
Proceedings of NAACL-HLT 2019, pages 56–63
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

56

Detecting Customer Complaint Escalation with Recurrent Neural
Networks and Manually-Engineered Features

Wei Yang,1,2 Luchen Tan,2 Chunwei Lu,2 Anqi Cui,2 Han Li,3 Xi Chen,3
Kun Xiong,2 Muzi Wang,5 Ming Li,1,2 Jian Pei,3,4 and Jimmy Lin1,2

1University of Waterloo 2RSVP.ai 3JD.com Inc.
4Simon Fraser University 5Tsinghua University

Abstract
Consumers dissatisfied with the normal dis-
pute resolution process provided by an e-
commerce company’s customer service agents
have the option of escalating their complaints
by filing grievances with a government author-
ity. This paper tackles the challenge of moni-
toring ongoing text chat dialogues to identify
cases where the customer expresses such an
intent, providing triage and prioritization for
a separate pool of specialized agents specially
trained to handle more complex situations. We
describe a hybrid model that tackles this chal-
lenge by integrating recurrent neural networks
with manually-engineered features. Experi-
ments show that both components are comple-
mentary and contribute to overall recall, out-
performing competitive baselines. A trial on-
line deployment of our model demonstrates its
business value in improving customer service.

1 Introduction

Customers today demand a high-quality online
shopping experience, which includes prompt re-
dress of their complaints if they are dissatisfied
with any aspect of their purchase or feel their
rights have been violated. Addressing such com-
plaints is critical to building brand loyalty and pre-
serving a company’s online reputation. In most
cases, complaints are first expressed to a com-
pany’s customer service agents. If their dispute
resolution efforts are not satisfactory, customers
may seek to further escalate the complaint beyond
the company’s representatives: two common es-
calation scenarios are to publicly complain about
their experiences on social media or to file a for-
mal grievance with a government authority such as
a consumer protection bureau. Both are obviously
detrimental to an e-commerce company.

In this work, we aim to identify cases of the
latter, where the customer remains dissatisfied af-
ter initial dispute resolution attempts and intends

to file a formal grievance with a governmental
agency. This is formulated as an online classifica-
tion problem over text chat dialogues, where our
goal is to preempt the escalation of the complaint
by connecting the customer with a specialized ser-
vice agent to intervene and provide a higher level
of attention.

Our work makes the following contributions:
To our knowledge, we are the first to formal-
ize and examine this problem of identifying com-
plaint escalation. This problem is more chal-
lenging than just performing sentiment analysis:
plenty of unhappy customers express negative af-
fect in their dialogues without escalating and fil-
ing additional grievances. Tackling this challenge
requires identifying the intent of the customer.
Our explorations began with Hierarchical Atten-
tion Networks (Yang et al., 2016), which we have
adapted and simplified for our task. As with
most real-world systems, our final model inte-
grates manually-engineered features, and we show
that such explicit features complement latent rep-
resentations learned by recurrent neural networks.
We evaluated our models both on retrospective
data and in a trial online deployment. Controlled
ablation studies show the contributions of neural
as well as non-neural signals, and confirm that our
model outperforms competitive baselines. For the
academic audience, we discuss factors that impact
production deployment: one important message is
that despite the effectiveness of neural networks in
addressing many NLP tasks, production systems
often still depend on hybrid approaches that inte-
grate manual feature engineering.

2 Background and Model Framework

The context of our problem is chat-based customer
service for JD.com, a major Chinese e-commerce
company. We focus on text chat initially for a

57

A:您好,京东客服1234号很高兴为您服务!
(Hi, agent id 1234 from JD.com, happy to assist you!)

C:我再三和你们说了地址, 结果你们还让我跑去原来的
地址,这要耽误我多少天
(I’ve told you the address several times already, but you’ve
wasted my time by making me go back to the original
address.)

A:您好,还麻烦您提供下订单号,妹子这边给您查询哦∼
(Hi, can you please provide me with the order number? I’ll
look into this for you!)

C:有很多单都这样,问题一直都在. 我们消费者还能不能
维权了.
(The same problem has happened on many orders. I want to
protect my rights as a consumer.)

...

Figure 1: Sample chat dialogue between a service agent
(A) and a customer (C).

few reasons: Many customers, especially younger
ones, prefer text-based interactions as opposed to
speaking with customer service agents. Text chat
avoids confounding errors due to imperfect speech
recognition and provides an easier starting point to
tackle this challenge.

