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Abstract

Data for human-human spoken dialogues for
research and development are currently very
limited in quantity, variety, and sources; such
data are even scarcer in healthcare. In this
work, we investigate fast prototyping of a
dialogue comprehension system by leverag-
ing on minimal nurse-to-patient conversations.
We propose a framework inspired by nurse-
initiated clinical symptom monitoring conver-
sations to construct a simulated human-human
dialogue dataset, embodying linguistic char-
acteristics of spoken interactions like think-
ing aloud, self-contradiction, and topic drift.
We then adopt an established bidirectional
attention pointer network on this simulated
dataset, achieving more than 80% F1 score
on a held-out test set from real-world nurse-
to-patient conversations. The ability to au-
tomatically comprehend conversations in the
healthcare domain by exploiting only limited
data has implications for improving clinical
workflows through red flag symptom detec-
tion and triaging capabilities. We demonstrate
the feasibility for efficient and effective extrac-
tion, retrieval and comprehension of symptom
checking information discussed in multi-turn
human-human spoken conversations.

1

1.1 Problem Statement

Introduction

Spoken conversations still remain the most natu-
ral and effortless means of human communication.
Thus a lot of valuable information is conveyed
and exchanged in such an unstructured form. In
telehealth settings, nurses might call discharged
patients who have returned home to continue to
monitor their health status. Human language tech-
nology that can efficiently and effectively extract
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key information from such conversations is clin-
ically useful, as it can help streamline workflow
processes and digitally document patient medical
information to increase staff productivity. In this
work, we design and prototype a dialogue compre-
hension system in the question-answering manner,
which is able to comprehend spoken conversations
between nurses and patients to extract clinical in-
formation!.

1.2 Motivation of Approach

Machine comprehension of written passages has
made tremendous progress recently. Large quan-
tities of supervised training data for reading com-
prehension (e.g. SQuAD (Rajpurkar et al., 2016)),
the wide adoption and intense experimentation of
neural modeling (Seo et al., 2017; Wang et al.,
2017), and the advancements in vector represen-
tations of word embeddings (Pennington et al.,
2014; Devlin et al., 2018) all contribute signifi-
cantly to the achievements obtained so far. The
first factor, the availability of large scale datasets,
empowers the latter two factors. To date, there is
still very limited well-annotated large-scale data
suitable for modeling human-human spoken dia-
logues. Therefore, it is not straightforward to di-
rectly port over the recent endeavors in reading
comprehension to dialogue comprehension tasks.
In healthcare, conversation data is even scarcer
due to privacy issues. Crowd-sourcing is an ef-

'N.EC., PK,, R.S. and C.W.L. conceptualized the over-
all research programme; N.F.C. and L.Z. proposed and de-
veloped the proposed approach; L.Z. and N.F.C. developed
methods for data analysis; L.Z., L.J.H., N.ES., and N.E.C.
constructed the corpus; T.S.C, S.0., A.N. S.L.G, and M.R.M
acquired, prepared, and validated clinical data; L.Z., N.F.
C., PK., S.L.G., M.R.M and C.W.L interpreted results; L.Z.,
N.EC., LJH, N.ES., PK. and C.W.L wrote the paper.
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ficient way to annotate large quantities of data,
but less suitable for healthcare scenarios, where
domain knowledge is required to guarantee data
quality. To demonstrate the feasibility of a di-
alogue comprehension system used for extract-
ing key clinical information from symptom moni-
toring conversations, we developed a framework
to construct a simulated human-human dialogue
dataset to bootstrap such a prototype. Similar ef-
forts have been conducted for human-machine di-
alogues for restaurant or movie reservations (Shah
et al., 2018). To the best of our knowledge, no one
to date has done so for human-human conversa-
tions in healthcare.

1.3 Human-human Spoken Conversations

Human-human spoken conversations are a dy-
namic and interactive flow of information ex-
change. While developing technology to compre-
hend such spoken conversations presents similar
technical challenges as machine comprehension of
written passages (Rajpurkar et al., 2018), the chal-
lenges are further complicated by the interactive
nature of human-human spoken conversations:

(1) Zero anaphora is more common: Co-
reference resolution of spoken utterances from
multiple speakers is needed. For example, in Fig-
ure 1(a) headaches, the pain, it, head bulging all
refer to the patient’s headache symptom, but they
were uttered by different speakers and across mul-
tiple utterances and turns. In addition, anaphors
are more likely to be omitted (see Figure 1(a) A4)
as this does not affect the human listeners under-
standing, but it might be challenging for computa-
tional models.

