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Abstract

We present a new neural model for text sum-
marization that first extracts sentences from a
document and then compresses them. The pro-
posed model offers a balance that sidesteps the
difficulties in abstractive methods while gener-
ating more concise summaries than extractive
methods. In addition, our model dynamically
determines the length of the output summary
based on the gold summaries it observes dur-
ing training, and does not require length con-
straints typical to extractive summarization.
The model achieves state-of-the-art results on
the CNN/DailyMail and Newsroom datasets,
improving over current extractive and abstrac-
tive methods. Human evaluations demonstrate
that our model generates concise and informa-
tive summaries. We also make available a new
dataset of oracle compressive summaries de-
rived automatically from the CNN/DailyMail
reference summaries.1

1 Introduction

Text summarization is an important NLP problem
with a wide range of applications in data-driven
industries (e.g., news, health, and defense). Sin-
gle document summarization—the task of gener-
ating a short summary of a document preserving
its informative content (Spärck Jones, 2007)—has
been a highly studied research topic in recent years
(Nallapati et al., 2016b; See et al., 2017; Fan et al.,
2018; Pasunuru and Bansal, 2018).

Modern approaches to single document sum-
marization using neural network architectures

1Our dataset and code is available at https://
github.com/Priberam/exconsumm.

∗ Now at Google London.

(EXCONSUMM Extractive) • (CNN) A top al Qaeda in
the Arabian Peninsula leader–who a few years ago was in a
U.S. detention facility–was among five killed in an airstrike
in Yemen, the terror group said, showing the organization is
vulnerable even as Yemen appears close to civil war.
• Ibrahim al-Rubaish died Monday night in what AQAP’s
media wing, Al-Malahem Media, called a “crusader
airstrike.”
(EXCONSUMM Compressive) • (CNN) A top al Qaeda in
the Arabian Peninsula leader–who a few years ago was in a
U.S. detention facility–was among five killed in an airstrike
in Yemen , the terror group said, showing the organization is
vulnerable even as Yemen appears close to civil war.
• Ibrahim al-Rubaish died Monday night in what AQAP’s
media wing, Al-Malahem Media, called a “crusader
airstrike.”

Figure 1: Summaries produced by our model. For illus-
tration, the compressive summary shows the removed
spans strike-through.

have primarily focused on two strategies: extrac-
tive and abstractive. The former select a subset
of the sentences to assemble a summary (Cheng
and Lapata, 2016; Nallapati et al., 2017; Narayan
et al., 2018a,c). The latter generates sentences that
do not appear in the original document (See et al.,
2017; Narayan et al., 2018b; Paulus et al., 2018).
Both methods suffer from significant drawbacks:
extractive systems are wasteful since they cannot
trim the original sentences to fit into the summary,
and they lack a mechanism to ensure overall co-
herence. In contrast, abstractive systems require
natural language generation and semantic repre-
sentation, problems that are inherently harder to
solve than just extracting sentences from the orig-
inal document.

In this paper, we present a novel architec-
ture that attempts to mitigate the problems above
via a middle ground, compressive summariza-
tion (Martins and Smith, 2009). Our model selects
a set of sentences from the input document, and
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compresses them by removing unnecessary words,
while keeping the summaries informative, con-
cise and grammatical. We achieve this by dynam-
ically modeling the generated summary using a
Long Short Term Memory (LSTM; Hochreiter and
Schmidhuber, 1997) to produce summary state
representations. This state provides crucial infor-
mation to iteratively increment summaries based
on previously extracted information. It also facil-
itates the generation of variable length summaries
as opposed to fixed lengths, in previous extrac-
tive systems (Cheng and Lapata, 2016; Nallapati
et al., 2017; Narayan et al., 2018c; Zhang et al.,
2018). Our model can be trained in both extrac-
tive (labeling sentences for extraction) or com-
pressive (labeling words for extraction) settings.
Figure 1 shows a summary example generated by
our model.

