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Abstract

Neural encoder-decoder models have been suc-
cessful in natural language generation tasks.
However, real applications of abstractive sum-
marization must consider additional constraint
that a generated summary should not exceed
a desired length. In this paper, we propose a
simple but effective extension of a sinusoidal
positional encoding (Vaswani et al., 2017) to
enable neural encoder-decoder model to pre-
serves the length constraint. Unlike in previ-
ous studies where that learn embeddings repre-
senting each length, the proposed method can
generate a text of any length even if the tar-
get length is not present in training data. The
experimental results show that the proposed
method can not only control the generation
length but also improve the ROUGE scores.

1 Introduction

Neural encoder-decoder models have been success-
fully applied to various natural language genera-
tion tasks including machine translation (Sutskever
et al., 2014), summarization (Rush et al., 2015),
and caption generation (Vinyals et al., 2015). Still,
it is necessary to control the output length for ab-
stractive summarization, which generates a sum-
mary for a given text while satisfying a space con-
straint. In fact, Figure 1 shows a large variance
in output sequences produced by a widely used
encoder-decoder model (Luong et al., 2015), which
has no mechanism for controlling the length of the
output sequences.

Fan et al. (2018) trained embeddings that corre-
spond to each output length to control the output
sequence length. Since the embeddings for differ-
ent lengths are independent, it is hard to generate a
sequence of the length that is infrequent in training
data. Thus, a method that can model any lengths
continuously is required.

Figure 1: Difference in number of characters between
correct headlines and outputs of a widely used LSTM
encoder-decoder (Luong et al., 2015) which is trained
on sentence-headline pairs created by Rush et al. (2015)
from the annotated English Gigaword corpus. The dif-
ference was investigated for 3,000 sentence-headline
pairs randomly sampled from the test splits.

Kikuchi et al. (2016) proposed two learning
based methods for an LSTM encoder-decoder:
LenEmb and LenInit. LenEmb inputs an embed-
ding representing the remaining length in each de-
coding step. Since this approach also prepares em-
beddings for each length independently, it suffers
from the same problem as that in Fan et al. (2018).

On the other hand, LenInit can handle arbitrary
lengths because it combines the scalar value of a
desired length with a trainable embedding. LenInit
initializes the LSTM cell of the decoder with the
embedding depending on the scalar value of the
desired length. Liu et al. (2018) incorporated such
scalar values into the initial state of the decoder in
a CNN encoder-decoder. These approaches deal
with any length but it is reasonable to incorporate
the distance to the desired terminal position into
each decoding step such as in LenEmb.

In this study, we focused on Trans-
former (Vaswani et al., 2017), which recently
achieved the state-of-the-art score on the machine
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translation task. We extend the sinusoidal posi-
tional encoding, which represents a position of
each token in Transformer (Vaswani et al., 2017),
to represent a distance from a terminal position on
the decoder side. In this way, the proposed method
considers the remaining length explicitly at each
decoding step. Moreover, the proposed method
can handle any desired length regardless of its
appearance in a training corpus because it uses the
same continuous space for any length.

We conduct experiments on the headline gen-
eration task. The experimental results show
that our proposed method is able to not only
control the output length but also improve the
ROUGE scores from the baselines. Our code
and constructed test data are publicly available at:
https://github.com/takase/control-length.

2 Positional Encoding

Transformer (Vaswani et al., 2017) uses a sinu-
soidal positional encoding to represent the position
of an input. Transformer feeds the sum of the posi-
tional encoding and token embedding to the input
layer of its encoder and decoder. Let pos be the
position and d be the embedding size. Then, the i-
th dimension of the sinusoidal positional encoding
PE(pos,i) is as follows:

PE(pos,2i) = sin

(
pos

10000
2i
d

)
, (1)

PE(pos,2i+1) = cos

(
pos

10000
2i
d

)
. (2)

In short, each dimension of the positional encod-
ing corresponds to a sinusoid whose period is
100002i/d × 2π. Since this function returns an
identical value at the same position pos, the above
positional encoding can be interpreted as represent-
ing the absolute position of each input token.

In this paper, we extend Equations (1) and (2)
to depend on the given output length and the dis-
tance from the terminal position. We propose
two extensions: length-difference positional encod-
ing (LDPE) and length-ratio positional encoding
(LRPE). Then we replace Equations (1) and (2)
with (3) and (4) (or (5) and (6)) on the decoder side
to control the output sequence length. We define

LDPE and LRPE as follows:

LDPE(pos,len,2i) = sin

(
len− pos
10000

2i
d

)
, (3)

LDPE(pos,len,2i+1) = cos

(
len− pos
10000

2i
d

)
, (4)

LRPE(pos,len,2i) = sin

(
pos

len
2i
d

)
, (5)

LRPE(pos,len,2i+1) = cos

(
pos

len
2i
d

)
, (6)

where len presents the given length constraint.
LDPE returns an identical value at the position
where the remaining length to the terminal posi-
tion is the same. LRPE returns a similar value
at the positions where the ratio of the remaining
length to the terminal position is similar. Let us con-
sider the d-th dimension as the simplest example.
Since we obtain sin(pos/len) (or cos(pos/len)) at
this dimension, the equations yield the same value
when the remaining length ratio is the same, e.g.,
pos = 5, len = 10 and pos = 10, len = 20.

