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Abstract

When evaluating an answer choice for Read-
ing Comprehension task, other answer choices
available for the question and the answers of
related questions about the same paragraph of-
ten provide valuable information. In this pa-
per, we propose a method to leverage the nat-
ural language relations between the answer
choices, such as entailment and contradiction,
to improve the performance of machine com-
prehension. We use a stand-alone question an-
swering (QA) system to perform QA task and
a Natural Language Inference (NLI) system
to identify the relations between the choice
pairs. Then we perform inference using an
Integer Linear Programming (ILP)-based rela-
tional framework to re-evaluate the decisions
made by the standalone QA system in light of
the relations identified by the NLI system. We
also propose a multitask learning model that
learns both the tasks jointly.

1 Introduction

Given an input text and a set of related questions
with multiple answer choices, the reading com-
prehension (RC) task evaluates the correctness of
each answer choice. Current approaches to the RC
task quantify the relationship between each ques-
tion and answer choice independently and pick
the highest scoring option. In this paper, we fol-
low the observation that when humans approach
such RC tasks, they tend to take a holistic view
ensuring that their answers are consistent across
the given questions and answer choices. In this
work we attempt to model these pragmatic infer-
ences, by leveraging the entailment and contradic-
tion relations between the answer choices to im-
prove machine comprehension. To help clarify
these concepts, consider the following examples:

How can the military benefit from the existence
of the CIA?
c1: They can use them
c2: These agencies are keenly attentive to the
military’s strategic and tactical requirements (7)
c3: The CIA knows what intelligence the mili-
tary requires and has the resources to obtain that
intelligence (3)

The above example contains multiple correct
answer choices, some are easier to capture than
others. For example, identifying that c3 is true
might be easier than c2 based on its alignment
with the input text. However, capturing that c3
entails c2 allows us to predict c2 correctly as well.
Classification of the answer in red (marked 7)
could be corrected using the blue (marked 3)
answer choice.

Q1: When were the eggs added to the pan to
make the omelette?
c11: When they turned on the stove
c12: When the pan was the right temperature (3)
Q2: Why did they use stove to cook omelette?
c21: They didn’t use the stove but a microwave
c22: Because they needed to heat up the pan (7)

Similarly, answering Q1 correctly helps in an-
swering Q2. Our goal is to leverage such infer-
ences for machine comprehension.

Our approach contains three steps. First, we use
a stand-alone QA system to classify the answer
choices as true/false. Then, we classify the rela-
tion between each pair of choices for a given ques-
tion as entailment, contradiction or neutral. Fi-
nally, we re-evaluate the labels assigned to choices
using an Integer Linear Programming based infer-
ence procedure. We discuss different training pro-
tocols and representation choices for the combined
decision problem. An overview is in figure 1.

We empirically evaluate on two recent datasets,
MultiRC (Khashabi et al., 2018) and SemEval-
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2018 task-11 (Ostermann et al., 2018) and show
that it improves machine comprehension in both.

Figure 1: Proposed Approach

2 Related Work

Recently, several QA datasets have been pro-
posed to test machine comprehension (Richard-
son, 2013; Weston et al., 2015; Rajpurkar et al.,
2016; Trischler et al., 2016a; Nguyen et al., 2016).
Yatskar (2018) showed that a high performance
on these datasets could be achieved without nec-
essarily achieving the capability of making com-
monsense inferences. Trischler et al. (2016b), Ku-
mar et al. (2016), Liu and Perez (2017), Min et al.
(2018) and Xiong et al. (2016) proposed success-
ful models on those datasets. To address this is-
sue, new QA datasets which require commonsense
reasoning have been proposed (Khashabi et al.,
2018; Ostermann et al., 2018; Mihaylov et al.,
2018). Using common sense inferences in Ma-
chine Comprehension is a far from solved prob-
lem. There have been several attempts in litera-
ture to use inferences to answer questions. Most
of the previous works either attempt to infer the
answer from the given text (Sachan and Xing,
2016; Sun et al., 2018) or an external common-
sense knowledge base (Das et al., 2017; Mihaylov
and Frank, 2018; Bauer et al., 2018; Weissenborn
et al., 2017).

