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Abstract

In recent years neural language models (LMs)
have set state-of-the-art performance for sev-
eral benchmarking datasets. While the reasons
for their success and their computational de-
mand are well-documented, a comparison be-
tween neural models and more recent devel-
opments in n-gram models is neglected. In
this paper, we examine the recent progress
in n-gram literature, running experiments on
50 languages covering all morphological lan-
guage families. Experimental results illustrate
that a simple extension of Modified Kneser-
Ney outperforms an LSTM language model on
42 languages while a word-level Bayesian n-
gram LM (Shareghi et al., 2017) outperforms
the character-aware neural model (Kim et al.,
2016) on average across all languages, and
its extension which explicitly injects linguis-
tic knowledge (Gerz et al., 2018a) on 8 lan-
guages. Further experiments on larger Eu-
roparl datasets for 3 languages indicate that
neural architectures are able to outperform
computationally much cheaper n-grammodels:
n-gram training is up to 15, 000× quicker. Our
experiments illustrate that standalone n-gram
models lend themselves as natural choices
for resource-lean or morphologically rich lan-
guages, while the recent progress has signifi-
cantly improved their accuracy.

1 Introduction

Statistical language models (LMs) are the pivot for
several natural language processing tasks where a
model trained on a text corpus is required to assign
a probability to a given sequence w1w2...wN (de-
noted bywN

1 ). This probability indicates how likely
is forwN

1 to belong to the corpus and is decomposed
into conditional probabilities of words given their
preceding contexts as P (wN

1 ) =
∏N

i=1 P (wi|wi−1
1 ).

In n-gram LMs the unbounded conditional prob-
abilities P (wi|wi−1

1 ) are approximated by imposing

a finite-order Markov assumption, P (wi|wi−1
1 ) ≈

P (wi|wi−1
i−n+1). Several smoothing techniques ad-

dress the statistical sparsity issue for computing the
conditional probabilities (Kneser and Ney, 1995;
Chen and Goodman, 1999; Teh, 2006; Shareghi
et al., 2016a), while others avoided the above ap-
proximation with unbounded hierarchical nonpara-
metric Bayesian frameworks (Wood et al., 2011;
Shareghi et al., 2017).
Alternatively, neural LMs compute P (wi|wi−1

1 )
via recurrent neural units which, in theory, are ca-
pable of encoding an unbounded context wi−1

1 . In
recent years, neural LMs have become the promi-
nent class of language modeling and have estab-
lished state-of-the-art results on almost all suffi-
ciently large benchmarks (Melis et al., 2018; Yang
et al., 2018). While outperforming n-grams in terms
of predictive accuracy, the computational shortcom-
ings of neural LMs are well-documented: Training
neural LMs is computationally expensive to the
point that running experiments on large data (≥ a
few GiBs) is beyond the reach of academic research
to this date (Chen et al., 2016; Patwary et al., 2018;
Puri et al., 2018). 1 Similarly, querying is slower
for neural LMs due to the required matrix-based op-
erations, whereas most of the widely used n-gram
LM toolkits rely on a few hash lookups and much
cheaper scalar-based operations (Liu et al., 2018;
Tang and Lin, 2018).

Nonetheless, it has been shown that the best pre-
dictive performance is still achieved by combining
the twomodels via a basic interpolation or amixture
model (Jozefowicz et al., 2016; Neubig and Dyer,
2016): this indicates that the progress in n-gram
LM should eventually be reflected in improving the

