
Proceedings of NAACL-HLT 2019, pages 4119–4128
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

4119

Data Augmentation for Context-Sensitive Neural Lemmatization
Using Inflection Tables and Raw Text

Toms Bergmanis
School of Informatics

University of Edinburgh
T.Bergmanis@sms.ed.ac.uk

Sharon Goldwater
School of Informatics

University of Edinburgh
sgwater@inf.ed.ac.uk

Abstract

Lemmatization aims to reduce the sparse data
problem by relating the inflected forms of a
word to its dictionary form. Using context can
help, both for unseen and ambiguous words.
Yet most context-sensitive approaches require
full lemma-annotated sentences for training,
which may be scarce or unavailable in low-
resource languages. In addition (as shown
here), in a low-resource setting, a lemmatizer
can learn more from n labeled examples of
distinct words (types) than from n (contigu-
ous) labeled tokens, since the latter contain
far fewer distinct types. To combine the ef-
ficiency of type-based learning with the ben-
efits of context, we propose a way to train
a context-sensitive lemmatizer with little or
no labeled corpus data, using inflection tables
from the UniMorph project and raw text exam-
ples from Wikipedia that provide sentence con-
texts for the unambiguous UniMorph exam-
ples. Despite these being unambiguous exam-
ples, the model successfully generalizes from
them, leading to improved results (both over-
all, and especially on unseen words) in com-
parison to a baseline that does not use context.

1 Introduction

Many lemmatizers work on isolated wordforms
(Wicentowski, 2002; Dreyer et al., 2008; Rastogi
et al., 2016; Makarov and Clematide, 2018b,a).
Lemmatizing in context can improve accuracy
on ambiguous and unseen words (Bergmanis and
Goldwater, 2018), but most systems for context-
sensitive lemmatization must train on complete sen-
tences labeled with POS and/or morphological tags
as well as lemmas, and have only been tested with
20k-300k training tokens (Chrupała et al., 2008;
Müller et al., 2015; Chakrabarty et al., 2017).1

1The smallest of these corpora contains 20k tokens of
Bengali annotated only with lemmas, which Chakrabarty et al.
(2017) reported took around two person months to create.

Intuitively, though, sentence-annotated data is
inefficient for training a lemmatizer, especially in
low-resource settings. Training on (say) 1000 word
types will provide far more information about a
language’s morphology than training on 1000 con-
tiguous tokens, where fewer types are represented.
As noted above, sentence data can help with am-
biguous and unseen words, but we show here that
when data is scarce, this effect is small relative
to the benefit of seeing more word types.2 Mo-
tivated by this result, we propose a training data
augmentation method that combines the efficiency
of type-based learning and the expressive power
of a context-sensitive model.3 We use Lematus
(Bergmanis and Goldwater, 2018), a state-of-the-
art lemmatizer that learns from lemma-annotated
words in their N -character contexts. No predic-
tions about surrounding words are used, so fully
annotated training sentences are not needed. We
exploit this fact by combining two sources of train-
ing data: 1k lemma-annotated types (with con-
texts) from the Universal Dependency Treebank
(UDT) v2.24 (Nivre et al., 2017), plus examples ob-
tained by finding unambiguous word-lemma pairs
in inflection tables from the Universal Morphology
(UM) project5 and collecting sentence contexts for
them from Wikipedia. Although these examples
are noisy and biased, we show that they improve
lemmatization accuracy in experiments on 10 lan-
guages, and that the use of context helps, both
overall and especially on unseen words.

2 Method

Lematus (Bergmanis and Goldwater, 2018) is a
neural sequence-to-sequence model with attention

2Garrette et al. (2013) found the same for POS tagging.
3Code and data: https://bitbucket.org/

tomsbergmanis/data_augumentation_um_wiki
4http://hdl.handle.net/11234/1-2837
5http://unimorph.org

https://bitbucket.org/tomsbergmanis/data_augumentation_um_wiki
https://bitbucket.org/tomsbergmanis/data_augumentation_um_wiki
http://hdl.handle.net/11234/1-2837
http://unimorph.org


4120

inspired by the re-inflection model of Kann and
Schütze (2016), which won the 2016 SIGMOR-
PHON shared task (Cotterell et al., 2016). It
is built using the Nematus machine translation
toolkit,6 which uses the architecture of Sennrich
et al. (2017): a 2-layer bidirectional GRU encoder
and a 2-layer decoder with a conditional GRU (Sen-
nrich et al., 2017) in the first layer and a GRU in
the second layer.

Lematus takes as input a character sequence rep-
resenting the wordform in its N -character context,
and outputs the characters of the lemma. Special in-
put symbols are used to represent the left and right
boundary of the target wordform (<lc>, <rc>)
and other word boundaries (<s>). For example, if
N = 15, the system trained on Latvian would be
expected to produce the characters of the lemma
ceļš (meaning road) given input such as:
s a k a <s> p a š v a l d ı̄ b u

<lc> c e ļ u <rc>
u n <s> i e l u <s> r e ǵ i s t r

When N = 0 (Lematus 0-ch), no context is
used, making Lematus 0-ch comparable to other
systems that do not model context (Dreyer et al.,
2008; Rastogi et al., 2016; Makarov and Clematide,
2018b,a). In our experiments we use both Lematus
0-ch and Lematus 20-ch (20 characters of context),
which was the best-performing system reported by
Bergmanis and Goldwater (2018).