We add LDPE (or LRPE) to the input layer of
Transformer in the same manner as in Vaswani et al.
(2017). In the training step, we assign the length
of the correct output to len. In the test phase, we
control the output length by assigning the desired
length to len.

3 Experiments

3.1 Datasets

We conduct experiments on the headline genera-
tion task on Japanese and English datasets. The
purpose of the experiments is to evaluate the ability
of the proposed method to generate a summary of
good quality within a specified length. We used
JAMUL corpus as the Japanese test set (Hitomi
et al., 2019). This test set contains three kinds of
headlines for 1,1811 news articles written by pro-
fessional editors under the different upper bounds
of headline lengths. The upper bounds are 10, 13,
and 26 characters (len = 10, 13, 26). This test set
is suitable for simulating the real process of news
production because it is constructed by a Japanese
media company.

In contrast, we have no English test sets that
contain headlines of multiple lengths. Thus,
we randomly extracted 3,000 sentence-headline

1We obtained this test set by applying the pre-processing
script at https://github.com/asahi-research/Gingo to the origi-
nal JAMUL corpus.

https://github.com/takase/control-length
https://github.com/asahi-research/Gingo
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pairs that satisfy a length constraint from the
test set constructed from annotated English Gi-
gaword (Napoles et al., 2012) by pre-processing
scripts of Rush et al. (2015)2. We set three configu-
rations for the number of characters as the length
constraint: 0 to 30 characters (len = 30), 30 to
50 characters (len = 50), and 50 to 75 charac-
ters (len = 75). Moreover, we also evaluate the
proposed method on the DUC-2004 task 1 (Over
et al., 2007) for comparison with published scores
in previous studies.

Unfortunately, we have no large supervision data
with multiple headlines of different lengths asso-
ciated with each news article in both languages.
Thus, we trained the proposed method on pairs
with a one-to-one correspondences between the
source articles and headlines. In the training step,
we regarded the length of the target headline as
the desired length len. For Japanese, we used the
JNC corpus, which contains a pair of the lead three
sentences of a news article and its headline (Hitomi
et al., 2019). The training set contains about 1.6M
pairs3. For English, we used sentence-headline
pairs extracted from the annotated English Giga-
word with the same pre-processing script used in
the construction of the test set. The training set
contains about 3.8M pairs.

In this paper, we used a character-level decoder
to control the number of characters. On the encoder
side, we used subword units to construct the vo-
cabulary (Sennrich et al., 2016; Kudo, 2018). We
set the hyper-parameter to fit the vocabulary size to
about 8k for Japanese and 16k for English.

3.2 Baselines
We implemented two methods proposed by previ-
ous studies to control the output length and handle
arbitrary lengths. We employed them and Trans-
former as baselines.

LenInit Kikuchi et al. (2016) proposed LenInit,
which controls the output length by initializing the
LSTM cell m of the decoder as follows:

m = len× b, (7)

where b is a trainable vector. We incorporated
this method with a widely used LSTM encoder-
decoder model (Luong et al., 2015)4. For a fair

2https://github.com/facebookarchive/NAMAS
3We obtained this training set by applying the pre-

processing script at https://github.com/asahi-research/Gingo.
4We used an implementation at

https://github.com/mlpnlp/mlpnlp-nmt.

comparison, we set the same hyper-parameters as
in Takase et al. (2018) because they indicated that
the LSTM encoder-decoder model trained with the
hyper-parameters achieved a similar performance
to the state-of-the-art on the headline generation.

Length Control (LC) Liu et al. (2018) proposed
a length control method that multiplies the desired
length by input token embeddings. We trained the
model with their hyper-parameters.

Transformer Our proposed method is based on
Transformer (Vaswani et al., 2017)5. We trained
Transformer with the equal hyper-parameters as in
the base model in Vaswani et al. (2017).

3.3 Results
Table 1 shows the recall-oriented ROUGE-1 (R-
1), 2 (R-2), and L (R-L) scores of each method
on the Japanese test set6. This table indi-
cates that Transformer with the proposed method
(Transformer+LDPE and Transformer+LRPE)
outperformed the baselines for all given constraints
(len = 10, 13, 26). Transformer+LRPE per-
formed slightly better than Transformer+LDPE.
Moreover, we improved the performance by incor-
porating the standard sinusoidal positional encod-
ing (+PE) on len = 10 and 26. The results imply
that the absolute position also helps to generate bet-
ter headlines while controlling the output length.

