI, and let I denote the set of PHI words {j :
wj is PHI}.

The output of an audio de-ID algorithm is
a zero-one redaction function R(t), indicating
which parts of the audio stream are to be redacted,
where a value of zero indicates PHI information at
time t. The redacted audio stream can be obtained
by zeroing out the redacted part of the stream,
Aredacted(t) = R(t)A(t).

To evaluate the performance of a de-ID algo-
rithm, we term wj as fully-covered if R(t) is zero
for all t ∈ Tj , and define a corresponding indicator
function covered(wi). This in turn defines the fol-
lowing standard NER metrics for the audio de-ID
task:

TruePositives (TP ) =
∑
j∈I

covered(wj),

FalsePositives (FP ) =
∑
j 6∈I

covered(wj),

FalseNegatives (FN) =
∑
j∈I

1− covered(wj)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

Finding the exact time interval corresponding
to a word is not a trivial task, while redacting
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Dataset Medium # Notes # Tokens % PHI

I2B2’14 train Text 521 336,422 3.5
AMC’17 train Audio 4,629 8,348,899 0.02
SWFI train Audio 468 710,348 1.8
SWFI test 108 158,923 2.0

Table 1: Dataset statistics for train and test sets, show-
ing the number of notes (written or spoken), token
count, and percent of tokens which are PHI.

PHI Labels % I2B2’14 AMC’17 SWFI
train / test

Name 0.84% 0.12% 0.22% / 0.23%
Age 0.24% 0.01% 0.12% / 0.1%
Date 1.56% 0.03% 0.1% / 0.12%
Hospital 0.28% 0.004% -
Pharmacy - 0.01% -
Organization 0.025% 0.003% 0.48% / 0.59%
Location (General) 0.001% 0.004% 0.24% / 0.29%
State 0.07% - 0.15% / 0.16%
City 0.08% 0.003% 0.25% / 0.29%
Country 0.02% - 0.23% / 0.27%
Profession 0.04% - 0.23% / 0.27%
Holiday - - 0.12% / 0.07%
Season - - 0.04% / 0.03%

Table 2: Statistics for PHI labels as percent of total
tokens per dataset. Tags in bold are common to all
datasets and are used in Section 7

most of the interval Tj results in a similar de-ID
effect as fully covering all the interval. To this
end, we extend covered(wi) into the indicator
ρ−covered(wj) that is true iff R(t) is zero on at
least ρ proportion of interval Tj .

With this indicator function we further extend
the aforementioned NER metrics to TPρ, FPρ,
and FNρ, and correspondingly defineRecallρ and
Precisionρ. When ρ = 1 these metrics equal the
strict metrics. When ρ < 1 the new metrics de-
termine the quality of the system with respect to
redacting at least ρ of each audio interval in PHIs.

We note that the proposed metrics only evaluate
the redaction function R(t) on the word intervals.

4 Datasets

To create a benchmark for the audio de-ID task,
we use three datasets from two distinct domains:
conversational English and medical records. We
summarize the main dataset statistics in Table 1.
Importantly, we did not perform text normaliza-
tion specific to each domain.

Word WER Well Extended Shortened
Type Aligned Alignment Alignment

PHI 41.8 86% 5% 9%
non-PHI 38.3 81% 8% 12%

Table 3: ASR WER and token-audio alignment distri-
bution on sample conversations from the SWFI dataset.

In the domain of medical datasets, we use
I2B2’14 (Stubbs and Uzuner, 2015), which con-
sists of identified textual medical notes with
PHI tagging, and the Audio Medical Conversa-
tions dataset from (Chiu et al., 2017), denoted
AMC’17, which contains de-identified audio of
doctor-patient conversations and their correspond-
ing manual transcripts. Processing the AMC’17
conversations was facilitated by the fact that it is a
de-identified dataset, which provides us with the
locations of the PHI in the audio and the tran-
scripts. Three PHI types: names, dates and ages
were redacted, preserving type information, and
synthetic data was generated using dictionaries
and context-aware rules. First names were drawn
from the US Social Security Administration ba-
bies names registry2 and last names were drawn
from the Frequently Occurring Surnames list from
the 1990’s US Census3. Human annotators used
surrounding context to resolve the other PHI types
and filled in fake appropriate identifiers.