We aim to deploy an automated monitoring sys-
tem that continuously scans all ongoing chat di-
alogues in (near) real time to identify customers
who intend to escalate their complaints. Sep-
arately, the company has an additional pool of
specialized service agents trained to handle these
more complex cases—these can be viewed as a
finite resource where the monitoring system pro-
vides triage, prioritizing the attention of these
agents. An angry customer, for example, might be
contacted separately in an attempt to address his
or her complaint to preempt the filing of additional
grievances. Detecting complaint escalation intents
can be viewed as a prediction problem over dia-
logue sequences, and our task can be modeled in
terms of maximizing recall at a fixed cutoff, where
the cutoff corresponds to available resources (e.g.,
the number of calls that these specialized service
agents can make in a day).

As a result of this setup, the input to our model
is a moving window of the most recent dialogue
between the customer and the service agent. A
sample is shown in Figure 1, along with English
translations. An obvious starting point is the Hier-
archical Attention Network (HAN) of Yang et al.
(2016), originally developed for document classi-
fication. The model uses two separate layers of
RNNs with attention mechanisms to encode con-

WattLSTM LSTM LSTM

W1 W2 Wn

 Encoded Dialogue Representation External Feature

VTf-idf

Softmax

a1

an

A

Wtf-idf

a2

Dialogue
Stream

btf-idf

C A C A C

NowBefore

ftf-idf

Figure 2: Our full hybrid model for detecting complaint
escalation intents.

text at the word- and sentence-levels, on top of
which a softmax is applied for classification. This
architecture was designed to capture signals at the
sentence level (with the word encoder) and then
integrate evidence across sentences (with the sen-
tence encoder) to model document structure in a
hierarchical manner.

Starting with the HAN architecture, preliminary
experiments revealed an interesting observation—
for our task, hierarchical modeling did not in-
crease classification accuracy, as compared to an
alternative, single-layer architecture. In other
words, we found that a “flat” architecture that
takes as input the concatenation of recent dialogue
(with a special end-of-utterance token) performed
just as well as HAN.

We explain this finding as follows: the sentence-
level encoder attempts to learn from the sequence
of utterances that comprise the chat history, which
does not help in our case since most of the use-
ful signal is concentrated at the end of the di-
alogue sequence. Thus, the hierarchical struc-
ture introduces more parameters without bringing
much benefit. In a production environment, sim-
pler models are preferable to more complex alter-
natives given comparable accuracy, and thus as a
result, we use this single-layered variant of HAN
as our base model. This is shown on the left side of
Figure 2. However, in a slight tweak from the orig-
inal HAN design, we use a bidirectional LSTM in-
stead of a bidirectional GRU as the word encoder.
We dub our model “Flat” Attention Network, or
FAN for short.

The base FAN model is then augmented
with several sources of additional signal from

58

No. Feature Mean λ

1 # of emojis 0.0188 10
2 # of ellipsis marks 0.0001 10
3 # of question marks 0.1348 10
4 # of exclamation marks 0.0152 10
5 # of sentences 0.5577 10
6 # of words 0.3664 100
7 Sentiment score 0.3486 -
8 # of words in TD1 0.0051 10
9 # of words in TD2 0.0834 100

Table 1: Statistics of external textual features used in
our complete model. TD1 and TD2 are two term dic-
tionaries.

manually-engineered features. The integration of
neural networks with external features in hybrid
systems is common in real-world production set-
tings for a few reasons: neural networks are of-
ten introduced to improve upon existing solutions,
and hence it makes sense to reuse existing compo-
nents. Manually-engineered features capture as-
pects of the domain that usually provide an “easy”
boost in terms of accuracy. In total, we use nine
features, described in Table 1.

Features 1 through 6 are self-explanatory and
represent counts of various token types and sim-
ple statistics. Feature 7 is the sentiment score
from a logistic regression classifier that we have
separately trained on social media data. The
training data contains 6.981 million Chinese mi-
croblog messages (Weibo) with at least one emoji
or emoticon. The emojis and emoticons are used
as (noisy) sentiment labels, e.g., happy face for
positive and sad face for negative. This dis-
tant supervision method is widely used in social
media (Pak and Paroubek, 2010; Lin and Kolcz,
2012). In our task, all emojis and emoticons are
removed from the text during training as they only
serve as the labels.

Features 8 and 9 are counts from two term dic-
tionaries, called TD1 and TD2. TD1 contains
121 terms and was manually gathered by exam-
ining customer dialogues. TD2 contains 8, 712
terms and was extracted by computing the point-
wise KL-divergence (Tan et al., 2016) between the
term distributions of positive vs. negative training
examples, and then selecting the top words accord-
ing to this measure. TD1 is a subset of TD2.