While neural models can capture some depen-
dencies between choices through shared repre-
sentations, to the best of our knowledge, infer-
ences capturing the dependencies between answer
choices or different questions have been not ex-
plicitly modeled.

3 Model

Formally, the task of machine comprehension can
be defined as: given text P and a set of n re-
lated questions Q = {q1, q2, . . . , qn} each having
m choices C = {ci1, ci2, . . . , cim}∀qi ∈ Q, the task
is to assign true/false value for each choice cij .

3.1 Model Architecture

Our model consists of three separate systems, one
for each step, namely, the stand-alone question an-
swering (QA) system, the Natural Language Infer-
ence (NLI) system and the inference framework
connecting the two. First, we assign a true/false
label to each question-choice pair using the stand-
alone QA system along with an associated confi-
dence score s1. Consequently, we identify the nat-
ural language relation (entailment, contradiction
or neutral) between each ordered pair of choices
for a given question, along with an associated con-
fidence score s2. Then, we use a relational frame-
work to perform inference using the information
obtained from the stand-alone QA and the NLI
systems. Each of the components is described in
detail in the following sub-sections.

We further propose a joint model whose param-
eters are trained jointly on both the tasks. The joint
model uses the answer choice representation gen-
erated by the stand-alone QA system as input to
the NLI detection system. The architecture of our
joint model is shown in figure 2.

3.1.1 Stand-alone QA system
We use the TriAN-single model proposed by
Wang et al. (2018) for SemEval-2018 task-11 as
our stand-alone QA system. We use the imple-
mentation1 provided by Wang et al. (2018) for our
experiments. The system is a tri-attention model
that takes passage-question-choice triplet as input
and produces the probability of the choice being
true as its output.

3.2 NLI System

Our NLI system is inspired from decomposable-
attention model proposed by Parikh et al. (2016).
We modified the architecture proposed in Parikh
et al. (2016) to accommodate the question-choice
pairs as opposed to sentence pairs in the original
model. We added an additional sequence-attention
layer for the question-choice pairs to allow for the

1https://github.com/intfloat/
commonsense-rc
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Figure 2: Architecture of the Joint Model

representation of both the answer choice and the
question. Sequence-attention is defined in Wang
et al. (2018) as:

Attseq(u, {vi}ni=1) =
n∑

i=1

αivi

αi = softmaxi(f(W1u)T f(W1vi))

(1)

where u and vi are word embeddings, W1 is the as-
sociated weight parameter and f is non-linearity.
Self-attention is Attseq of a vector onto itself.

The embedding of each word in the answer
choice is attended to by the sequence of ques-
tion word embeddings. We use pre-trained GloVe
(Pennington et al., 2014) embeddings to represent
the words. The question-attended choices are then
passed through the decomposable-attention layer
proposed in Parikh et al. (2016).

3.2.1 Inference using DRAIL
We use Deep Relational Learning (DRaiL) frame-
work proposed by Zhang et al. (2016) to perform

the final inference. The framework allows for dec-
laration of predicate logic rules to perform rela-
tional inference. The rules are scored by the con-
fidence scores obtained from the stand-alone QA
and the NLI systems. DRaiL uses an Integer Lin-
ear Programming (ILP) based inference procedure
to output binary prediction for each of the choices.
We use the following constraints for our inference:

1. ci is true & ci entails cj =⇒ cj is true.
2. ci is true & ci contradicts cj =⇒ cj is false.

On the MultiRC dataset, we use the dependen-
cies between the answer choices for a given ques-
tion. On SemEval dataset, we use the dependen-
cies between different questions about the same
paragraph.