1For instance, n-gram LMs could be trained on 32GiB
of data on a single CPU with ∼32GiB of RAM in half a
day (Shareghi et al., 2016b). A ballpark estimate for neu-
ral LMs, based on Puri et al. (2018), requires 26 Tesla V100
16GB GPUs to finish within the same amount of time while
its financial cost is at least 100× higher.
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state-of-the-art performance. Inspired by this, in
this paper we shed new light on the most notable
recent progress in n-gram statistical LMs which
improves their predictive accuracy.
We demonstrate that under a recent massively

multilingual experimental setup of Gerz et al.
(2018a), more recent extensions of Kneser-Ney fam-
ily of n-gram LMs (Shareghi et al., 2016a, 2017) are
highly competitive with neural LMs. More specifi-
cally, we experiment on 50 languages from different
morphological families, and illustrate that a word-
level Bayesian n-gram LM (Shareghi et al., 2017)
outperforms the character-level informed neural
counterpart (Kim et al., 2016) on average, and its
linguistically informed variant (Gerz et al., 2018a)
on 8 languages. On larger Europarl datasets we
find that n-gram models cannot reach the perfor-
mance peaks of computationally much more expen-
sive neural models, but a 2× decrease in perplexity
comes at the cost of 15, 000× longer training time.
Our work reveals that recent n-gram LMs should be
used as strong baselines, especially in resource-lean
LM data and for morphologically rich languages.
Additionally, n-gram LMs offer a stringent way

of dealing with Out-of-Vocabulary (OOVs) and rare
words in a full vocabulary setting without relying
on any pruning (Heafield, 2013). However, in neu-
ral LMs this remains an open question (Kawakami
et al., 2017; Kim et al., 2016; Cotterell et al., 2018),
while a common practice is pruning the training
corpus and imposing closed vocabulary assump-
tion (Mikolov et al., 2010) where rare words at
training and unseen words at test are treated as an
UNK token. We provide the mathematical under-
pinnings of n-gram models and highlight how this
popular treatment works in favor of neural LMs (in
comparative studies), and enforces n-gram LMs to
perform much worse than their full potential.
2 n-gram Language Models: Smoothing

We now provide an overview of established smooth-
ing techniques for n-gram LMs and their recent
extensions. Smoothing is typically achieved by
interpolation, where the probability of seeing a
word wi after a context wi−1

i−n+1 P (wi|wi−1
i−n+1,Θ) issmoothed by its probability after a shorter context,

wi−1
i−n+2, and follows the following general form:

�(wi|w
i−1
i−n+1,Θ)+
(w

i−1
i−n+1,Θ)P (wi|w

i−1
i−n+2,Θ). (1)

The term �(⋅) represents the existing mass for the
n-gram (e.g. via maximum likelihood estimation),

�(wi|wi−1
i−n+1,Θ) Θ

KN
[

c(wii−n+1)−Dn

]+

c(wi−1i−n+1)
Dn

MKN

[

c(wii−n+1)−D
c(wii−n+1)
n

]+

c(wi−1i−n+1)
Di∈{1,2,3+}
n

GKN

[

c(wii−n+1)−D
c(wii−n+1)
n

]+

c(wi−1i−n+1)
Di∈{1,...,10+}
n

BKN
[

c(wii−n+1)−Dwi−n+1
twiwi−n+1

]+

c(wi−1i−n+1)+�wi−n+1
Dwi−n+1 , �wi−n+1 , t

wi
wi−n+1

Table 1: Top-level interpolation for n-gram LMs
smoothings and its parameters, and [x]+ def

= max{x, 0}.


 is the weight used for redistributing the preserved
mass (e.g. via discounting), and Θ are the param-
eters of the smoothing technique. The recursion
stops at the unigram level where the conditioning
context is empty. The recursion at lower levels re-
lies on different quantities (e.g. pseudo-counts) but
for brevity we focus on the top level of recursion and
only the first term, �(wi|wi−1

i−n+1,Θ), which suffices
to highlight the key differences between smoothing
techniques (see Table 1).
Kneser-Ney (KN). The key parameters of
KN (Kneser and Ney, 1995) are the k-gram
specific discounts Dk which control the amount
of preserved and redistributed mass at kth level
of recursion. While learning the discounts (on
held-out data) is a possibility, the following
estimation is shown to work well in practice:

Dk = 1 − 2
n2(k)
n1(k)

.
n1(k)

n1(k) + 2n2(k)
. (2)

It captures the characteristics of different k-gram
orders by looking at the number of unique k-grams
which occurred once, n1(k), or twice, n2(k) in the
training data, defined as follows:

nj(k) =

{

|{� s.t. |�|=k, c(�)=j}| , if k=n
|

|

|

{

� s.t. |�|=k,N1+(⋅�)=j}||
|

, if k< n (3)

where N1+(⋅�) = |{w ∶ c(w�) > 0}|, and is re-
ferred to as a form of pseudo-count, and c(�) de-
notes the frequency of sequence �. KN considers
one discount value at each level of recursion and
the discounts are bounded, 0 ≤ Dk < 1.
Modified Kneser-Ney (MKN). Similarly, Mod-
ified Kneser-Ney (Chen and Goodman, 1999) is
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defined with modifications applied to the discount-
ing mechanism in order to make them sensitive to
the existing mass j. The discounts are estimated as:

Dj
k=

⎧

⎪

⎨

⎪

⎩

0, if j = 0
j−(j+1) nj+1(k)

nj (k)
n1(k)

n1(k)+2n2(k)
, if j <

−(+1) n4(k)
n3(k)

. n1(k)
n1(k)+2n2(k)

, if j≥
(4)

where nj(k) is defined in Eq. (3), and  = 3. This
leads to three discount parameters {D1

k, D
2
k, D

3+
k }for each recursion level, and allows for discount

values to be as large as c(wi
i−n+1). MKN is widely

accepted as the state-of-the-art n-gram LM and is
very frequently confused with KN in the literature.
Generalized Modified Kneser-Ney (GKN). In
conditions where statistical sparsity is more severe
a more refined approach to model the distributions
is necessary. Motivated by this, Shareghi et al.
(2016a) provided the mathematical proof (based
on leave-one-out log-likelihood) of the discount
bounds used in MKN and proposed a natural exten-
sion of its discount binning to  = 10. This was
shown to be effective for further perplexity reduc-
tion in out-of-domain setting where OOV ratio is
naturally high.
Bayesian Kneser-Ney (BKN). The Bayesian gen-
eralization of KN is the Hierarchical Pitman-Yor
Process (HPYP) language model (Teh, 2006). This
can be interpreted as a richer parameterization of
KN and MKN, where the additional parameters (in-
troduced shortly) allow the model to have more
flexibility in capturing the desired distribution.
The Pitman-Yor Process (Pitman et al.,

1997), PYP(D, �,H), is a distribution defined over
probability vectors (each draw from a PYP is a
multinomial distribution) and has three parameters:
a base probability vectorH which is the expected
value of a draw from a PYP, the concentration
parameter −D < � which controls the variation
of draws from a PYP around H , and the discount
parameter 0 ≤ D < 1 which allows the drawn
vectors to capture the power-law behavior.

In the LM context, given a sequence of words
wi−n+1, a draw from a PYP is a multinomial distri-
bution over the words following this sequence, de-
noted by Gwi−n+1 . This distribution can be captured
by a vector of two counts {twiwi−n+1 , nwiwi−n+1}wi∈�which defines a partitioning arrangement ofGwi−n+1 ,while different partitioning correspond to different
multinomial draws from PYP. Here, nwii−n+1 is the

total number of evidence 2 for wordwi after the con-
text wi−n+1, twii−n+1 is the total number of partitions
dedicated towi constrained by 0 ≤ twii−n+1 ≤ nwii−n+1,and � is the vocabulary.
The HPYP ties PYP distributions through their

base and offers the statistical mean to smooth over
infinitely long contexts (Wood et al., 2011). For
instance, PYP(Du, �u, PYP(D�(u), ��(u),H)) is a two-
level HPYP where a draw from a child distribution u,
is smoothed by a draw from its parent �(u). Here,
�(u) is u with its most earliest word dropped (e.g.,
u = abc, �(u) = bc).