(2) Thinking aloud more commonly occurs:
Since it is more effortless to speak than to type,
one is more likely to reveal her running thoughts
when talking. In addition, one cannot retract what
has been uttered, while in text communications,
one is more likely to confirm the accuracy of the
information in a written response and revise if nec-
essary before sending it out. Thinking aloud can
lead to self-contradiction, requiring more context
to fully understand the dialogue; e.g., in A6 in Fig-
ure 1(a), the patient at first says he has none of
the symptoms asked, but later revises his response
saying that he does get dizzy after running.

(3) Topic drift is more common and harder to
detect in spoken conversations: An example is
shown in Figure 1(a) in A3, where No is actu-
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Q1: Hi Mr.[name], you were discharged on [date]. There
are some questions i'd like to check with you.
A1: Ok, Ok.

Q2: Is your left leg still swollen? You said so the last time
| called you?
A2: Yes, only a bit when | drink too much water.

Q3: Well, | see, how about your cough?

A3: Cough? No... | get headaches sometimes.
Q4: How islthe pain}?---"

A4: Quite serious, cb‘{nes and goes, you know.
Q5: When did[itfirsf start?

A5: Ah... | first fétt my head bulging|maybe since two
weeks ago.

Q6: Headache, ok, got it. Any other symptoms? No
cough, no dizziness, no breathlessness?
A6: No no, | think I'm ok... Ah, | get dizzy after running.

(a) Multi-Turn Spoken Dialogue Example
Queries
Symptom _Attribute

Headache | Frequency

Dialogue
Multi-Turn Symptom
Checking Conversation

Question Answering Model

Swelling Extent -

only a bit ‘

Headache | Frequency | sometimes / comes and goes‘

(b) Proposed Dialogue Comprehension Task

Answers

Activity Extent Time Frequen Location
when drink too
Swelling much water only a bit left leg
since two sometimes /

Headache quite serious | weeks ago |comes and goes

Dizziness | after running
No Symptom:
Cough, Breathlessness.

(¢) Clinical Use Case: Extractive Summary of Symptom Checking Dialogues

Figure 1: Dialogue comprehension of symptom check-
ing conversations.

ally referring to cough in the previous question,
and then the topic is shifted to headache. In spo-
ken conversations, utterances are often incomplete
sentences so traditional linguistic features used in
written passages such as punctuation marks indi-
cating syntactic boundaries or conjunction words
suggesting discourse relations might no longer ex-
ist.

1.4 Dialogue Comprehension Task

Figure 1(b) illustrates the proposed dialogue com-
prehension task using a question answering (QA)
model. The input are a multi-turn symptom check-
ing dialogue D and a query () specifying a symp-
tom with one of its attributes; the output is the ex-
tracted answer A from the given dialogue. A train-
ing or test sample is defined as S = {D,Q, A}.
Five attributes, specifying certain details of clini-
cal significance, are defined to characterize the an-



swer types of A: (1) the time the patient has been
experiencing the symptom, (2) activities that trig-
ger the symptom (to occur or worsen), (3) the ex-
tent of seriousness, (4) the frequency occurrence
of the symptom, and (5) the location of symptom.
For each symptom/attribute, it can take on differ-
ent linguistic expressions, defined as entities. Note
that if the queried symptom or attribute is not men-
tioned in the dialogue, the groundtruth output is
“No Answer”, as in (Rajpurkar et al., 2018).

2 Related Work

2.1 Reading Comprehension

Large-scale reading comprehension tasks like
SQuAD (Rajpurkar et al.,, 2016) and MARCO
(Nguyen et al., 2016) provide question-answer
pairs from a vast range of written passages, cov-
ering different kinds of factual answers involv-
ing entities such as location and numerical val-
ues. Furthermore, HotpotQA (Yang et al., 2018)
requires multi-step inference and provides numer-
ous answer types. CoQA (Reddy et al., 2018) and
QuAC (Choi et al., 2018) are designed to mimic
multi-turn information-seeking discussions of the
given material. In these tasks, contextual rea-
soning like coreference resolution is necessary to
grasp rich linguistic patterns, encouraging seman-
tic modeling beyond naive lexical matching. Neu-
ral networks contribute to impressive progress in
semantic modeling: distributional semantic word
embeddings (Pennington et al., 2014), contex-
tual sequence encoding (Sutskever et al., 2014;
Gehring et al.,, 2017) and the attention mecha-
nism (Luong et al., 2015; Vaswani et al., 2017) are
widely adopted in state-of-the-art comprehension
models (Seo et al., 2017; Wang et al., 2017; Devlin
etal., 2018).