All features (except for Feature 7) are normal-
ized by min(1, fraw/λ), with λ shown in the final
column of Table 1. The mean values of the nor-
malized features are shown in the third column.

In addition, we compute the tf-idf representa-

tion of the chat dialogue using only the terms from
TD2 as features. From this, we wish to learn an
attentive weight for each dimension (i.e., terms in
TD2) and a bias parameter as follows:

ftf-idf =Wtf-idf · Vtf-idf + btf-idf

Finally, the nine external features in Table 1 and
ftf-idf are concatenated to the encoded sentence
representation from the base FAN model that is
fed into the fully-connected layer and softmax for
classification (shown in the right portion of Fig-
ure 2). The parameters Wtf-idf and btf-idf for ftf-idf
are trained via backpropagation along with the rest
of the network.

3 Experimental Setup

3.1 Dataset

For training, we gathered from the enterprise data
warehouse chat logs and records of escalated com-
plaints from February 1st to July 10th, 2018.
There are approximately three million chat logs
(one per customer) per day. For some complaints,
we have no record of chat dialogues with the cus-
tomer; these are cases where, for example, all in-
teractions occurred over the phone. These cases
comprise approximately 30% of the complaints,
which we removed. This yielded a total of 21k
complaints that serve as positive training exam-
ples. Of these, 45% were filed within a day af-
ter the last contact with customer service, 84%
were filed within a week, and 96% within a month.
From these numbers, we can see that detecting
complaint escalation intents is a very hard prob-
lem, since the number of complaints is very small
compared to the total volume of customer interac-
tions; we are trying to detect a very rare event.

3.2 Model Training

Applying FAN to our problem requires making
a few more design choices, since we are deal-
ing with a dialogue between two parties: Do we
take as input only the customer’s text, the ser-
vice agent’s text, or both? Preliminary experi-
ments show that, predictably, considering only the
agent’s text yields low accuracy—but somewhat
surprisingly, little is gained from taking both the
agent’s text and the customer’s text. We believe
that this is because the agent’s text contains fewer
signals (since they are usually following a script),
and given a fixed window size as input, it is better

59

to maximize the amount of text from the customer
that the model considers.

For positive training instances we selected the
last 100 words from the customer dialogue for
each complaint, under the assumption that the last
interaction with the customer is the source of the
complaint escalation. The window size was deter-
mined based on preliminary exploration, and we
apply Jieba1 for word segmentation. In total, we
have 21k positive examples. For negative train-
ing instances, we randomly sampled dialogue data
from customers who did not file a complaint. As
we show in our experiments, negative sampling
has an impact on the quality of our results.

We pretrained a 300-dimensional embedding
for all models using fastText (Bojanowski et al.,
2017) on the dialogue data in the training set with
ten million negative samples. To regularize the
network, we applied a dropout of 0.1 on the nor-
malized attention weights. We used sigmoid cross
entropy loss and the Adam optimizer (Kingma and
Ba, 2014) to train our model. The dimension of the
hidden layer in the final fully-connected network
was set to 100. We reserved 10% training data for
validation and found that our model reached the
best recall on the validation data after three epochs
of training, at which point we stopped training.

Our models were evaluated in two different
ways: first, retrospectively with dialogue data ex-
tracted from the enterprise data warehouse, and
second, from an online deployment.

3.3 Baselines

We compared variants of our neural model against
a number of baselines:

Logistic Regression (LR): We deployed two vari-
ants, one where all tokens (about 40 million) serve
as features (called LR-all) and the other where
only tokens from our dictionaries (TD1 and TD2)
are used (called LR-dict). In both cases, the fea-
ture vectors are weighted using tf-idf, and the
model was learned using scikit learn2 with default
hyperparameters.

LightGBM:3 We also tried a tree-based algorithm,
using exactly the feature vectors as the LR-dict
setting. We set the number of leaves to 32 and
the maximum depth to 8. Learning rate is set to
0.2 and the number of iterations is set to 100.

1https://github.com/fxsjy/jieba
2https://scikit-learn.org/
3https://github.com/Microsoft/LightGBM

Finally, we evaluated three previous neural net-
work models, using as input the final 100 words
from the customer dialogue (the same as our FAN
model): fastText (Joulin et al., 2017), CNN (Kim,
2014), and LSTM (Lai et al., 2015).