Our contributions in this paper are three-fold:

• we present the first end-to-end neural archi-
tecture for EXtractive and COmpressive Neu-
ral SUMMarization (dubbed EXCONSUMM,
see §3),

• we validate this architecture on the
CNN/DailyMail and the Newsroom datasets
(Hermann et al., 2015; Grusky et al., 2018),
showing that our model generates variable-
length summaries which correlate well with
gold summaries in length and are concise
and informative (see §5), and

• we provide a new CNN/DailyMail dataset
annotated with automatic compressions for
each sentence, and a set of compressed ora-
cle summaries (see §4).

Experimental results show that when evaluated au-
tomatically, both the extractive and compressive
variants of our model provide state-of-the-art re-
sults. Human evaluation further shows that our
model is better than previous state-of-the-art sys-
tems at generating informative and concise sum-
maries.

2 Related Work

Recent work on neural summarization has mainly
focused on sequence-to-sequence (seq2seq) archi-
tectures (Sutskever et al., 2014), a formulation
particularly suited and initially employed for ab-
stractive summarization (Rush et al., 2015). How-
ever, state-of-the-art results have been achieved by
RNN-based methods which are extractive. They

select sentences based on an LSTM classifier that
predicts a binary label for each sentence (Cheng
and Lapata, 2016), based on ranking using re-
inforcement learning (Narayan et al., 2018c), or
even by training an extractive latent model (Zhang
et al., 2018). Other methods rely on an abstractive
approach with strongly conditioned generation on
the source document (See et al., 2017). In fact,
the best results for abstractive summarization have
been achieved with models that are more extrac-
tive in nature than abstractive, since most of the
words in the summary are copied from the docu-
ment (Gehrmann et al., 2018).

Due to the lack of training corpora, there
is almost no work on neural architectures for
compressive summarization. Most compres-
sive summarization work has been applied to
smaller datasets (Martins and Smith, 2009; Berg-
Kirkpatrick et al., 2011; Almeida and Martins,
2013). Other non-neural summarization systems
apply this idea to select and compress the sum-
mary. Dorr et al. (2003) introduced a method to
first extract the first sentence of a news article and
then use linguistically-motivated heuristics to iter-
atively trim parts of it. Durrett et al. (2016) also
learns a system that selects textual units to include
in the summary and compresses them by deleting
word spans guided by anaphoric constraints to im-
prove coherence. Recently, Zhang et al. (2018)
trained an abstractive sentence compression model
using attention-based sequence-to-sequence archi-
tecture (Rush et al., 2015) to map a sentence in
the document selected by the extractive model to
a sentence in the summary. However, as the sen-
tences in the document and in the summary are not
aligned for compression, their compression model
is significantly inferior to the extractive model.

In this paper, we propose a novel seq2seq
architecture for compressive summarization and
demonstrate that it avoids the over-extraction of
existing extractive approaches (Cheng and Lapata,
2016; Dlikman and Last, 2016; Nallapati et al.,
2016a).

Our model builds on recent approaches to neu-
ral extractive summarization as a sequence label-
ing problem, where sentences in the document
are labeled to specify whether or not they should
be included in the summary (Cheng and Lapata,
2016; Narayan et al., 2018a). These models often
condition their labeling decisions on the document
representation only. Nallapati et al. (2017) tries to
model the summary as the average representation
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Figure 2: Illustration of our summarization system. The model extracts the most relevant sentences from the
document by taking into account the WordEncoder representation of the current sentence e(si), the SentEncoder
representation of the previous sentence h

s
i , the current summary state representation o

s
i , and the representation of

the document e(D). If a sentence is selected (zi = 1), its representation is fed to SentStates, and we move to the
next sentence. Here, sentences s1 and s3 were selected. If the model is also compressing, the compressive layer
selects words for the final summary (Compressive Decoder). See Figure 3 for details on the decoders.

of the positively labeled sentences. However, as
we show later, this strategy is not the most ade-
quate to ensure summary coherence, as it does not
take the order of the selected sentences into ac-
count. Our approach addresses this problem by
maintaining an LSTM cell to dynamically model
the generated summary. To the best of our knowl-
edge, our work is the first to use a model that keeps
a state of already generated summary to effectively
model variable-length summaries in an extractive
setting, and the first to learn a compressive sum-
marizer with an end-to end approach.