Notably, neither of the above-mentioned med-
ical datasets could serve as a benchmark for the
audio de-ID task, as I2B2’14 is text-based, and
AMC’17 contains only redacted audio conversa-
tions and is not publicly available. Therefore, we
focused on the conversational English domain,
where we generated a combined dataset SWFI
from the Switchboard (Godfrey et al., 1992)
and Fisher (David et al., 2004) datasets. These
datasets include hundreds of conversations in En-
glish about a variety of subjects, along with their
transcripts. To enable proper training and evalua-
tion for the audio de-ID task, we annotated all 250
Switchboard conversations, and 326 from Fisher.
Annotation included named PHI labels, and the
time intervals Tj = [t

(start)
j , t

(end)
j ) matching each

named PHI back into the audio. This dataset is
publicly available1 to allow for standardized eval-
uation of novel approaches to this task.

The annotation process began by tokenization
of the transcripts provided in both datasets using
white-space separators, removing special tran-
script characters and keeping word capitalization
in its original form. Following that, PHI word
annotation was performed manually. The results
can be seen in Table 2.

2https://www.ssa.gov/oact/babynames/
3https://www.census.gov/topics/

population/genealogy/data/1990_census.
htmlcensus_namefiles.html

ftn:data-public-url
 https://www.ssa.gov/oact/babynames/
https://www.census.gov/topics/population/genealogy/data/1990_census.htmlcensus_namefiles.html
https://www.census.gov/topics/population/genealogy/data/1990_census.htmlcensus_namefiles.html
https://www.census.gov/topics/population/genealogy/data/1990_census.htmlcensus_namefiles.html
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Figure 2: Neural architecture for text de-ID

As performing temporal labeling manually is
an arduous process, we opt for a semi-automatic
ASR-based procedure. To this end, we determine
word start and end times by aligning the manual
transcripts to audio intervals. We assess the quality
of this semi-automatic labeling scheme using hu-
man evaluation. For a random sample of 6 SWFI
conversations (3 Switchboard and 3 Fisher), we
slice the audio according to the aligned interval
times per transcript word, and measure both the
quality of the transcription, and that of the align-
ment. Table 3 shows the distribution of alignment
errors of the tokens from the sample conversa-
tions. These are denoted as good alignment, short
(i.e. ASR interval is shorter than actual word) and
extended (i.e. interval is longer than expected)
where all alignment errors are in the scale of 30-
60ms (1-2 audio frames).

5 Pipeline Models

We next describe the models we trained and eval-
uated to gain insights on the types of challenges
this task presents. We chose to use the pipeline
approach as an audio de-ID benchmark due to
the ubiquity and maturity of the ASR technology,
and abundance of training data for text NER. Our
pipeline models contain three main components:

1. An ASR system, which transcribes the audio
into text.

2. A NER tagger, which tags the transcript with
the required labels.

3. An alignment component, which maps each
word in the transcript back to its time interval
in the audio.

For the ASR component, we use Google
Cloud’s Speech API4 with the com-
mand and search model, which gave us the
best transcription accuracy on the data. For each
conversation, which usually contains two different
speakers, we send the entire audio to the service
to obtain the transcript. The API also returns alter-
native hypotheses for the corresponding text and
their confidence. We incorporate these alternative
hypotheses by taking the top-k ASR hypotheses
and feeding them into the next two stages. We
then take the logical OR of the detections on all of
the hypotheses. Unless stated otherwise, k = 1.

For the NER tagger component, our models use
the architecture described in Lample et al. (2016),
depicted in Fig. 2. This is a neural network model
using pre-trained GloVe word embeddings5 (Pen-
nington et al., 2014) and a character-based bi-
directional RNN to generate token embeddings,
followed by a bidirectional RNN, tag projection,
and CRF layers. We define three models, where
each model has a NER tagger trained on a differ-
ent dataset. The models are:

MAMC – Trained using the training data from the
AMC’17 dataset.

MSWFI – Trained using the training data from the
SWFI dataset.

MI2B2 – Trained using the training data from the
I2B2’14 dataset.

The MAMC and MSWFI models were trained
using the conversation transcripts. We use data
augmentation in order to increase robustness to
ASR errors, in particular to word deletion, inser-
tion, substitution, and inconsistent capitalization.
Data augmentation is carried out in several stages.
First we create an ASR transcript from the audio,
align it back to the reference transcript by min-
imizing the word-level edit distance, and trans-
fer the labels to the new transcript. For each of
the two transcripts, we then generate three ad-
ditional transcripts by changing word capitaliza-
tion to camel, lower and upper case. Finally, each
of the augmented transcripts is broken down into
segments of 20 speaker turns with a step of 10
turns, to resemble the utterance structure of the
ASR output. We include the three variants of the
MSWFI model: MSWFIReg uses no augmentations,

4cloud.google.com/speech-to-text
5nlp.stanford.edu/data/glove.6B.zip

cloud.google.com/speech-to-text
nlp.stanford.edu/data/glove.6B.zip


201

MSWFI MixCase uses mix-case augmentations only,
and MSWFI MixCase+Asr uses all mix-case and ASR
augmentations.