While language understanding tasks in dialogue
such as domain identification (Ravuri and Stol-
cke, 2015), slot filling (Kurata et al., 2016) and
user intent detection (Wen et al., 2016) have at-
tracted much research interest, work in dialogue
comprehension is still limited, if any. It is labor-
intensive and time-consuming to obtain a critical
mass of annotated conversation data for compu-
tational modeling. Some propose to collect text
data from human-machine or machine-machine
dialogues (Li et al., 2016; Shah et al., 2018). In
such cases, as human speakers are aware of cur-
rent limitations of dialogue systems or due to pre-
defined assumptions of user simulators, there are
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fewer cases of zero anaphora, thinking aloud, and
topic drift, which occur more often in human-
human spoken interactions.

2.2 NLP for Healthcare

There is emerging interest in research and devel-
opment activities at the intersection of machine
learning and healthcare” 3, of which much of the
NLP related work are centered around social me-
dia or online forums (e.g., (Wallace et al., 2014;
Lyles et al., 2013)), partially due to the world wide
web as a readily available source of information.
Other work in this area uses public data sources
such as MIMIC* in electronic health records: text
classification approaches have been applied to an-
alyze unstructured clinical notes for ICD code
assignment (Baumel et al., 2017) and automatic
intensive emergency prediction (Grnarova et al.,
2016). Sequence-to-sequence textual generation
has been used for readable notes based on medi-
cal and demographic recordings (Liu, 2018). For
mental health, there has been more focus on ana-
lyzing dialogues. For example, sequential model-
ing of audio and text have helped detect depres-
sion from human-machine interviews (Al Hanai
et al., 2018). However, few studies have examined
human-human spoken conversations in healthcare
settings.

3 Real-World Data Analysis
3.1 Data Preparation

We used recordings of nurse-initiated telephone
conversations for congestive heart failure patients
undergoing telemonitoring, post-discharge from
the hospital. The clinical data was acquired by
the Health Management Unit at Changi General
Hospital. This research study was approved by
the SingHealth Centralised Institutional Review
Board (Protocol 1556561515). The patients were
recruited during 2014-2016 as part of their routine
care delivery, and enrolled into the telemonitoring
health management program with consent for use
of anonymized versions of their data for research.

The dataset comprises a total of 353 conver-
sations from 40 speakers (11 nurses, 16 patients,
and 13 caregivers) with consent to the use of
anonymized data for research. The speakers are

ML4H: Machine Learning for Health, Workshop at
NeurIPS 2018 https://ml4health.github.i0/2018/

32018 Workshop on Health Intelligence (W3PHIAI 2018)

http://w3phiai2018.w3phi.com/
*https://mimic.physionet.org/



Utterance Type %0
Open-ended Inquiry 31.8
Detailed Inquiry 33.0
Multi-Intent Inquiry 15.5
Reconfirmation Inquiry 21.3
Inquiry with Transitional Clauses 8.5
Yes/No Response 52.1
Detailed Response 29.4
Response with Revision 5.1
Response with Topic Drift 11.1
Response with Transitional Clauses 9.5
Sampled Turn Number 1200

Table 1: Linguistic characterization of inquiry-
response types and their occurrence frequency from the
seed data in Section 3.2.

38 to 88 years old, equally distributed across gen-
der, and comprise a range of ethnic groups (55%
Chinese, 17% Malay, 14% Indian, 3% Eurasian,
and 11% unspecified). The conversations cover
11 topics (e.g., medication compliance, symptom
checking, education, greeting) and 9 symptoms
(e.g., chest pain, cough) and amount to 41 hours.

Data preprocessing and anonymization were
performed by a data preparation team, separate
from the data analysis team to maintain data con-
fidentiality. The data preparation team followed
standard speech recognition transcription guide-
lines, where words are transcribed verbatim to in-
clude false starts, disfluencies, mispronunciations,
and private self-talk. Confidential information
were marked and clipped off from the audio and
transcribed with predefined tags in the annotation.
Conversation topics and clinical symptoms were
also annotated and clinically validated by certified
telehealth nurses.