Table 2 shows the recall-oriented ROUGE scores
on the English Gigaword test set. This table in-
dicates that LDPE and LRPE significantly im-
proved the performance on len = 75. Moreover,
the absolute position (PE) also improved the per-
formance in this test set. In particular, PE was
very effective in the setting of very short head-
lines (len = 30). However, the proposed method
slightly lowered ROUGE-2 scores from the bare
Transformer on len = 30, 50. We infer that the
bare Transformer can generate headlines whose
lengths are close to 30 and 50 because the major-
ity of the training set consists of headlines whose
lengths are less than or equal to 50. However, most
of the generated headlines breached the length con-
straints, as explained in Section 3.4.

To investigate whether the proposed method can
generate good headlines for unseen lengths, we
excluded headlines whose lengths are equal to the

5We used an implementation at
https://github.com/pytorch/fairseq.

6To calculate ROUGE scores on the Japanese dataset, we
used https://github.com/asahi-research/Gingo.

https://github.com/facebookarchive/NAMAS
https://github.com/asahi-research/Gingo
https://github.com/mlpnlp/mlpnlp-nmt
https://github.com/pytorch/fairseq
https://github.com/asahi-research/Gingo
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len = 10 len = 13 len = 26
Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
Baselines
LenInit 38.08 17.72 36.84 41.83 19.53 39.22 47.07 22.02 38.36
LC 35.88 15.73 34.80 40.28 18.86 38.16 42.62 19.38 35.61
Transformer 34.63 15.48 33.02 43.94 21.35 40.77 46.43 23.03 38.10
Proposed method
Transformer+LDPE 42.84 21.07 41.31 46.51 22.83 43.76 50.89 24.18 40.82
+PE 42.85 20.67 41.47 46.72 22.70 43.75 51.32 25.15 41.48
Transformer+LRPE 42.70 21.62 41.35 47.05 23.70 44.13 50.68 24.70 41.23
+PE 43.36 21.63 41.93 46.39 23.09 43.49 51.21 25.03 41.43
Proposed method trained on the dataset without headlines consisting of target lengths
Transformer+LDPE 41.91 20.01 40.69 45.88 22.61 43.16 50.90 24.37 40.48
+PE 42.33 20.46 40.88 44.78 22.33 42.27 50.87 24.54 40.89
Transformer+LRPE 41.91 20.10 40.52 46.01 22.87 43.47 50.33 24.37 41.00
+PE 42.59 20.76 41.16 46.52 23.65 43.81 50.73 24.64 41.01

Table 1: Recall-oriented ROUGE scores for each length on Japanese test set. This test set contains three kinds of
headlines, i.e., len = 10, 13, 26, tied to a single article.

len = 30 len = 50 len = 75
Model R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
Baselines
LenInit 44.58 25.90 43.34 48.42 25.47 45.56 50.78 25.74 46.42
LC 45.17 26.73 44.09 46.56 24.55 44.10 48.67 24.83 44.98
Transformer 47.48 29.77 46.17 50.02 28.04 47.29 47.31 24.83 43.75
Proposed method
Transformer+LDPE 47.26 26.98 45.77 50.21 26.13 47.15 53.99 27.78 49.24
+PE 48.13 27.18 46.43 50.29 25.97 47.17 53.65 27.65 49.06
Transformer+LRPE 48.79 28.77 47.17 50.09 26.08 46.91 53.91 27.82 49.15
+PE 49.23 29.26 47.68 50.41 26.37 47.39 54.21 27.84 49.38
Proposed method trained on the dataset without headlines consisting of the target lengths
Transformer+LDPE 47.35 26.76 45.70 50.46 25.96 47.30 53.69 27.61 49.04
+PE 47.44 27.42 45.99 50.67 26.07 47.57 53.76 27.53 49.03
Transformer+LRPE 48.54 28.89 47.06 50.65 26.19 47.34 53.94 27.88 49.11
+PE 49.08 29.09 47.58 50.78 26.64 47.60 53.77 27.68 48.93

Table 2: Recall-oriented ROUGE scores for each length on test data extracted from annotated English Gigaword.