2.1 Data Augmentation
Our data augmentation method uses UM inflec-
tion tables and creates additional training exam-
ples by finding Wikipedia sentences that use the
inflected wordforms in context, pairing them with
their lemma as shown in the inflection table. How-
ever, we cannot use all the words in the tables be-
cause some of them are ambiguous: for example,
Figure 1 shows that the form ceļi could be lem-
matized either as ceļš or celis. Since we don’t
know which would be correct for any particular
Wikipedia example, we only collect examples for
forms which are unambiguous according to the UM
tables. However, this method is only as good as
the coverage of the UM tables. For example, if
UM doesn’t include a table for the Latvian verb
celt, then the underlined forms in Table 1 would be
incorrectly labeled as unambiguous.

6Code for Nematus: https://github.com/
EdinburghNLP/nematus, Code for Lematus:
https://bitbucket.org/tomsbergmanis/
lematus.git

noun: ceļš noun: celis
SG PL SG PL

NOM ceļš ceļi celis ceļi
GEN ceļa ceļu ceļa ceļu
DAT ceļam ceļiem celim ceļiem
ACC ceļu ceļus celi ceļus
INS ceļu ceļiem celi ceļiem
LOC ceļā ceļos celı̄ ceļos
VOC ceļ ceļi celi ceļi

Table 1: Example UM inflection tables for Latvian
nouns ceļš (road) and celis (knee). The crossed out
forms are examples of evidently ambiguous forms that
are not used for data augmentation because of being
shared by the two lemmas. The underlined forms ap-
pear unambiguous in this toy example but actually con-
flict with inflections of the verb celt (to lift).

There are several other issues with this method
that could potentially limit its usefulness. First, the
UM tables only include verbs, nouns and adjectives,
whereas we test the system on UDT data, which
includes all parts of speech. Second, by excluding
ambiguous forms, we may be restricting the added
examples to a non-representative subset of the po-
tential inflections, or the system may simply ignore
the context because it isn’t needed for these exam-
ples. Finally, there are some annotation differences
between UM and UDT.7 Despite all of these issues,
however, we show below that the added examples
and their contexts do actually help.

3 Experimental Setup

Baselines and Training Parameters We use
four baselines: (1) Lemming8 (Müller et al.,
2015) is a context-sensitive system that uses
log-linear models to jointly tag and lemmatize
the data, and is trained on sentences annotated
with both lemmas and POS tags. (2) The hard
monotonic attention model (HMAM)9 (Makarov
and Clematide, 2018b) is a neural sequence-to-
sequence model with a hard attention mechanism
that advances through the sequence monotonically.
It is trained on word-lemma pairs (without context)

7Recent efforts to unify the two resources have mostly
focused on validating dataset schema (McCarthy et al., 2018),
leaving conflicts in word lemmas unresolved. We estimated
(by counting types that are unambiguous in each dataset but
have different lemmas across them) that annotation inconsis-
tencies affect up to 1% of types in the languages we used.

8http://cistern.cis.lmu.de/lemming
9https://github.com/ZurichNLP/

coling2018-neural-transition-based-
morphology

https://github.com/EdinburghNLP/ nematus
https://github.com/EdinburghNLP/ nematus
https://bitbucket.org/tomsbergmanis/lematus.git
https://bitbucket.org/tomsbergmanis/lematus.git
http://cistern.cis.lmu.de/lemming
https://github.com/ZurichNLP/coling2018- neural-transition-based-morphology
https://github.com/ZurichNLP/coling2018- neural-transition-based-morphology
https://github.com/ZurichNLP/coling2018- neural-transition-based-morphology


4121

with character-level alignments learned in a prepro-
cessing step using an alignment model, and it has
proved to be competitive in low resource scenarios.
(3) Our naive Baseline outputs the most frequent
lemma (or one lemma at random from the options
that are equally frequent) for words observed in
training. For unseen words it outputs the wordform
itself. (4) We also try a baseline data augmentation
approach (AE Aug Baseline) inspired by Bergma-
nis et al. (2017) and Kann and Schütze (2017),
who showed that adding training examples where
the network simply learns to auto-encode corpus
words can improve morphological inflection results
in low-resource settings. The AE Aug Baseline
is a variant of Lematus 0-ch which augments the
UDT lemmatization examples by auto-encoding
the inflected forms of the UM examples (i.e., it
just treats them as corpus words). Comparing AE
Aug Baseline to Lematus 0-ch augmented with UM
lemma-inflection examples tells us whether using
the UM lemma information helps more than simply
auto-encoding more inflected examples.

To train the models we use the default settings
for Lemming and the suggested lemmatization pa-
rameters for HMAM. We mainly follow the hy-
perparameters used by Bergmanis and Goldwater
(2018) for Lematus; details are in Appendix B.

Languages and Training Data We conduct pre-
liminary experiments on five development lan-
guages: Estonian, Finnish, Latvian, Polish, and
Russian. In our final experiments we also add Bul-
garian, Czech, Romanian, Swedish and Turkish.
We vary the amount and type of training data (types
vs. tokens, UDT only, UM only, or UDT plus up to
10k UM examples), as described in Section 4.