The MI2B2 model is tuned to achieve state-of-
the-art results on textual medical notes, such as
in Dernoncourt et al. (2017a); Liu et al. (2017).
It should be stressed that the model was used as
is, without an attempt to adapt it to the domain of
ASR output. MAMC and all MSWFI models are both
trained on conversational data, and should be bet-
ter adapted to the task. MAMC is trained on data
originating from the medical domain, as opposed
to MSWFI models which train on data from the En-
glish conversation target domain. This is offset by
the fact that MAMC is trained on a significantly
larger training set.

Finally, for the alignment component we add a
padding hyperparameter allowing a variable num-
ber of mismatched frames at either side of the
identified intervals. This slack in interval size is
used to compensate for alignment errors.

6 Experimental Settings

To test the performance of our models on the au-
dio de-ID task, we conducted a number of ex-
periments, described next. Section 7 then details
our results. We report Recall, Precision, and
F1 scores for all experiments, which are signif-
icantly more informative than accuracy due to a
low PHI/non-PHI ratio. We report results on the
SWFI test set using the tags which are shown
in bold in Table 2. We evaluate our performance
against the coverage threshold ρ ∈ [0, 1] which
is defined in Section 3. Specifically, we focus on
type-less metrics, as we care more about the to-
kens’ redaction than their type classification.

Our first experiment evaluates the performance
of MAMC, MSWFI, and MI2B2 on the SWFI test set.
First, to decouple their tagging performance from
the other pipeline errors, we measure their tagging
performance on the manually annotated transcripts
(referred to as NER score). NER errors may arise
due to train-test disparity, where the train and test
data are from different domains or different medi-
ums (e.g. text vs. audio), which results in differ-
ent discriminative models. Additionally, we mea-
sure their overall end-to-end score. We analyze the
complex behavior of the models’ precision by in-
specting the coverage distribution of PHI and non-
PHI tokens.

Our second experiment evaluates the effect

Model NER F1 (ρ)Recall / Precision / F1
MI2B2 0.37 / 0.48 / 0.41 0.37 (0.4)
MAMC 0.18 / 0.98 / 0.3 0.23 (0.35)
MSWFIReg 0.82 / 0.92 / 0.87 0.41 (0.4)
MSWFI MixCase 0.87 / 0.92 / 0.89 0.46 (0.4)
MSWFI MixCase+Asr 0.88 / 0.92 / 0.9 0.51 (0.4)

Table 4: NER score of the different NER models, and
their end-to-end F1 in their optimal choice of ρ.

Error type Count % of total

ASR Transcription errors 152 45.24
NER errors 168 50
Alignment errors 14 4.17
Manual Transcription errors 2 0.6

Table 5: Error analysis of a sample of MSWFI FN er-
rors, including errors from all components across the
pipeline and even occasional manual transcription er-
rors which contribute to both FP and FN errors.

of two significant hyperparameters on pipeline
performance using the SWFI test set:

• The number of alternative hypotheses passed
on from the ASR to the NER tagger.

• The amount of padding added around each
detection by the alignment component.

7 Results

In Table 3 we report the Word Error Rate (WER)
of our ASR component on the SWFI dataset,
which was computed by comparing the manual
and ASR transcripts of the entire audio. For WER
of PHI words, we removed all the non-PHI words
from manual ASR transcripts before computing
the WER. WER of non-PHI words was computed
similarly. We see that both WERs are substantial,
and can be thought of as an upper-bound on our
pipeline’s end-to-end performance.

Next, Table 4 shows the NER and their end-
to-end performance of each model for its F1 op-
timal choice of coverage threshold ρ. We can
also see that the MSWFI surpasses the others
in performance due to its training set being in-
domain and in the same medium. Additionally,
the MSWFI MixCase+Asr variant does not display any
advantage over its other variants when running
on manual transcripts, but gets significantly bet-
ter performance on the end-to-end scenario. The
difference between NER and end-to-end scores
is apparent, and may be attributed to additional
pipeline components of ASR and alignment. In-
terestingly, in the case of MSWFIReg, compounding
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Figure 3: End-to-end performance comparison of NER models – Recall (left), Precision (middle) and F1 (right).