KN can be seen as a special case for BKN, when
the concentration is 0, and {twiwi−n+1=1}wi∈� . BKN
can be considered as a richer parameterization of
MKN: The product Dwi−n+1t

wi
wi−n+1 (see Table 1) al-lows≥ 1 discounting, simulating the discount range

of MKN, while an additional parameter �wi−n+1 per-mits further adjustments of the distribution. BKN is
shown to outperform MKN (Shareghi et al., 2017)
but relies on expensive parameter sampling.

Out-of-Vocabulary (OOV). To complete the def-
initions we now explain how unseen words or con-
texts are handled during the computation without
resorting to pruning or closed vocabulary setting.
This treatment is the same for both non-Bayesian
and Bayesian methods described in this paper. Let
us consider the generic interpolation form of Eq. (1)
and the maximum likelihood estimation of the �(.)
term (hence Θ is dropped) in the top level of the in-
terpolation, �(wi|wi−1

i−n+1) =
c(wii−n+1)
c(wi−1i−n+1)

. Regardless
of the level of interpolation and the paradigm used
for computing the �(.) term, �(.) and 
(.) always
share the same denominator (normalizing factor).
An unseen word can appear as the target word

wi, which results in �(.) = 0 as c(wi
i−n+1) = 0. Itcan also appear as a part of the prediction context

wi−1
i−n+1 in which case both the �(.) and 
(.) terms

will be undefined (and ignored) as the denominator
c(wi−1

i−n+1) = 0. This procedure is applied to all lev-
els of interpolationwithout loss of generality, and as
can be seen it only relies on the basic mathematical
property of the involved computations rather than
any other presumptions about data preprocessing
or vocabulary. 3

2This is equal to c(wi
i−n+1) at the top level of recursion,

hence not mentioned as a part of Θ in Table 1.
3See Shareghi (2017) for a comprehensive explanation of

the models covered in this section.
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3 Experiments and Results

As our main large-scale experiment we use a typo-
logically diverse set of 50 languages. These LM
datasets cover many languages which are challeng-
ing in terms of data size, as well as the type-token
ratio. In a less challenging setup, we experiment
on 3 languages with larger training data from the
Europarl (Koehn, 2005) to compare the two classes
of LMs based on perplexity reduction and training
time. For full data statistics, actual sampling of lan-
guages and data curation see Gerz et al. (2018a,b).
The common practice of setting a frequency

threshold andmapping training data unigrams ((k =
1)-gram) to an UNK token degrades the perfor-
mance of n-gram LMs by discarding a range of
discount parameters: e.g., using threshold (< 3)
results in n1(1), n2(1) = 0, both included in Eq. (2)
and Eq. (4), increases the average perplexity score
of 5-gram KN in our experiments by 11%. Moti-
vated by its significance, we base our comparison
on reported results by Gerz et al. (2018a): they deal
with the task in the full vocabulary setting (Adams
et al., 2017) with word-level predictions, and follow
a relatively comparable treatment of unseen words
with both n-gram and neural LM families (although
not identical) at test time without enforcing any
threshold over the training data.
The benchmarked neural LMs include three

models with word-level predictions: a standard
LSTM (Zaremba et al., 2014), a Char-CNN-LSTM
(denoted as CNN) (Kim et al., 2016) which incorpo-
rates character-level information in the input, and
the Attract-Preserve model (denoted as AP) (Gerz
et al., 2018a) which injects further subword-level
information. All benchmarked n-gram LMs are
5-grams, with the exception of BKN which is an
∞-gram model trained via 5 samples4 following
the recipe of Shareghi et al. (2017). GKN results are
based on  = 5, tuned on a development set.
Results and Discussion. The main results on the
50-languages benchmark are summarized in Ta-
ble 2. The results for the more recent n-gram
LMs indicate that these n-gram models are highly
competitive with neural LMs in this challenging
resource-lean setup.5 For instance, for 26/50 lan-
guages all n-gram models outperform a regular
LSTM, while GKN and BKN extend the lead to 42/50