To obtain N UM-based training examples, we
select the first N unambiguous UM types (with
their sentence contexts) from shuffled Wikipedia
sentences. For experiments with j > 1 examples
per type, we first find all UM types with at least
j sentence contexts in Wikipedia and then choose
the N distinct types and their j contexts uniformly
at random.

Evaluation To evaluate models’ ability to lem-
matize wordforms in their sentence context we
follow Bergmanis and Goldwater (2018) and use
the full UDT development and test sets. Unlike
Bergmanis and Goldwater (2018) who reported to-
ken level lemmatization exact match accuracy, we
report type-level micro averaged lemmatization ex-

Ambig. Unseen All

To
ke

ns

Baseline 41.0 26.6 31.0
Lemming 38.2 48.3 50.6

HMAM 41.4 50.2 52.1
Lematus 0-ch 39.9 43.7 46.8

Lematus 20-ch 38.4 42.8 45.8

Ty
pe

s

Baseline 45.0 26.6 32.4
Lemming N/A N/A N/A

HMAM 41.8 53.7 56.3
Lematus 0-ch 42.5 53.7 55.1

Lematus 20-ch 43.1 51.7 54.9

Table 2: Average type level lemmatization exact match
accuracy on five development languages in type and to-
ken based training data scenarios. Colour-scale is com-
puted over the whole Ambig. column and over all but
Baseline rows for the other columns.

act match accuracy. This measure better reflects
improvements on unseen words, which tend to be
rare but are more important (since a most-frequent-
lemma baseline does very well on seen words, as
shown by Bergmanis and Goldwater (2018)).

We separately report performance on unseen and
ambiguous tokens. For a fair comparison across
scenarios with different training sets, we count as
unseen only words that are not ambiguous and are
absent from all training sets/scenarios introduced in
Section 4. Due to the small training sets, between
70-90% of dev set types are classed as unseen in
each language. We define a type as ambiguous if
the empirical entropy over its lemmas is greater
than 0.1 in the full original UDT training splits.10

According to this measure, only 1.2-5.3% of dev set
types are classed as ambiguous in each language.

Significance Testing All systems are trained and
tested on ten languages. To test for statistically
significant differences between the results of two
systems we use a Monte Carlo method: for each
set of results (i.e. a set of 10 numerical values)
we generate 10000 random samples, where each
sample swaps the results of the two systems for
each language with a probability of 0.5. We then
obtain a p-value as the proportion of samples for
which the difference on average was at least as large
as the difference observed in our experiments.

4 Experiments, Results, and Discussion

Types vs. Tokens and Context in Very Low Re-
source Settings We compare training on the first

10This measure, adjusted ambiguity, was defined by Kirefu
(2018), who noticed that many frequent wordforms appear to
have multiple lemmas due to annotation errors. The adjusted
ambiguity filters out these cases.



4122

Figure 1: Average type level lemmatization exact
match accuracy on unseen words of five development
languages. X-axis: thousands of types in training data.

1k tokens vs. first 1k distinct types of the UDT
training sets. Table 2 shows that if only 1k ex-
amples are available, using types is clearly better
for all systems. Although Lematus does relatively
poorly on the token data, it benefits the most from
switching to types, putting it on par with HMAM
and suggesting is it likely to benefit more from ad-
ditional type data. Lemming requires token-based
data, but does worse than HMAM (a context-free
method) in the token-based setting, and we also
see no benefit from context in comparing Lematus
20-ch vs Lematus 0-ch. So overall, in this very
low-resource scenario with no data augmentation,
context does not appear to help.

Using UM + Wikipedia Only We now try train-
ing only on UM + Wikipedia examples, rather than
examples from UDT. We use 1k, 2k or 5k unam-
biguous types from UM with a single example con-
text from Wikipedia for each. With 5k types we
also try adding more example contexts (2, 3, or 5
examples for each type).

Figure 1 presents the results (for unseen words
only). As with the UDT experiments, there is little
difference between Lematus 20-ch and Lematus 0-
ch in the smallest data setting. However, when the
number of training types increases to 5k, the bene-
fits of context begin to show, with Lematus 20-ch
yielding a 1.6% statistically significant (p < 0.001)
improvement over Lematus 0-ch. The results for
increasing the number of examples per type are
numerically higher than the one-example case, but
the differences are not statistically significant.

It is worth noting that the accuracy even with 5k
UM types is considerably lower than the accuracy
of the model trained on only 1k UDT types (see
Table 2). We believe this discrepancy is due to
the issues of biased/incomplete data noted above.

DEVELOPMENT TEST

Am
bi

g.