3.3 Joint Model
The design of our joint model is motivated by the
two objectives: 1) to obtain a better representa-
tion for the question-choice pair for NLI detection
and 2) to leverage the benefit of multitask learn-
ing. Hence, in the joint model, choice represen-
tation from stand-alone QA system is input to the
decomposable-attention layer of the NLI system.

The joint model takes two triplets (p, qi, ci) and
(p, qj , cj) as input. It outputs a true/false for
each choice and an NLI relation (entailment, con-
tradiction or neutral) between the choices. The
representations for passage, question and choice
are obtained using Bi-LSTMs. The hidden states
of the Bi-LSTM are concatenated to generate the
representation. This part of the model is similar
to TriAN model proposed in Wang et al. (2018).
The choice representations of ci and cj are passed
as input to the decomposable attention layer pro-
posed in Parikh et al. (2016). The architecture of
the joint model is shown in figure 2.

3.4 Training
We train the stand-alone QA system using the
MultiRC and SemEval datasets for respective ex-
periments. We experiment with 2 different train-
ing settings for the NLI system. In the first set-
ting, we use SNLI dataset (Bowman et al., 2015)
to train the NLI system. The sequence-attention
layer is left untrained during this phase. Hence,
we only use the answer choice and do not consider
the question for NLI detection.
Self-Training: Subsequently, to help the system
adapt to our settings, we devise a self-training pro-
tocol over the RC datasets to train the NLI sys-
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tem. Self-training examples for the NLI system
were obtained using the following procedure: if
the SNLI-trained NLI model predicted entailment
and the gold labels of the ordered choice pair were
true-true, then the choice pair is labeled as
entailment. Similarly, if the SNLI-trained NLI
model predicted contradiction and the gold labels
of the ordered choice pair were true-false,
then the choice pair is labeled as contradiction.
This is noisy labelling as the labels do not directly
indicate the presence of NLI relations between the
choices. The NLI model was additionally trained
using this data.

Model Entailment Contradiction Overall
NLISNLI 40.80 74.25 55.11
NLIMultiRC 57.30 69.22 66.31

Table 1: Accuracy of entailment and contradiction detection
on the development set of self-training data for NLI model
trained on SNLI data (NLISNLI ) vs training set of self-
training data (NLIMultiRC )

To train the joint model we use ordered choice
pairs, labeled as entailment if the gold labels are
true-true and labeled as contradiction if the
gold labels are true-false. This data was also
used to test the effectiveness of the self-training
procedure. The results on the development set of
MultiRC dataset are in table 1.

The NLI model trained on SNLI dataset
achieves 55.11% accuracy. Training the NLI
model on the data from MultiRC data increases
the overall accuracy to 66.31%. Further discus-
sion about self-training is provided in section 5.

4 Experiments

We perform experiments in four phases. In the
first phase, we evaluate the stand-alone QA sys-
tem. In the second phase, we train the NLI system
on SNLI data and evaluate the approach shown
in figure 1. In the third phase, we train the NLI
system using the self-training data. In the fourth
phase, we evaluate the proposed joint model. We
evaluate all models on MultiRC dataset. The re-
sults are shown in table 2. We evaluate the joint
model on SemEval dataset, shown in table 3.

4.1 Datasets
We use two datasets for our experiments, MultiRC
dataset2 and the SemEval 2018 task 11 dataset3.

2http://cogcomp.org/multirc/
3https://competitions.codalab.org/

competitions/17184

MultiRC dataset consisted of a training and devel-
opment set with a hidden test set. We split the
given training set into training and development
sets and use the given development set as test set.

Each question in the MultiRC dataset has ap-
proximately 5 choices on average. Multiple of
them may be true for a given question. The
training split of MultiRC consisted of 433 para-
graphs and 4, 853 questions with 25, 818 answer
choices. The development split has 23 paragraphs
and 275 questions with 1, 410 answer choices.
Test set has 83 paragraphs and 953 questions with
4, 848 answer choices.