Figure 4: Coverage distribution between PHI and non-PHI tokens (left) and End-to-end performance for different
pipeline parameters – number of hypotheses (center) and padding (right).

the WER and alignment error rate from Table 3
and the NER from Table 4 leads to an expected
Recall of approximately 0.44, yet the end-to-end
Recall at ρ = 0.5 is 0.53. This implies a non-
trivial co-dependence between errors in the differ-
ent components of the pipeline.

Figure 3 presents the end-to-end evaluation of
the different models with respect to the cover-
age threshold ρ. As expected,Recall is monotoni-
cally non-increasing with respect to the threshold.
Meanwhile, Precision (and consequently F1) are
not monotonic and have more complex behavior.
This behavior is due to difference in the distribu-
tion of the coverage between PHI and non-PHI,
which we see in Figure 4 (left). An interesting in-
sight is that most PHI words have more than half
their length redacted by the pipeline while non-
PHI words’ coverage is bi-modal, one mode close
to 0, and the other close to 1. A plausable explana-
tion for this behavior is that the FP s are derived
from alignment errors in low coverage, while the
high coverage FP s occur due to classification er-
rors, either due to ASR transcription mistakes or
due to model NER errors.

Finally, we show the end-to-end evaluation of
the pipeline using MSWFI MixCase+Asr with differ-

ent choices of the pipeline parameters. In Fig-
ure 4 (center) the performance of the pipeline
slightly increases when using additional alter-
native hypotheses, while a different experiment
shows that when using alternative hypotheses with
MSWFI MixCase performance decreases. This de-
crease is consistent with the hypotheses’ decreas-
ing confidence scores, which can be alleviated
with ASR training data but is not addressed by the
naive OR approach described in Section 5. This
leads us to seek new ways to utilize the additional
ASR artifacts, such as the hypotheses confidence
scores and speech lattice. In Section 8 we dis-
cuss possible directions to improve the pipeline’s
robustness to ASR errors. Last, Figure 4 (right)
shows that the choice of padding size does not im-
prove performance, but rather alters the value of
the optimal coverage threshold.

8 Conclusions

We introduced the audio de-ID task, an important
prerequisite for protecting privacy when process-
ing sensitive audio datasets in the medical domain
as well as other domains. To this end, we created
and made available a new test set benchmark de-
rived from annotating the Switchboard and Fisher
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audio datasets. We also presented new metrics for
the task, Recallρ and Precisionρ, as extensions
of standard Recall and Precision where words
are considered de-identified when at least a por-
tion ρ of their audio signal is redacted. Finally,
we detailed our algorithm for this task, a pipeline
approach consisting of three components: ASR,
NER on transcripts and a novel alignment from
tagged transcripts to audio for the actual redaction.

We showed that ASR performance is the main
impedance towards achieving results comparable
to text de-ID. In future work, we plan to address
this through several directions, including end-to-
end de-ID (Ghannay et al., 2018), lattice-based
techniques (Ladhak et al., 2016), and diarization
and segmentation of the audio as part of the tran-
scription process (Cerva et al., 2013).
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR, 12(Aug):2493–2537.

Christopher Cieri David, David Miller, and Kevin
Walker. 2004. The fisher corpus: a resource for the
next generations of speech-to-text. In in Proceed-
ings 4th International Conference on Language Re-
sources and Evaluation, pages 69–71.

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner, and
Peter Szolovits. 2017a. De-identification of patient
notes with recurrent neural networks. J. Am Med
Inform Assoc, 24(3):596–606.

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner,
and Peter Szolovits. 2017b. De-identification of pa-
tient notes with recurrent neural networks. Journal
of the American Medical Informatics Association,
24(3):596–606.

Olivier Galibert, Jeremy Leixa, Gilles Adda, Khalid
Choukri, and Guillaume Gravier. 2014. The etape
speech processing evaluation. In LREC, pages
3995–3999. Citeseer.

Sylvain Galliano, Guillaume Gravier, and Laura
Chaubard. 2009. The ester 2 evaluation campaign
for the rich transcription of french radio broadcasts.
In Tenth Annual Conference of the International
Speech Communication Association.

Sahar Ghannay, Antoine Caubrière, Yannick Estève,
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