3.4 Evaluation Metrics

Our classification models are evaluated as follows:
We begin by gathering all the complaints filed on
a particular evaluation date. The size of this set is
denoted as |C|, which forms the ground truth for
computing recall. Recall at “T-0” is computed by
running our model on each customer’s chat data
on the day the complaint was filed at a particular
cutoff K, which we refer to as R0. Similarly, we
run our model on chat data from the day before
(“T-1”), two days before (“T-2”), etc. What we
call “Total” recall, or Rtot, is computed over the
union of all these 7 ·K predictions. The timespan
of a week for measuring recall balances the com-
plexity of the calculations with our observation
that 84% of escalated complaints are filed within
a week from last contact with the customer (See
Section 3.1).

Note that our approach of selecting a particular
day and looking “backwards” in time for evalua-
tion may seem a bit counter-intuitive. A slightly
more natural alternative would be to consider cus-
tomer dialogues on a particular day and look “for-
ward” in time to see if a complaint has been filed
within a week. This, however, does not allow us to
accurately compute the ground truth (i.e., the de-
nominator for the recall calculation), because the
customer dialogue from “today” might not be the
source of the complaint. For example, the cus-
tomer and the agent might have had a friendly in-
teraction “today”, and it was not until “tomorrow”
that the customer became dissatisfied with some
aspect of the service.

4 Results

4.1 Overall Model Effectiveness

Our main results are shown in Table 2 for data
from July 17th, where each row shows the effec-
tiveness of a model. For this evaluation, we ran
our model on the last 100 words of customer di-
alogue at the end of the day, also extracted from
the enterprise data warehouse. Here, we measure
recall at K = 3000. The number of complaints
filed on that day, or |C|, was 169. As we have
discussed before, detecting escalation intents is a

https://github.com/fxsjy/jieba
https://scikit-learn.org/
https://github.com/Microsoft/LightGBM

60

Models R0 Rtot

LR-dict 25 (14.8%) 49 (29.0%)
LR-all 22 (13.0%) 44 (26.4%)
LightGBM 22 (13.0%) 41 (24.3%)
fastText 12 (7.1%) 24 (14.2%)
CNN 27 (16.0%) 44 (26.0%)
LSTM 25 (14.8%) 52 (30.8%)
FANbase 28 (16.6%) 60 (35.5%)
FANtf-idf 36 (21.3%) 69 (40.8%)
FANfull 41 (24.3%) 75 (44.4%)

Table 2: Comparisons with baselines on July 17th,
where |C| = 169.

difficult problem because the events are quite rare.
The absolute recall numbers are difficult to inter-
pret when attempting to answer the basic question,
“Is the classifier good?” The answer to this ques-
tion, however, becomes very clear when we com-
pare FAN to the other baselines.

We evaluated three separate variants of our
model: FANbase contains only the recurrent neu-
ral network component, FANtf-idf adds the single
ftf-idf feature (which entails learning the weights
Wtf-idf for terms in the TD2 term dictionary),
and FANfull denotes the complete model (learning
Wtf-idf as well as taking advantage of the nine ex-
ternal features). In all model variants, we used 5M
negative examples. The FAN base model alone
beats all the other models, both those that use
neural networks and those that do not. Consis-
tent with the literature on text classification prior
to the advent of neural networks, logistic regres-
sion is a simple yet strong baseline, especially cou-
pled with feature selection: we see that using terms
from the TD2 dictionary as the feature space is
better than using all terms.

Looking at the recall of the neural network mod-
els, we see that fastText alone does not perform
very well, and a generic CNN achieves compara-
ble recall to logistic regression. The biggest differ-
ence between the LSTM and the FANbase model
is incorporation of attention, and so these results
show, consistent with the literature, that attention
is very important. Beyond FANbase, we see that
other aspects of our model also contribute to its ef-
fectiveness. Learning the weights Wtf-idf for terms
in our TD2 dictionary alongside the recurrent neu-
ral network in an end-to-end fashion boosts recall,
and manually-engineered features provide yet an-
other boost on top of that.

Neg R0 Rtot

10M 43 (25.4%) 73 (43.2%)
5M 42 (24.9%) 73 (43.2%)
1M 37 (21.9%) 72 (42.6%)
0.1M 31 (18.3%) 67 (39.6%)

Table 3: Effects of negative sampling on July 17th data.