3.2 Linguistic Characterization on Seed Data

To analyze the linguistic structure of the inquiry-
response pairs in the entire 41-hour dataset, we
randomly sampled a seed dataset consisting of
1,200 turns and manually categorized them to
different types, which are summarized in Ta-
ble 1 along with the corresponding occurrence fre-
quency statistics. Note that each given utterance
could be categorized to more than one type. We
elaborate on each utterance type below.
Open-ended Inquiry: Inquiries about general
well-being or a particular symptom; e.g., “How
are you feeling?” and “Do you cough?”
Detailed Inquiry: Inquiries with specific details
that prompt yes/no answers or clarifications; e.g.,
“Do you cough at night?”
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Multi-Intent Inquiry: Inquiring more than one
symptom in a question; e.g., “Any cough, chest
pain, or headache?”

Reconfirmation Inquiry: The nurse reconfirms
particular details; e.g., “Really? At night?” and
“Serious or mild?”. This case is usually related to
explicit or implicit coreferencing.

Inquiry with Transitional Clauses: During spo-
ken conversations, one might repeat what the other
party said, but it is unrelated to the main clause
of the question. This is usually due to private
self-talk while thinking aloud, and such utterances
form a transitional clause before the speaker starts
a new topic; e.g., “Chest pain... no chest pain, 1
see... any cough?”.

Yes/No Response: Yes/No responses seem
straightforward, but sometimes lead to misunder-
standing if one does not interpret the context ap-
propriately. One case is tag questions: A:“You
don’t cough at night, do you?” B:‘Yes, yes”
A:“cough at night?” B:*“No, no cough”. Usually
when the answer is unclear, clarifying inquiries
will be asked for reconfirmation purposes.
Detailed Response: Responses that contain spe-
cific information of one symptom, like “I felt
tightness in my chest”.

Response with Revision: Revision is infrequent
but can affect comprehension significantly. One
cause is thinking aloud so a later response over-
rules the previous one; e.g., “No dizziness, oh
wait... last week I felt a bit dizzy when biking”.
Response with Topic Drift: When a symp-
tom/topic like headache is inquired, the response
might be: “Only some chest pain at night”, not re-
ferring to the original symptom (headache) at all.
Response with Transitional Clauses: Repeat-
ing some of the previous content, but often un-
related to critical clinical information and usually
followed by topic drift. For example, “Swelling...
swelling... I don’t cough at night”.

4 Simulating Symptom Monitoring
Dataset for Training

We divide the construction of data simulation into
two stages. In Section 4.1, we build templates
and expression pools using linguistic analysis fol-
lowed by manual verification. In Section 4.2, we
present our proposed framework for generating
simulated training data. The templates and frame-
work are verified for logical correctness and clini-
cal soundness.



Multi-Turn Dialogue:

Q1: Did you have any
headache at night?

Inquiry Templates:
Open-ended Inquiry,
Detailed Inquiry,

Detailed Inquiry:
Q1: Did you have any
#symptom# #timespan# ?

A1: No, no, but | have
some slight cough.
Q2: How about your
chest pain?

A2: Notatall ... ...

Inquiry Filling:
Q1: Did you have any
headache at night ?

ToDo Symptoms
ToDo Attributes
=

N

(" Annotation Pairs:

Yes/No Response,
Detailed Response,

Headache: None;
Chest Pain: None;

Filling:

Topic Drift Resp
A1: #negation#, but | have
#extent# #symptom#

Symptom Topics:
Headache, Cough,
Chest pain,

Breathlessness etc.

Response with Topic
Drift,

A1: No. no, but | have
some slight cough ...

Completed Symtpoms
Completed Attributes

Cough:
#extent#: some slight
\_Himespan#: at night )

(a) Topic Selection  (b) Template Selection

(c) Enriching Linguistic Expressions

(d) Multi-Turn State Tracking (e) Multi-Turn Annotation

Figure 2: Simulated data generation framework.

4.1 Template Construction

4.1.1 Linguistically-Inspired Templates

Each utterance in the seed data is categorized ac-
cording to Table 1 and then abstracted into tem-
plates by replacing entity phrases like cough and
often with respective placeholders “#symptom#”
and “#frequency#”. The templates are refined
through verifying logical correctness and inject-
ing expression diversity by linguistically trained
researchers. As these replacements do not alter
the syntactic structure, we interchange such place-
holders with various verbal expressions to enlarge
the simulated training set in Section 4.2. Clini-
cal validation was also conducted by certified tele-
health nurses.

4.1.2 Topic Expansion & Symptom
Customization

For the 9 symptoms (e.g. chest pain, cough) and
5 attributes (e.g., extent, frequency), we collect
various expressions from the seed data, and ex-
pand them through synonym replacement. Some
attributes are unique to a particular symptom; e.g.,
“left leg” in #location# is only suitable to de-
scribe the symptom swelling, but not the symptom
headache. Therefore, we only reuse general ex-
pressions like “slight” in #extent# across different
symptoms to diversify linguistic expressions.