4Marginal improvements achieved with more sampling.
5The size of each dataset is ≈ 40K sentences, which is at

the level of the standard Penn Treebank dataset often used for
LM evaluation in English (Marcus et al., 1993).

n-gram LMs pplx neural LMs pplx
Lang OOV

%
KN MKN GKN BKN LSTM CNN AP

♣ am 15.2 1289 1252 1101 941† 1535 981 817
♣ ar 11.1 2241 2156 1871 1746 2587 1659 1604
♡ bg 9.9 636 610 524 470 651 415 409
♡ ca 5.2 369‡ 358‡ 307 280 318 241 238
♡ cs 11 1724 1658 1433 1331 2200 1252 1131
♡ da 9.6 690 668 582 526 710 466 442
♡ de 10.6 964‡ 930‡ 814 721 903 602 551
♡ el 8.2 627‡ 607‡ 526 499 538 405 389
♡ en 6.1 553‡ 533‡ 454 391 494 371 349
♡ es 5.9 430‡ 415‡ 356 319 366 275 270
♠ et 12.9 1655 1609 1422† 1223† 2564 1478 1388
♠ eu 9.1 571‡ 560‡ 496 456 533 347 309
♡ fa 4.7 362‡ 355‡ 308‡ 283‡ 263 208 205
♠ fi 17.6 2709 2611 2318 2143† 4263 2236 1858
♡ fr 6.1 361‡ 350‡ 298‡ 268 294 231 220
♣ he 8.9 1870 1797 1531 1373§ 2189 1519 1375
♡ hi 7.1 488‡ 473‡ 408 378 426 326 299
♡ hr 10.6 1345 1294 1124 972† 1665 1014 906
♠ hu 12 1188 1151 1011 877† 1595 929 819
♢ id 6 469‡ 454‡ 388‡ 358 359 286 263
♡ it 6 582‡ 567‡ 489 465 493 349 350
♠ ja 4.7 174‡ 169‡ 142 129† 156 136 125
♠ jv 12.2 1462‡ 1387 1217 1138† 1443 1158 1003
♠ ka 11.7 1422 1370 1198 1115 1827 1097 939
♢ km 4.8 608 586 501§ 451§ 637 522 535
♠ kn 17.7 2378 2315 2051§ 1914§ 5310 2558 2265
♠ ko 19.3 5332 5146 4492† 4019† 10063 4778 3821
♡ lt 11 1187 1155 1001 891 1415 854 827
♡ lv 12.7 1518 1452 1255 1144 1967 1129 969
♠mng 10.8 1441 1392 1215 1055§ 1716 1165 1091
♢ ms 7.2 807‡ 776‡ 659 572 725 525 513
♢ my 2 216‡ 209 178§ 168§ 212 182 180
♢ nan 3.8 63‡ 61‡ 52‡ 45‡ 43 39 38
♡ nl 5.6 407‡ 397‡ 347‡ 305 340 267 248
♡ no 9 551‡ 534‡ 465 435 513 379 346
♡ pl 12 1810 1741 1514 1363† 2641 1491 1328
♡ pt 5 351‡ 342‡ 290‡ 261 272 214 202
♡ ro 7 395‡ 384‡ 330 290 359 256 247
♡ ru 10.1 1160 1128 977 906 1309 812 715
♡ sk 13.1 1633 1560 1352 1234† 2062 1275 1151
♡ sl 10.9 1160 1114 969 856 1308 776 733
♡ sr 9.3 812 790 683 637 961 582 547
♡ sv 10 873‡ 843‡ 734 634 832 583 543
♠ ta 18.2 3469† 3342† 2920† 2635§ 6234 3496 2768
♢ th 3.3 238 233 199§ 181§ 241 206 199
♢ tl 7.7 393‡ 379‡ 321‡ 293 298 219 211
♠ tr 12.3 1784 1724 1497 1416 2267 1350 1290
♡ uk 12.8 1707 1639 1418 1338 1893 1283 1091
♢ vi 2.7 202‡ 197‡ 170 145§ 190 158 165
♢ zh 3.8 1110‡ 1064‡ 899‡ 777† 826 797 762