Date R0 Rtot |C|
Jul 17th 41 (24.3%) 75 (44.4%) 169
Jul 18th 30 (17.1%) 57 (32.5%) 175
Jul 19th 43 (23.1%) 87 (46.7%) 186
Jul 20st 34 (24.1%) 65 (46.1%) 141
Jul 21st 37 (38.1%) 46 (47.4%) 97
Jul 22nd 33 (24.6%) 58 (43.3%) 134
Jul 23rd 32 (20.3%) 67 (42.4%) 158
Average 36 (23.6%) 65 (43.0%) 151

Table 4: Recall results over an entire week.

4.2 Effects of Negative Sampling
Table 3 shows the impact of negative sampling on
recall: Here, we fixed the positive samples and all
hyperparameters, and varied the number of nega-
tive training examples. Results show that increas-
ing the number of negative examples from 100k
to 5M has a noticeable impact on recall; however,
there appears to be little gained beyond 5M neg-
ative examples. From a practical perspective, the
amount of negative sampling determines the train-
ing time of the model in a roughly linear manner.
For this particular task, it appears that 5M repre-
sents a “sweet spot” that balances model quality
and training time.

Note that the results of using 5M negative sam-
ples in Table 3 are from a different trial than the
figures reported in Table 2, thus explaining small
differences in results for models trained with the
same settings.

4.3 Online Deployment
In Table 4, we report the recall of our model over
an entire week (evaluated retrospectively). Other
than outliers on July 18th and July 21st, we are
able to identify approximately a quarter of all es-
calated complaints on that day (i.e., R0), and the
recall seems relatively stable.

In moving towards online deployment, we ran a
simulation study on the July 17th data, where our
classifier was run every 20 minutes on all ongoing
customer chat dialogues. At each time step, the

61

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

Time (p.m.)

#
of

de
te

ct
io

ns
K=100

K=1000
K=3000
K=5000

Figure 3: Simulated deployment on July 17th data.

classifier returns K ∈ [100, 1000, 3000, 5000] re-
sults. Simulation output is presented in Figure 3
for the afternoon to evening hours, where the y
axis shows the number of detected escalated com-
plaints at that time, using all complaints filed over
the next week as the ground truth. Note that as we
explained above, it is not possible to compute re-
call because a complaint filed (for example) three
days later may be based on a customer interaction
that has not happened yet.

Two more caveats are necessary to properly in-
terpret these results: First, classification output at
different time steps include duplicates if a dia-
logue persists over a long period of time, and sec-
ond, the number of successfully detected cases fol-
lows general shopping trends (e.g., late afternoon
is when customer service is most active anyway).
Although these results are somewhat difficult to
interpret, it most closely matches our deployment
scenario, since the output of our classifier at regu-
lar intervals would feed a priority queue for further
enhanced customer service (and this queue would
obviously remove duplicates).

Satisfied with the effectiveness of our model,
it was deployed on live data starting in October
2018. We present results from a week’s worth
of data in Table 5. It should be emphasized that
these are “real” in-the-wild results from actual on-
line dialogues (whereas all previous results were
on retrospective data extracted from the data ware-
house). These result are compiled by running our
classifier every 20 minutes with K = 5000, but
R0 is computed with respect to the union of all
results after deduplication (so these values are not
directly comparable to previous tables). Also, note
that while Rtot is useful as a retrospective metric,

Date R0 |C|
Oct 8th 52 (21.76%) 239
Oct 9th 59 (21.00%) 281
Oct 10th 54 (25.59%) 211
Oct 11th 63 (25.93%) 243
Oct 12th 50 (28.41%) 176
Oct 13th 30 (25.00%) 120
Oct 14th 43 (27.22%) 158
Average 50 (24.50%) 204

Table 5: Results from the online deployment.

it does not make sense to measure in an online set-
ting. In terms of R0 as a business metric, we es-
timate that we have improved recall by 12–15%
over the previous model, based on comparable re-
ports in July.

5 Related Work and Discussion

Detection of complaint escalation intents is
straightforwardly formulated as a text classifica-
tion problem, which of course has been stud-
ied for decades. Prior to the neural wave, pop-
ular techniques include Naive Bayes (McCal-
lum and Nigam, 1998) and Support Vector Ma-
chines (Joachims, 1998) with feature engineering.
There is plethora of work based on CNNs (Le-
Cun et al., 1998; Kim, 2014; Johnson and Zhang,
2015; Conneau et al., 2017) and RNNs (Johnson
and Zhang, 2016; Zhou et al., 2015; Socher et al.,
2013); attention mechanisms have also been found
to be effective (Yang et al., 2016; Du et al., 2017;
Du and Huang, 2018).