Model R-1 R-2 R-L
Baselines
LenInit 29.78 11.05 26.49
LC 28.68 10.79 25.72
Transformer 26.15 9.14 23.19
Proposed method
Transformer+LDPE 30.95 10.53 26.79
+PE 31.00 10.78 27.02
+Re-ranking 31.65 11.25 27.46
Transformer+LRPE 30.74 10.83 26.69
+PE 31.10 11.05 27.25
+Re-ranking 32.29 11.49 28.03
Previous studies for controlling output length
Kikuchi et al. (2016) 26.73 8.39 23.88
Fan et al. (2018) 30.00 10.27 26.43
Other previous studies
Rush et al. (2015) 28.18 8.49 23.81
Suzuki and Nagata (2017) 32.28 10.54 27.80
Zhou et al. (2017) 29.21 9.56 25.51
Li et al. (2017) 31.79 10.75 27.48
Li et al. (2018) 29.33 10.24 25.24

Table 3: Recall-oriented ROUGE scores in DUC-2004.

desired length (len) from the training data. The
lower parts of Table 1 and 2 show ROUGE scores

of the proposed method trained on the modified
training data. These parts show that the proposed
method achieved comparable scores to ones trained
on whole training dataset. These results indicate
that the proposed method can generate high-quality
headlines even if the length does not appear in the
training data.

Table 3 shows the recall-oriented ROUGE scores
on the DUC-2004 test set. Following the evalu-
ation protocol (Over et al., 2007), we truncated
characters over 75 bytes. The table indicates that
LDPE and LRPE significantly improved the per-
formance compared to the bare Transformer, and
achieved better performance than the baselines ex-
cept for R-2 of LenInit. This table also shows the
scores reported in the previous studies. The pro-
posed method outperformed the previous methods
that control the output length and achieved the com-
petitive score to the state-of-the-art scores.

Since the proposed method consists of a
character-based decoder, it sometimes generated
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Variance
Japanese dataset English Gigaword

Model len = 10 len = 13 len = 26 len = 30 len = 50 len = 75
Baselines
LenInit 0.047 0.144 0.058 0.114 0.112 0.091
LC 0.021 0.028 0.040 0.445 0.521 0.871
Transformer 181.261 115.431 38.169 193.119 138.566 620.887
Proposed method
Transformer+LDPE 0.000 0.000 0.000 0.015 0.012 0.013
+PE 0.003 0.001 0.001 0.016 0.009 0.007
Transformer+LRPE 0.121 0.210 0.047 0.082 0.071 0.187
+PE 0.119 0.144 0.058 0.142 0.110 0.173
Proposed method trained on the dataset without headlines consisting of the target lengths
Transformer+LDPE 0.000 0.002 0.000 0.018 0.009 0.009
+PE 0.021 0.001 0.003 0.021 0.013 0.010
Transformer+LRPE 0.191 0.362 0.043 0.120 0.058 0.133
+PE 0.183 0.406 0.052 0.138 0.081 0.154

Table 4: Variances of generated headlines.

words unrelated to a source sentence. Thus, we
applied a simple re-ranking to each n-best head-
lines generated by the proposed method (n = 20
in this experiment) based on the contained words.
Our re-ranking strategy selects a headline that
contains source-side words the most. Table 3
shows that Transformer+LRPE+PE with this re-
ranking (+Re-ranking) achieved better scores than
the state-of-the-art (Suzuki and Nagata, 2017).

3.4 Analysis of Output Length
Following Liu et al. (2018), we used the variance of
the generated summary lengths against the desired
lengths as an indicator of the preciseness of the
output lengths. We calculated variance (var) for n
generated summaries as follows7:

var =
1

n

n∑
i=1

|li − len|2, (8)

where len is the desired length and li is the length
of the generated summary.

Table 4 shows the values of Equation (8) com-
puted for each method and the desired lengths. This
table indicates that LDPE could control the length
of headlines precisely. In particular, LDPE could
generate headlines with the identical length to the
desired one in comparison with LenInit and LC.
LRPE also generated headlines with a precise
length but its variance is larger than those of previ-
ous studies in very short lengths, i.e., len = 10 and
13 in Japanese. However, we consider LRPE is
enough for real applications because the averaged
difference between its output and the desired length
is small, e.g., 0.1 for len = 10.

7Liu et al. (2018) multiplies Equation (8) by 0.001.

The lower part of Table 4 shows the variances
of the proposed method trained on the modified
training data that does not contain headlines whose
lengths are equal to the desired length, similar to
the lower parts of Table 1 and 2. The variances for
this part are comparable to the ones obtained when
we trained the proposed method with whole train-
ing dataset. This fact indicates that the proposed
method can generate an output that satisfies the
constraint of the desired length even if the training
data does not contain instances of such a length.

4 Conclusion

In this paper, we proposed length-dependent po-
sitional encodings, LDPE and LRPE, that can
control the output sequence length in Transformer.
The experimental results demonstrate that the pro-
posed method can generate a headline with the
desired length even if the desired length is not
present in the training data. Moreover, the pro-
posed method significantly improved the quality of
headlines on the Japanese headline generation task
while preserving the given length constraint. For
English, the proposed method also generated head-
lines with the desired length precisely and achieved
the top ROUGE scores on the DUC-2004 test set.
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