SemEval dataset has 2 choices for each ques-
tion, exactly one of them is true. The training
set consists of 1, 470 paragraphs with 9, 731 ques-
tions. The development set has 219 paragraphs
with 1, 411 questions. And the test set has 430
paragraphs with 2, 797 questions.

4.2 Evaluation Metrics
For MultiRC dataset, we use two metrics for eval-
uating our approach, namely EM0 and EM1.
EM0 refers to the percentage of questions for
which all the choices have been correctly classi-
fied. EM1 is the the percentage of questions for
which at most one choice is wrongly classified.
For the SemEval dataset, we use accuracy metric.

4.3 Results
Results of our experiments are summarized in ta-
bles 2 & 3. EM0 on MC task improves from
18.15% to 19.41% when we use the NLI model
trained over SNLI data and it further improves
to 21.62% when we use MultiRC self-training
data. Joint model achieves 20.36% on EM0 but
achieves the highest EM1 of 57.08%. Human
EM0 is 56.56%.

Method EM0 EM1
Stand-alone QA 18.15 52.99
QA + NLISNLI 19.41 56.13
QA + NLIMultiRC 21.62 55.72
Joint Model 20.36 57.08
Human 56.56 83.84

Table 2: Summary of the results on MultiRC dataset.
EM0 is the percentage of questions for which all the
choices are correct. EM1 is the the percentage of ques-
tions for which at most one choice is wrong.

Results of SemEval experiments are summa-
rized in table 3. TriAN-single results are as re-
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ported in (Wang et al., 2018). The results we ob-
tained using their implementation are stand-alone
QA results. With the same setting, joint model got
85.4% on dev set and 82.1% on test set. The dif-
ference in performance of the models in tables 2
and 3 is statistically significant according to Mc-
Nemar’s chi-squared test.

Model Dev Test
TriAN-single
(Wang et al., 2018) 83.84% 81.94%

Stand-alone QA 83.20% 80.80%
Joint Model 85.40% 82.10%

Table 3: Accuracy of various models on SemEval’18
task-11 dataset

5 Discussion

We have shown that capturing the relationship be-
tween various answer choices or subsequent ques-
tions helps in answering questions better. Our ex-
perimental results, shown in tables 2 & 3, are only
a first step towards leveraging this relationship
to help construct better machine reading systems.
We suggest two possible extensions to our model,
that would help realize the potential of these rela-
tions.

1. Improving the performance of entailment and
contradiction detection.

2. Using the information given in the text to
identify the relations between choices better.

As shown in table 1, identification of entail-
ment/contradiction is far from perfect. Entailment
detection is particularly worse because often the
system returns entailment when there is a high lex-
ical overlap. Moreover, the presence of a strong
negation word (not) causes the NLI system to pre-
dict contradiction even for entailment and neutral
cases. This issue impedes the performance of our
model on SemEval’18 dataset as roughly 40% of
the questions have yes/no answers. Naik et al.
(2018) show that this is a common issue with state-
of-the-art NLI detection models.

Self-training (table 1) results suggest that there
are other types of relationships present among an-
swer choice pairs that do not come under the strict
definitions of entailment or contradiction. Upon
investigating, we found that although some answer
hypotheses do not directly have an inference rela-
tion between them, they might be related in con-
text of the given text. For example, consider the

sentence, ‘I snack when I shop’ and the answer
choices: c1: ‘She went shopping this extended
weekend’ and c2: ‘She ate a lot of junk food re-
cently’. Although the sentences don’t have an ex-
plicit relationship when considered in isolation,
the text suggests that c1 might entail c2. Captur-
ing these kinds of relationships could potentially
improve MC further.

6 Conclusion

In this paper we take a first step towards model-
ing an accumulative knowledge state for machine
comprehension, ensuring consistency between the
model’s answers. We show that by adapting NLI
to the MC task using self-training, performance
over multiple tasks improves.

In the future, we intend to generalize our model
to other relationships beyond strict entailment and
contradiction relations.
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