We readily concede that there are at best mi-
nor modeling advances in this work and thus little
novelty from a purely academic perspective. How-
ever, our primary contribution is to provide a case
study to the broader community of how NLP so-
lutions are deployed in production settings. In this
respect, we make two points:

First, we feel that many models discussed in
the academic literature are too complex for op-
erational deployment: model complexity increases
training time, inference latency, and sensitivity to
hyperparameters, which can make models unsta-
ble, particularly to incoming data that is chang-
ing and evolving. This is why we are constantly
trying to simplify models without compromising
quality—for example, this led to our observation
that for our task, hierarchical modeling (Yang
et al., 2016) does not seem to contribute tangi-

62

ble value. In production deployments, there are
important tradeoffs between complexity, accuracy,
and inference latency that need to be considered,
and we do not see much discussion along these
lines in the academic literature. As an example of
the last consideration, taking the last N words of
customer dialogue represents a compromise, since
our model needs to monitor all ongoing dialogues
at a particular moment in time (numbering in the
tens of thousands).

Second, our deployed model is a mishmash of
manually-engineered features, external dictionar-
ies, and multiple neural components. It certainly
lacks the “elegance” of end-to-end neural solu-
tions that dominate the literature, but we dare say
that most deployed “real world” systems are com-
plex hybrids like ours. Most important business
problems are not solved de novo: there are usu-
ally already-deployed solutions we are trying to
improve upon, in which case it makes no sense to
ignore existing features and models and start from
scratch. In the academic literature, hybrid ap-
proaches are under-explored relative to their real-
world impact. It would be desirable to see more
papers that examine the evolution of approaches
from, for example, rule-based systems to manual
feature engineering to neural models.

6 Conclusion

There is often a chasm between research and prac-
tice, and this is certainly the case for many NLP
applications. Through this work, we hope to build
a bridge between academic researchers and indus-
trial practitioners by sharing some of our experi-
ences in designing and deploying hybrid models
combining neural networks and feature engineer-
ing. For the specific problem of detecting cus-
tomer complaint escalation intents, we have shown
that while neural networks have indeed advanced
the state of the art, manual feature engineering still
contributes to effectiveness and still has its place in
the “toolbox” of the practitioner.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann LeCun. 2017. Very deep convolutional net-
works for text classification. In Proceedings of the

15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 1107–1116.

Changshun Du and Lei Huang. 2018. Text classifica-
tion research with attention-based recurrent neural
networks. International Journal of Computers Com-
munications & Control, 13(1):50–61.

Jiachen Du, Lin Gui, Ruifeng Xu, and Yulan He. 2017.
A convolutional attention model for text classifica-
tion. In Proceedings of the National CCF Confer-
ence on Natural Language Processing and Chinese
Computing, pages 183–195.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In Proceedings of the 10th European
Conference on Machine Learning, pages 137–142.

Rie Johnson and Tong Zhang. 2015. Effective use
of word order for text categorization with convolu-
tional neural networks. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 103–112.

Rie Johnson and Tong Zhang. 2016. Supervised and
semi-supervised text categorization using LSTM for
region embeddings. In Proceedings of the 33rd In-
ternational Conference on International Conference
on Machine Learning, pages 526–534.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1746–
1751, Doha, Qatar.

Diederik P. Kingma and Jimmy Ba. 2014.
Adam: a method for stochastic optimization.
arXiv:1412.6980.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence, pages 2267–2273.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Jimmy Lin and Alek Kolcz. 2012. Large-scale machine
learning at Twitter. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, pages 793–804.

63

Andrew McCallum and Kamal Nigam. 1998. A com-
parison of event models for naive bayes text classi-
fication. In Proceedings of the AAAI Workshop on
Learning for Text Categorization, pages 41–48.

Alexander Pak and Patrick Paroubek. 2010. Twitter
as a corpus for sentiment analysis and opinion min-
ing. In Proceedings of the Seventh Conference on
International Language Resources and Evaluation
(LREC 2010), pages 1320–1326.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642.

Luchen Tan, Adam Roegiest, Charles L.A. Clarke, and
Jimmy Lin. 2016. Simple dynamic emission strate-
gies for microblog filtering. In Proceedings of the
39th International ACM SIGIR conference on Re-
search and Development in Information Retrieval,
pages 1009–1012.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1480–1489.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A C-LSTM neural network for text
classification. arXiv:1511.08630.