Un
se

en

Al
l

Al
l

1k UDT types (No augmentation)

Baseline 49.1 30.8 36.7 -
HMAM 46.3 58.9†‡ 61.5†‡ 62.6†‡

Lematus 0-ch 46.5 55.0 58.5 59.1‡

Lematus 20-ch 45.0 54.3 57.7 57.7

1k UDT types + 1k UM types

Baseline 45.9 30.8 38.4 -
AE Aug Baseline 45.6 57.5 60.4 60.8

HMAM 45.9 60.2 64.2 64.3
Lematus 0-ch 46.6 59.0 63.4 63.6

Lematus 20-ch 49.8∗ 61.7∗† 65.5∗† 65.3†

1k UDT types + 5k UM types

Baseline 55.4∗†‡ 30.7 41.7 -
AE Aug Baseline 46.0 58.8 61.3 61.6

HMAM 46.7 60.8 65.7 65.7
Lematus 0-ch 46.2 61.5 66.1 66.4

Lematus 20-ch 48.6 65.4∗† 69.2∗† 69.5 ∗†

1k UDT types + 10k UM types

Baseline 54.9∗† 31.2 43.5 -
AE Aug Baseline 46.3 58.6 61.2 61.7

HMAM 45.4 60.8 65.5 65.3
Lematus 0-ch 45.5 62.1 66.4 66.4

Lematus 20-ch 49.5∗ 66.7∗† 70.6∗† 70.9∗†

Table 3: Average lemmatization accuracy for all 10
languages, trained on 1k UDT types (No aug.), or 1k
UDT plus 1k, 5k, or 10k UM types with contexts from
Wikipedia. The numerically highest scores in each
data setting are bold; ∗, †, and ‡ indicate statistically
significant improvements over HMAM (Makarov and
Clematide, 2018b), Lematus 0-ch and 20-ch, respec-
tively (all p < 0.05; see text for details). Colour-scale
is computed over the whole Ambig. column and over
all but Baseline rows for the other columns.

For example, we analyzed the Latvian data and
found that the available tables for nouns, verbs,
and adjectives give rise to 78 paradigm slots. The
17 POS tags in UDT give rise to about 10 times as
many paradigm slots, although only 448 are present
in the unseen words of the dev set. Of these, 197
are represented amongst the 1k UDT training types,
whereas only 25 are included in the 1k UM training
types. As a result, about 72% of the unseen types
of dev set have no representative of their paradigm
slot in 1k types of UM, whereas this figure is only
17% for the 1k types of UDT.
Data Augmentation Although UM + Wikipedia
examples alone are not sufficient to train a good
lemmatizer, they might improve a low-resource
baseline trained on UDT data. To see, we aug-
mented the 1k UDT types with 1k, 5k or 10k UM



4123

Figure 2: Lematus 20-ch lemmatization accuracy for
each language on all types in the dev sets.

types with contexts from Wikipedia.
Table 3 summarizes the results, showing that de-

spite the lower quality of the UM + Wikipedia ex-
amples, using them improves results of all systems,
and more so with more examples. Improvements
are especially strong for unseen types, which consti-
tute more than 70% of types in the dev set. Further-
more, the benefit of the additional UM examples is
above and beyond the effect of auto-encoding (AE
Aug Baseline) for all systems in all data scenarios.

Considering the two context-free models,
HMAM does better on the un-augmented 1k UDT
data, but (as predicted by our results above) it bene-
fits less from data augmentation than does Lematus
0-ch, so with added data they are statistically equiv-
alent (p = 0.07 on the test set with 10k UM).

More importantly, Lematus 20-ch begins to out-
perform the context-free models with as few as 1k
UM + Wikipedia examples, and the difference in-
creases with more examples, eventually reaching
over 4% better on the test set than the next best
model (Lematus 0-ch) when 10k UM + Wikipedia
examples are used (p < 0.001) This indicates that
the system can learn useful contextual cues even
from unambiguous training examples.

Finally, Figure 2 gives a breakdown of Lematus
20-ch dev set accuracy for individual languages,
showing that data augmentation helps consistently,
although results suggest diminishing returns.

Data Augmentation in Medium Resource Set-
ting To examine the extent to which augmented
data can help in the medium resource setting of 10k
continuous tokens of UDT used in previous work,
we follow Bergmanis and Goldwater (2018) and
train Lematus 20-ch models for all ten languages
using the first 10k tokens of UDT and compare
them with models trained on 10k tokens of UDT
augmented with 10k UM types. To provide a better
comparison of our results, we report both the type
and the token level development set accuracy. First

Type accuracy: Ambig. Unseen All

1k UDT+10k UM 49.5 66.7 70.6
10k UDT tok. 59.6 71.4 76.6
10k UDT tok.+10k UM 60.8 75.1 80.1

Token accuracy: Ambig. Uns. All

1k UDT+10k UM 55.5 66.5 77.0
10k UDT tok. 72.4 72.5 85.3
10k UDT tok.+10k UM 72.3 75.3 87.3

Table 4: Lematus 20-ch average lemmatization type
and token accuracy for all 10 languages, trained on 1k
UDT types, 1k UDT augmented with 10k UM types,
10k UDT continuous tokens, or 10k UDT continuous
tokens augmented with 10k UM types. Unless speci-
fied otherwise data consists of distinct types.

of all, Table 4 shows that training on 10k continu-
ous tokens of UDT yields a token level accuracy
that is about 8% higher than when using the 1k
types of UDT augmented with 10k UM types—the
best-performing data augmentation systems (see
Table 3). Again, we believe this performance gap
is due to the issues with the biased/incomplete data
noted above. For example, we analyzed errors that
were unique to the model trained on the Latvian
augmented data and found that 41% of the errors
were due to wrongly lemmatized words other than
nouns, verbs, and adjectives—the three POSs with
available inflection tables in UM. For instance, im-
properly lemmatized pronouns amounted to 14%
of the errors on the Latvian dev set. Table 4 also
shows that UM examples with Wikipedia contexts
benefit lemmatization not only in the low but also
the medium resource setting, yielding statistically
significant type and token level accuracy gains over
models trained on 10k UDT continuous tokens
alone (for both Unseen and All p < 0.001).