4.1.3 Expression Pool for Linguistic Diversity

Two linguistically trained researchers constructed
expression pools for each symptom and each at-
tribute to account for different types of paraphras-
ing and descriptions. These expression pools are
used in Section 4.2 (¢).

4.2 Simulated Data Generation Framework

Figure 2 shows the five steps we use to generate
multi-turn symptom monitoring dialogue samples.
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(a) Topic Selection: While nurses might prefer to
inquire the symptoms in different orders depend-
ing on the patient’s history, our preliminary anal-
ysis shows that modeling results do not differ no-
ticeably if topics are of equal prior probabilities.
Thus we adopt this assumption for simplicity.

(b) Template Selection: For each selected topic,
one inquiry template and one response template
are randomly chosen to compose a turn. To min-
imize adverse effects of underfitting, we redis-
tributed the frequency distribution in Table 1: For
utterance types that are below 15%, we boosted
them to 15%, and the overall relative distribution
ranking is balanced and consistent with Table 1.
(c) Enriching Linguistic Expressions: The
placeholders in the selected templates are substi-
tuted with diverse expressions from the expression
pools in Section 4.1.3 to characterize the symp-
toms and their corresponding attributes.

(d) Multi-Turn Dialogue State Tracking: A
greedy algorithm is applied to complete conver-
sations. A “completed symptoms” list and a “to-
do symptoms” list are used for symptom topic
tracking. We also track the “completed attributes”
and “to-do attributes”. For each symptom, all re-
lated attributes are iterated. A dialogue ends only
when all possible entities are exhausted, generat-
ing a multi-turn dialogue sample, which encour-
ages the model to learn from the entire discussion
flow rather than a single turn to comprehend con-
textual dependency. The average length of a simu-
lated dialogue is 184 words, which happens to be
twice as long as an average dialogue from the real-
world evaluation set. Moreover, to model the roles
of the respondents, we set the ratio between pa-
tients and caregivers to 2:1; this statistic is inspired
by the real scenarios in the seed dataset. For both
the caregivers and patients, we assume equal prob-
ability of both genders. The corresponding pro-
nouns in the conversations are thus determined by



the role and gender of these settings.

(¢) Multi-Turn Sample Annotation: For each
multi-turn dialogue, a query is specified by a
symptom and an attribute. The groundtruth output
of the QA system is automatically labeled based
on the template generation rules, but also manu-
ally verified to ensure annotation quality. More-
over, we adopt the unanswerable design in (Ra-
jpurkar et al., 2018): when the patient does not
mention a particular symptom, the answer is de-
fined as “No Answer”. This process is repeated
until all logical permutations of symptoms and at-
tributes are exhausted.

Answerable Classifier

Answer Span

[ End Probability ]
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Embedding Symptom

Layer [SEQ] Wi W3 Wa Ws

Attribute

Dialogue Content Query

Figure 3: Bi-directional attention pointer network with
an answerable classifier for dialogue comprehension.

5 Experiments

5.1 Model Design

We implemented an established model in reading
comprehension, a bi-directional attention pointer
network (Seo et al., 2017), and equipped it with
an answerable classifier, as depicted in Figure 3.
First, tokens in the given dialogue D and query )
are converted into embedding vectors. Then the
dialogue embeddings are fed to a bi-directional
LSTM encoding layer, generating a sequence of
contextual hidden states. Next, the hidden states
and query embeddings are processed by a bi-
directional attention layer, fusing attention in-
formation in both context-to-query and query-
to-context directions. The following two bi-
directional LSTM modeling layers read the con-
textual sequence with attention. Finally, two re-
spective linear layers with softmax functions are
used to estimate token i’s p'%* and p$™? proba-
bility of the answer span A.

In addition, we add a special tag “[SEQ]” at the
head of D to account for the case of “No an-
swer” (Devlin et al., 2018) and adopt an answer-
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Training Samples 10k 50k 100k 150k
Base Evaluation Set:

EM Score 15.41 80.33 89.68 9145
F1 Score 50.63 89.18 9227 94.17
Augmented Evaluation Set:

EM Score 11.59 5722 7829 72.12
F1 Score 4936 7453 85.69 82.75
Real-World Evaluation Set:

EM Score 38.81 42.93 7823 7541
F1 Score 4629 52.68 80.18 78.09

Table 2: QA model evaluation results. Each sample is
a simulated multi-turn conversation.

able classifier as in (Liu et al., 2018). More specifi-
cally, when the queried symptom or attribute is not
mentioned in the dialogue, the answer span should
point to the tag “[SEQ]” and answerable probabil-
ity should be predicted as 0.