3 Summarization with Summary State
Representation

Our model extracts sentences from a given doc-
ument and further compresses these sentences by
deleting words. More formally, we denote a docu-
ment D = (s1, . . . , sM) as a sequence of M sen-
tences, and a sentence si = (wi1, . . . , wiN) as a
sequence ofN words. We denote by e(wij), e(si)
and e(D) the embedding of words, sentences and
document in a continuous space. We model docu-
ment summarization as a sequence labeling prob-
lem where the labeler transitions between inter-
nal states. Each state is dynamically computed

based on the context, and it combines an extrac-
tive summarizer followed by a compressive one.
First, we encode a document in a multi-level ap-
proach, to extract the embeddings of words and
sentences (“Document Encoder”). Second, we de-
code these embeddings using a hierarchical “De-
cision Decoder.” The extractive summarizer labels
each sentence si with a label zi ∈ {0, 1} where 1
indicates that the sentence should be included in
the final summary and 0 otherwise. An extrac-
tive summary is then assembled by selecting all
sentences with the label 1. Analogously, the com-
pressive summarizer labels each word wij with a
label yij ∈ {0, 1}, denoting whether the word j in
sentence i is included in the summary or not. The
final summary is then assembled as the sequence
of words wij for each zi = 1 and yij = 1. See
Figures 2 and 3 for an overview of our model. We
next describe each of its components in more de-
tail.

3.1 Document Encoder
The document encoder is a two layer biLSTM, one
layer encoding each sentence, and the second layer
encoding the document. The first layer takes as in-
put the word embeddings e(wij) for each word j
in sentence si, and outputs the hidden representa-
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SentStates

Compressive decoder

Extractive decoder

WordStates

Figure 3: Decision decoder architecture. Decoder con-
tains an extractive level for sentences (orange box) and
a compressive level for words (dashed gray box), us-
ing an LSTM to model the summary state. Red di-
amond shapes represent decision variables zi = 1 if
p(zi ∣ pi) > 0.5 for selecting the sentence si, and
zi = 0 if p(zi ∣ pi) ≤ 0.5 for skipping this sentence.
The same for yij and p(yij ∣ qij) > 0.5 for deciding
over words wij to keep in the summary.

tion of each word h
w
ij . The hidden representation

consist of the concatenation of a forward
−→
h

w
ij and a

backward
←−
h

w
ij LSTM (WordEncoder in Figure 2).

This layer eventually outputs a representation for
each sentence e(si) = [−→hw

iN ,
←−
h

w
i1] that corre-

sponds to the concatenation of the last forward and
first backward LSTMs. The second layer encodes
information about the document and is also a biL-
STM that runs at the sentence-level. This biLSTM
takes as input the sentence representation from the
previous layer e(si) and outputs the hidden rep-
resentation for each sentence si in the document
as hs

i (SentEncoder in Figure 2). We consider the
output of the last forward LSTM over M sentences
and first backward LSTM to be the final represen-
tation of the document e(D) = [−→hs

M ,
←−
h

s
1].

The encoder returns two output vectors, ds
i =

[e(D), e(si),hs
i ] associated with each sentence

si, and d
w
ij = [e(D), e(si), e(wij),hs

i ,h
w
ij] for

each word j at the specific state of the encoder i.

3.2 Decision Decoder
Given that our model operates both at the
sentence-level and at the word-level, the decision
decoder maintains two state LSTMs denoted by
SentStates and WordStates as in Figure 3. For

the sentence-level decoder sentences are selected
and the state of the summary gets updated by
SentStates. For the word-level, all compressed
word representations in a sentence are pushed
to the word-level layer. In the compressive de-
coder, words that get selected are pushed onto the
WordStates, and once the decoder has reached
the end of the sentence, it pushes the output rep-
resentation of the last state onto the sentence-level
layer for the next sentence.