5 Conclusion
We proposed a training data augmentation method
that combines the efficiency of type-based learn-
ing and the expressive power of a context-sensitive
lemmatization model. The proposed method uses
Wikipedia sentences to provide contextualized ex-
amples for unambiguous inflection-lemma pairs
from UniMorph tables. These examples are noisy
and biased, but nevertheless they improve lemma-
tization accuracy on all ten languages both in low
(1k) and medium (10k) resource settings. In par-
ticular, we showed that context is helpful, both
overall and especially on unseen words—the first
work we know of to demonstrate improvements
from context in a very low-resource setting.



4124

References

Joakim Nivre et al. 2017. Universal dependencies 2.0
CoNLL 2017 shared task development and test data.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University.

Toms Bergmanis and Sharon Goldwater. 2018. Con-
text Sensitive Neural Lemmatization with Lematus.
In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Toms Bergmanis, Katharina Kann, Hinrich Schütze,
and Sharon Goldwater. 2017. Training Data Aug-
mentation for Low-Resource Morphological Inflec-
tion. In Proceedings of the CoNLL-SIGMORPHON
2017 Shared Task: Universal Morphological Rein-
flection, Vancouver, Canada. Association for Com-
putational Linguistics.

Abhisek Chakrabarty, Onkar Arun Pandit, and Utpal
Garain. 2017. Context Sensitive Lemmatization Us-
ing Two Successive Bidirectional Gated Recurrent
Networks. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1481–1491, Van-
couver, Canada. Association for Computational Lin-
guistics.

Grzegorz Chrupała, Georgiana Dinu, and Josef van
Genabith. 2008. Learning Morphology with Mor-
fette. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared taskmor-
phological reinflection. In Proceedings of the 14th
SIGMORPHON Workshop on Computational Re-
search in Phonetics, Phonology, and Morphology,
pages 10–22.

Markus Dreyer, Jason R Smith, and Jason Eisner. 2008.
Latent-Variable Modeling of String Transductions
with Finite-State Methods. In Proceedings of the
conference on empirical methods in natural lan-
guage processing, pages 1080–1089. Association
for Computational Linguistics.

Dan Garrette, Jason Mielens, and Jason Baldridge.
2013. Real-world semi-supervised learning of pos-
taggers for low-resource languages. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 583–592.

Katharina Kann and Hinrich Schütze. 2016. MED: The
LMU system for the SIGMORPHON 2016 shared
task on morphological reinflection. In Proceedings
of ACL. Association for Computational Linguistics.

Katharina Kann and Hinrich Schütze. 2017. Unlabeled
Data for Morphological Generation With Character-
Based Sequence-to-Sequence Models. In Proceed-
ings of the First Workshop on Subword and Charac-
ter Level Models in NLP, pages 76–81.

Faheem Kirefu. 2018. Exploring Context Represen-
tations for Neural Lemmatisation. Master’s thesis,
University of Edinburgh.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the associ-
ation for computational linguistics companion vol-
ume proceedings of the demo and poster sessions,
pages 177–180.

Peter Makarov and Simon Clematide. 2018a. Imitation
Learning for Neural Morphological String Transduc-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2877–2882.

Peter Makarov and Simon Clematide. 2018b. Neural
Transition-based String Transduction for Limited-
Resource Setting in Morphology. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 83–93.

Arya D McCarthy, Miikka Silfverberg, Ryan Cotterell,
Mans Hulden, and David Yarowsky. 2018. Marrying
Universal Dependencies and Universal Morphology.
In Proceedings of the Second Workshop on Univer-
sal Dependencies (UDW 2018), pages 91–101.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint Lemmatization and
Morphological Tagging with Lemming. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2268–
2274, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Lutz Prechelt. 1998. Early Stopping-but When? Neu-
ral Networks: Tricks of the trade, pages 553–553.

Ofir Press and Lior Wolf. 2017. Using the Output Em-
bedding to Improve Language Models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, volume 2, pages 157–163.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting Finite-State Transductions With
Neural Context. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 623–633.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Vale-
rio Miceli Barone, Jozef Mokry, and Maria Nadejde.



4125

2017. Nematus: a toolkit for neural machine trans-
lation. CoRR, abs/1703.04357.

Richard Wicentowski. 2002. Modeling and learning
multilingual inflectional morphology in a minimally
supervised framework. Ph.D. thesis, Johns Hopkins
University.

A Lematus Training

Lematus is implemented using the Nematus ma-
chine translation toolkit11. We use default training
parameters of Lematus as specified by Bergma-
nis and Goldwater (2018) except for early stopping
with patience (Prechelt, 1998) which we increase to
20. Similar to Bergmanis and Goldwater (2018) we
use the first epochs as a burn-in period, after which
we validate the current model by its lemmatization
exact match accuracy on the first 3k instances of
development set and save this model if it performs
better than the previous best model. We choose a
burn-in period of 20 and validation interval of 5
epochs for models that we train on datasets up to
2k instances and a burn-in period of 10 and valida-
tion interval of 2 epochs for others. As we work
with considerably smaller datasets than Bergma-
nis and Goldwater (2018) we reduce the effective
model size and increase the rate of convergence
by tying the input embeddings of the encoder, the
decoder and the softmax output embeddings (Press
and Wolf, 2017).