♢ avg 4.6 456‡ 440‡ 374 332 392 326 318
♡ avg 8.8 873 842 729 661 969 618 566
♠ avg 13.2 1965 1898 1665† 1510† 3164 1727 1473
♣ avg 11.7 1800 1735 1501 1354† 2104 1386 1265
+ avg 9.3 1116 1077 936 847† 1460 878 781

Table 2: Data Statistics and Perplexity scores. OOV de-
notes the percentage of unseen words at test time. For
detailed data stats see (Gerz et al., 2018a). Suit symbols
denote morphological types: ♢ Isolating, ♡ Fusional,
♠Agglutinative, ♣ Introflexive. Color coded shapes de-
note comparative performance: ‡ is outperformed by
LSTM, † outperforms CNN, § outperforms AP.
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Figure 1: Time-Perplexity for n-gram and neural LMs
across 3 languages fi, cs, nl. Timings done on a sin-
gle core of AMD Ryzen 1900X for n-grams, and on a
Nvidia TITAN X Pascal GPU for neural models.

and 48/50 languages, respectively. For certain mor-
phologically rich languages (e.g., Tamil, Mongo-
lian, Hebrew), the n-gram LMs are able to outscore
even character-aware neural LMs. On average
we observe n-grams succeed, especially the BKN
model, for introflexive and agglutinative languages
which are known to have productive morphological
systems: as reported in Table 2, they have the higher
OOV ratio compared to the other language fami-
lies. Overall, the best performing n-gram model,
BKN, outperforms both the LSTM (42% reduction
in perplexity) and CNN models (3% reduction in
perplexity), while falling behind AP by 8%.
These results highlight that n-gram models can

serve as strong baselines for such morphologically
rich languages with high OOV rates and type-to-
token ratios, which are especially problematic in
scarce data setups. Additionally, they suggest that
more sophisticated n-gram variants such as GKN or
BKN should be used to provide adequate compar-
ison points with n-gram LMs than the commonly
used KN or MKN.

As expected, experiments on 10× larger Europarl
datasets for 3 languages show that neural mod-
els outperform n-gram models in less challeng-
ing data-intensive scenarios. However, training on
large datasets comes at the expense of training effi-
ciency for neural models: e.g., according to Figure 1
training non-Bayesian n-grams is around 15,000×
quicker than training neural models. We leave a
full-fledged investigation on the relation of training
corpus size and efficacy of n-gram vs. neural LM
training for future work. In addition, motivated by
these preliminary insights, we advocate investing
further efforts in future work into coupling the ideas
behind n-gram and neural LMs towards improved
language modeling.

4 Conclusion

We provided an overview of previous work and very
recent progress in n-gram LMs. The recent devel-
opments, when tested on a challenging set of 50
languages, demonstrated superior or highly com-
petitive performance compared with neural LMs,
while being substantially cheaper to train. We also
shed light on a common issue in the experimental
setups, concerning OOV or rare words handling,
when comparing n-grams and neural LMs.

While being non-trivial, investigating any corre-
lation between cheap-to-compute heuristics (e.g.,
basic data statistics) and the choice of the most suit-
able model for a given dataset is worth exploring.
Also, motivated by our findings, we will work on
utilizing continuous space representations as side
information in sampling the parameters of BKN, i.e.
similar to Zhao et al. (2018), which potentially can
reduce the gap between BKN and neural models.
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