5.2 Implementation Details

The model was trained via gradient backpropaga-
tion with the cross-entropy loss function of an-
swer span prediction and answerable classifica-
tion, optimized by Adam algorithm (Kingma and
Ba, 2015) with initial learning rate of 0.001. Pre-
trained GloVe (Pennington et al., 2014) embed-
dings (size = 200) were used. We re-shuffled
training samples at each epoch (batch size = 16).
Out-of-vocabulary words (< 0.05%) were re-
placed with a fixed random vector. L2 regulariza-
tion and dropout (rate = 0.2) were used to allevi-
ate overfitting (Srivastava et al., 2014).

5.3 Evaluation Setup

To evaluate the effectiveness of our linguistically-
inspired simulation approach, the model is trained
on the simulated data (see Section 4.2). We de-
signed 3 evaluation sets: (1) Base Set (1,264 sam-
ples) held out from the simulated data. (2) Aug-
mented Set (1,280 samples) built by adding two
out-of-distribution symptoms, with corresponding
dialogue contents and queries, to the Base Set
(“bleeding” and “cold”, which never appeared in
training data). (3) Real-World Set (944 samples)
manually delineated from the the symptom check-
ing portions (approximately 4 hours) of real-world
dialogues, and annotated as evaluation samples.

5.4 Results

Evaluation results are in Table 2 with exact match
(EM) and F1 score in (Rajpurkar et al., 2016) met-
rics. To distinguish the correct answer span from
the plausible ones which contain the same words,
we measure the scores on the position indices of



EM F1

Augmented Evaluation Set:

Best-trained Model 78.29 85.69
w/o Bi-Attention 72.08 78.57
w/o Pre-trained Embedding  56.98 72.31
Real-World Evaluation Set:

Best-trained Model 78.23 80.18
w/o Bi-Attention 70.52 74.09
w/o Pre-trained Embedding  60.88 66.47

Table 3: Ablation experiments on 100K training size.

tokens. Our results show that both EM and F1
score increase with training sample size growing
and the optimal size in our setting is 100k. The
best-trained model performs well on both the Base
Set and the Augmented Set, indicating that out-of-
distribution symptoms do not affect the compre-
hension of existing symptoms and outputs reason-
able answers for both in- and out-of-distribution
symptoms. On the Real-World Set, we obtained
78.23 EM score and 80.18 F1 score respectively.
Error analysis suggests the performance drop
from the simulated test sets is due to the follow-
ing: 1) sparsity issues resulting from the expres-
sion pools excluding various valid but sporadic ex-
pressions. 2) nurses and patients occasionally chit-
chat in the Real-World Set, which is not simulated
in the training set. At times, these chit-chats make
the conversations overly lengthy, causing the in-
formation density to be lower. These issues could
potentially distract and confuse the comprehen-
sion model. 3) an interesting type of infrequent er-
ror source, caused by patients elaborating on pos-
sible causal relations of two symptoms. For exam-
ple, a patient might say “My giddiness may be due
to all this cough”. We are currently investigating
how to close this performance gap efficiently.

5.5 Ablation Analysis

To assess the effectiveness of bi-directional atten-
tion, we bypassed the bi-attention layer by directly
feeding the contextual hidden states and query em-
beddings to the modeling layer. To evaluate the
pre-trained GloVe embeddings, we randomly ini-
tialized and trained the embeddings from scratch.
These two procedures lead to 10% and 18% per-
formance degradation on the Augmented Set and
Real-World Set, respectively (see Table 3).

6 Conclusion

We formulated a dialogue comprehension task
motivated by the need in telehealth settings to ex-
tract key clinical information from spoken conver-
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sations between nurses and patients. We analyzed
linguistic characteristics of real-world human-
human symptom checking dialogues, constructed
a simulated dataset based on linguistically inspired
and clinically validated templates, and prototyped
a QA system. The model works effectively on a
simulated test set using symptoms excluded dur-
ing training and on real-world conversations be-
tween nurses and patients. We are currently im-
proving the model’s dialogue comprehension ca-
pability in complex reasoning and context under-
standing and also applying the QA model to sum-
marization and virtual nurse applications.
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