B Data Preparation

Wikipedia database dumps contain XML structured
articles that are formatted using the wikitext markup
language. To obtain wordforms in their sentence
context we 1) use WikiExtractor12 to extract plain
text from Wikipedia database dumps, followed by
scripts from Moses statistical machine translation
system13 (Koehn et al., 2007) to 2) split text into
sentences (split-sentences.perl), and 3) extract sep-
arate tokens (tokenizer.perl). Finally, we shuffle
the extracted sentences to encourage homogeneous
type distribution across the entire text.

11https://github.com/EdinburghNLP/
nematus

12https://github.com/attardi/
wikiextractor

13https://github.com/moses-smt/
mosesdecoder

https://github.com/EdinburghNLP/nematus
https://github.com/EdinburghNLP/nematus
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder


4126

C Result Breakdown by Language

Type accuracy: Ambig. Unseen All
B

ul
ga

ri
an

Baseline 63.5 39.3 45.0
AE Aug Baseline - - -

HMAM 50.7 61.0 63.5
Lematus 0-ch 45.9 51.3 55.7

Lematus 20-ch 41.6 47.2 52.1

C
ze

ch

Baseline 38.1 31.2 33.0
AE Aug Baseline - - -

HMAM 45.2 66.8 66.7
Lematus 0-ch 40.7 59.9 60.1

Lematus 20-ch 40.1 58.3 58.6

E
st

on
ia

n Baseline 51.0 24.1 32.0
AE Aug Baseline - - -

HMAM 39.9 41.2 46.2
Lematus 0-ch 38.0 42.8 47.6

Lematus 20-ch 47.8 39.9 45.9

Fi
nn

is
h

Baseline 46.4 21.3 26.1
AE Aug Baseline - - -

HMAM 44.7 48.0 50.4
Lematus 0-ch 44.4 41.5 44.9

Lematus 20-ch 44.6 43.0 46.0

L
at

vi
an

Baseline 42.4 25.6 31.6
AE Aug Baseline - - -

HMAM 44.0 52.6 55.6
Lematus 0-ch 47.1 51.8 55.2

Lematus 20-ch 43.1 52.1 55.2

Po
lis

h

Baseline 42.9 26.6 33.3
AE Aug Baseline - - -

HMAM 41.2 60.5 62.4
Lematus 0-ch 40.9 60.4 62.6

Lematus 20-ch 35.5 59.7 62.2

R
om

an
ia

n Baseline 27.6 34.9 40.0
AE Aug Baseline - - -

HMAM 38.8 55.1 57.9
Lematus 0-ch 44.6 50.2 54.5

Lematus 20-ch 40.7 50.9 54.9

R
us

si
an

Baseline 43.0 34.9 39.0
AE Aug Baseline - - -

HMAM 39.3 66.4 67.0
Lematus 0-ch 42.3 63.4 65.4

Lematus 20-ch 44.6 63.7 65.5

Sw
ed

is
h Baseline 77.8 42.8 52.7

AE Aug Baseline - - -
HMAM 58.5 67.7 72.6

Lematus 0-ch 59.5 64.1 70.1
Lematus 20-ch 54.0 62.6 68.1

Tu
rk

is
h

Baseline 58.8 26.6 33.6
AE Aug Baseline - - -

HMAM 60.2 69.6 72.3
Lematus 0-ch 61.8 64.7 68.4

Lematus 20-ch 58.2 65.4 68.6

Table 5: Individual type level lemmatization ac-
curacy for all 10 languages on development set,
trained on 1k UDT types (no augmentation) with
contexts from Wikipedia. The numerically highest
scores for each language are bold. For the summary
of results see Table 3.

Type accuracy: Ambig. Unseen All

B
ul

ga
ri

an

Baseline 64.3 39.3 47.2
AE Aug Baseline 49.2 60.3 63.3

HMAM 41.4 63.8 67.4
Lematus 0-ch 49.2 59.2 64.2

Lematus 20-ch 53.3 61.7 66.2

C
ze

ch

Baseline 40.3 31.2 34.2
AE Aug Baseline 42.5 63.6 63.6

HMAM 42.5 64.9 66.6
Lematus 0-ch 38.9 58.7 60.9

Lematus 20-ch 53.3 61.7 66.2

E
st

on
ia

n Baseline 58.1 24.1 34.4
AE Aug Baseline 41.4 42.6 47.4

HMAM 47.9 43.8 51.4
Lematus 0-ch 48.1 45.2 52.5

Lematus 20-ch 45.4 46.3 52.9

Fi
nn

is
h

Baseline 46.3 21.3 27.4
AE Aug Baseline 44.3 43.3 45.5

HMAM 45.6 55.7 59.3
Lematus 0-ch 47.1 55.2 59.3

Lematus 20-ch 49.2 56.6 60.3
L

at
vi

an

Baseline 45.4 25.6 33.7
AE Aug Baseline 38.8 52.2 54.9

HMAM 42.7 52.7 56.9
Lematus 0-ch 45.2 51.8 56.4

Lematus 20-ch 48.6 56.3 59.2

Po
lis

h

Baseline 46.3 26.6 35.4
AE Aug Baseline 37.5 62.7 64.8

HMAM 37.4 62.0 66.4
Lematus 0-ch 45.3 62.3 67.1

Lematus 20-ch 38.1 66.9 70.3

R
om

an
ia

n Baseline 37.7 34.9 43.3
AE Aug Baseline 42.6 53.2 57.0

HMAM 48.3 57.3 62.7
Lematus 0-ch 51.1 57.0 62.8

Lematus 20-ch 49.0 55.9 61.2

R
us

si
an

Baseline 44.4 34.7 40.6
AE Aug Baseline 42.6 65.7 67.1

HMAM 43.2 66.1 68.3
Lematus 0-ch 38.7 64.6 67.3

Lematus 20-ch 50.3 67.6 70.4

Sw
ed

is
h Baseline 78.4 42.8 54.2

AE Aug Baseline 58.4 64.8 70.3
HMAM 53.5 68.9 73.8

Lematus 0-ch 48.8 70.9 75.4
Lematus 20-ch 56.4 69.7 74.8

Tu
rk

is
h

Baseline 59.9 26.6 35.5
AE Aug Baseline 58.6 66.9 69.9

HMAM 56.1 67.0 69.4
Lematus 0-ch 54.1 65.2 67.8

Lematus 20-ch 62.9 70.6 73.7

Table 6: Individual type level lemmatization ac-
curacy for all 10 languages on development set,
trained on 1k UDT types plus 1k UM types with
contexts from Wikipedia. The numerically highest
scores for each language are bold. For the summary
of results see Table 3.



4127

Type accuracy: Ambig. Unseen All
B

ul
ga

ri
an

Baseline 67.2% 39.3% 50.0%
AE Aug Baseline 47.9% 62.6% 65.0%

HMAM 44.3% 68.2% 72.1%
Lematus 0-ch 43.1% 67.0% 71.1%

Lematus 20-ch 50.4% 65.9% 70.0%

C
ze

ch

Baseline 43.0% 31.2% 36.8%
AE Aug Baseline 43.2% 66.9% 66.6%

HMAM 41.0% 61.9% 64.7%
Lematus 0-ch 39.5% 61.6% 64.4%

Lematus 20-ch 42.6% 68.4% 69.7%

E
st

on
ia

n Baseline 62.9% 24.1% 37.1%
AE Aug Baseline 43.1% 40.3% 45.3%

HMAM 48.0% 44.9% 53.3%
Lematus 0-ch 51.3% 45.2% 53.5%

Lematus 20-ch 48.6% 49.7% 56.3%

Fi
nn

is
h

Baseline 49.4% 21.3% 30.3%
AE Aug Baseline 42.5% 44.9% 47.6%

HMAM 44.0% 58.4% 62.5%
Lematus 0-ch 45.9% 60.8% 64.7%

Lematus 20-ch 52.5% 61.9% 65.5%

L
at

vi
an

Baseline 45.6% 25.6% 35.9%
AE Aug Baseline 39.6% 53.4% 55.3%

HMAM 45.2% 52.3% 57.6%
Lematus 0-ch 43.8% 54.5% 59.1%

Lematus 20-ch 44.7% 57.6% 61.1%

Po
lis

h

Baseline 50.4% 26.6% 39.2%
AE Aug Baseline 38.8% 64.1% 66.2%

HMAM 41.6% 62.3% 68.4%
Lematus 0-ch 43.3% 65.2% 70.7%

Lematus 20-ch 40.3% 69.7% 73.4%

R
om

an
ia

n Baseline 44.3% 34.9% 47.9%
AE Aug Baseline 41.3% 54.9% 58.4%

HMAM 50.2% 58.4% 65.6%
Lematus 0-ch 51.4% 60.8% 67.2%

Lematus 20-ch 47.9% 62.6% 67.7%

R
us

si
an

Baseline 48.5% 34.7% 44.4%
AE Aug Baseline 42.1% 65.5% 66.5%

HMAM 46.4% 65.5% 69.7%
Lematus 0-ch 40.5% 64.4% 68.5%

Lematus 20-ch 42.7% 71.1% 73.8%

Sw
ed

is
h Baseline 80.6% 42.8% 58.0%

AE Aug Baseline 58.7% 67.3% 71.4%
HMAM 51.9% 72.6% 77.7%

Lematus 0-ch 49.1% 71.4% 76.2%
Lematus 20-ch 49.5% 72.3% 77.4%

Tu
rk

is
h

Baseline 61.8% 26.6% 37.9%
AE Aug Baseline 62.8% 68.5% 71.2%

HMAM 54.2% 63.6% 65.7%
Lematus 0-ch 53.6% 63.9% 65.5%

Lematus 20-ch 67.1% 74.6% 77.2%

Table 7: Individual type level lemmatization ac-
curacy for all 10 languages on development set,
trained on 1k UDT types plus 5k UM types with
contexts from Wikipedia. The numerically highest
scores for each language are bold. For the summary
of results see Table 3.

Type accuracy: Ambig. Unseen All

B
ul

ga
ri

an

Baseline 66.2 39.7 51.2
AE Aug Baseline 48.1 62.8 65.4

HMAM 42.7 70.6 74.2
Lematus 0-ch 44.8 67.4 71.4

Lematus 20-ch 50.6 68.4 72.5

C
ze

ch

Baseline 43.2 31.5 38.2
AE Aug Baseline 44.9 68.0 68.1

HMAM 41.1 61.7 64.7
Lematus 0-ch 38.1 61.9 64.6

Lematus 20-ch 42.7 68.7 70.1

E
st

on
ia

n Baseline 62.0 24.3 37.8
AE Aug Baseline 45.8 41.0 45.8

HMAM 48.9 45.4 53.7
Lematus 0-ch 46.6 45.7 53.8

Lematus 20-ch 44.9 51.3 57.5

Fi
nn

is
h

Baseline 49.3 21.9 32.7
AE Aug Baseline 41.6 46.0 48.5

HMAM 45.0 59.2 62.7
Lematus 0-ch 43.2 62.8 66.2

Lematus 20-ch 49.4 63.8 67.0
L

at
vi

an

Baseline 46.7 25.8 36.9
AE Aug Baseline 41.6 52.0 54.6

HMAM 44.6 53.8 59.0
Lematus 0-ch 42.6 55.3 59.7

Lematus 20-ch 47.7 60.6 64.0

Po
lis

h

Baseline 48.7 27.0 42.1
AE Aug Baseline 36.8 64.3 65.4

HMAM 44.0 60.9 66.4
Lematus 0-ch 46.2 67.2 72.4

Lematus 20-ch 42.0 71.2 75.1

R
om

an
ia

n Baseline 43.7 35.5 49.6
AE Aug Baseline 41.0 54.3 57.2

HMAM 45.6 56.8 63.7
Lematus 0-ch 50.3 61.7 67.8

Lematus 20-ch 49.5 63.4 68.7

R
us

si
an

Baseline 50.2 35.4 47.1
AE Aug Baseline 46.8 65.6 67.0

HMAM 39.1 64.6 68.2
Lematus 0-ch 38.7 64.6 67.3

Lematus 20-ch 47.3 71.2 74.7

Sw
ed

is
h Baseline 77.3 43.0 59.9

AE Aug Baseline 58.8 66.9 71.7
HMAM 47.3 73.0 77.7

Lematus 0-ch 55.5 74.1 78.6
Lematus 20-ch 55.6 75.1 79.1

Tu
rk

is
h

Baseline 62.4 27.1 39.5
AE Aug Baseline 57.9 67.7 70.3

HMAM 55.9 62.4 64.8
Lematus 0-ch 49.1 60.7 62.5

Lematus 20-ch 65.8 73.6 76.8

Table 8: Individual type level lemmatization ac-
curacy for all 10 languages on development set,
trained on 1k UDT types plus 10k UM types with
contexts from Wikipedia. The numerically highest
scores for each language are bold. For the summary
of results see Table 3.



4128

Type level accuracy: Token level accuracy:
Training data Ambig. Unseen All Ambig. Unseen All

Bulgarian 10k UDT tok. 62.3 75.7 80.1 72.3 75.7 89.5
10k UDT tok. + 10k UM types 62.2 78.7 83.6 73.3 78.1 91.0

Czech 10k UDT tok. 49.7 76.4 77.8 80.7 77.7 88.3
10k UDT tok. + 10k UM types 52.4 78.3 80.4 80.0 80.0 89.6

Estonian 10k UDT tok. 65.3 54.0 64.5 80.1 54.3 76.8
10k UDT tok. + 10k UM types 65.9 63.4 72.6 81.5 64.2 82.4

Finnish 10k UDT tok. 60.7 60.1 66.5 73.8 62.4 78.2
10k UDT tok. + 10k UM types 57.8 63.7 69.4 70.3 66.0 79.8

Latvian 10k UDT tok. 57.5 70.9 75.6 69.2 70.5 82.6
10k UDT tok. + 10k UM types 58.9 73.6 77.8 70.2 73.8 84.4

Polish 10k UDT tok. 59.8 78.7 83.6 76.5 78.8 89.5
10k UDT tok. + 10k UM types 57.4 81.2 86.1 71.3 81.4 90.9

Romanian 10k UDT tok. 51.7 61.1 66.6 54.1 60.6 79.1
10k UDT tok. + 10k UM types 57.1 68.2 74.2 60.7 68.2 83.9

Russian 10k UDT tok. 64.4 80.5 83.5 65.9 80.8 88.5
10k UDT tok. + 10k UM types 61.1 82.6 85.9 59.9 82.7 89.8

Swedish 10k UDT tok. 63.2 74.9 80.9 78.5 73.6 89.6
10k UDT tok. + 10k UM types 65.1 78.4 83.7 79.0 75.9 90.4

Turkish 10k UDT tok. 64.2 82.1 87.1 73.1 81.8 91.2
10k UDT tok. + 10k UM types 69.9 82.9 87.3 76.9 82.7 91.5

Table 9: Individual type and token level lemmatization accuracy for all 10 languages on development set for
Lematus 20-ch models trained on 10k UDT tokens and 10k UDT tokens plus 10k UM types with contexts from
Wikipedia. The numerically highest scores for each language are bold. For the summary of results see Table 4.