Extractive Decoder The extractive decoder se-
lects the sentences that should go to the summary.
For each sentence si at time step i, the decoder
takes a decision based on the encoder representa-
tion d

s
i and the state of the summary o

s
i , computed

as follows:

o
s
i = SentStates({e(ck)}k<i,zk=1).

where the os
i is modeled by an LSTM taking as in-

put the already selected and compressed sentences
comprising the summary so far {e(ck)}k<i,zk=1.
This way, at each point in time, we have a repre-
sentation of the summary given by the SentStates
LSTM that encodes the state of summary gener-
ated so far, based on the past sentences already
processed by the compressive decoder e(ci−1) (in
WordStates).2 The summary representation at
step i (os

i ) is then used to determine whether to
keep or not the current sentence in the summary
(zi = 1 or 0 respectively). The summarizer state
subsumes information about the document, sen-
tence and summary as:

pi = tanh(WE[ds
i ;o

s
i ] + b

s),

whereWE is a model parameter, os
i is the dynamic

LSTM state, and b
s is a bias term.

This modeling decision is crucial in order to
generate variable length summaries. It captures
information about the sentences or words already
present in the summary, helping in better under-
standing the “true” length of the summary given
the document.

Finally, the summarizer state pi is used to com-
pute the probability of the action at time i as:

p(zi ∣ pi) =
exp (Wzipi + xzi)

∑z′∈{0,1} exp (Wz′pi + xz′)
,

2When using only the extractive model the summary state
o
s
i is generated from an LSTM whose inputs correspond

to the sentence encoded embeddings {e(sk)}k<i,zk=1 in-
stead of the previously generated compressed representations
{e(ck)}k<i,zk=1.
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where Wz is a model parameter and xz is a bias
term for the summarizer action z.

We minimize the negative log-likelihood of the
observed labels at training time (Dimitroff et al.,
2013), where λs0 and λs1 represent the distribution
of each class for the given sentences:3

L(θs) = − ∑
c∈{0,1}

λ
s
c

M

∑
i=1

1zi=c

∑
i,zi=0

log p(zi∣pi),

where 1zi=c is the indicator function of class c
and θs represents all the training parameters of the
sentence encode/decoder. At test time, the model
emits probability p(zi ∣ pi), which is used as the
soft prediction sequentially extracting the sentence
i. We admit sentences when p(zi = 1 ∣ pi) > 0.5.

Compressive Decoder Our compressive de-
coder shares its architecture with the extractive
decoder. The compressive layer is triggered ev-
ery time a sentence is selected in the summary
and is responsible for selecting the words within
each selected sentence. In practice, WordStates
LSTM (see Figure 3) is applied hierarchically af-
ter the sentence-level decoder, using as input the
collected word embeddings so far:

o
w
ij =WordStates({e(wik)}k≤j,yik=1).

After making the selection decision for all words
pertaining to a sentence, the final state of the
WordStates, e(ci) = o

w
iN is fed back to

SentStates of the extractive level decoder for the
consecutive sentence, as depicted in Figure 3.

The word-level summarizer state representa-
tion depends on the encoding of words, document
and sentence d

w
ij , on the dynamic LSTM encod-

ing for the summary based on the selected words
(WordStates) ow

ij and sentences (SentStates) os
i :

qij = tanh(WC[dw
ij ;o

s
i ;o

w
ij] + b

w),

where WC is a model parameter and b
w is a bias

term. Each action at time step j is computed by

p(yij ∣ qij) =
exp (Wyijqij + xyij)

∑y′∈{0,1} exp (Wy′qij + xy′)
,

3If M −∑M

i=1 zi=0 or ∑M

i=1 zi=0, we simply consider the
whole term to be zero. Here M represents the number of
sentences in the document.

with parameter Wyij and bias xyij . The final loss
for the compressive layer is

L(θw) =
M

∑
i=1

ziφ(i ∣ θw),

where θw represents the set of all the training pa-
rameters of the word-level encoder/decoder, φ(i)
is the compressive layer loss over N words:

φ(i ∣ θw) = − ∑
c∈{0,1}

λ
w
c

M

∑
i=1

1yij=c

∑
i,zi=0

log p(yij∣qij).

The total final loss is then given by the sum of the
extractive and compressive counterparts, L(θ) =
L(θs) + L(θw).

4 Experimental Setup

We mainly used the CNN/DailyMail corpus
(Hermann et al., 2015) to evaluate our mod-
els. We used the standard splits of Hermann
et al. (2015) for training, validation, and test-
ing (90,266/1,220/1,093 documents for CNN and
196,961/12,148/10,397 for DailyMail). To eval-
uate the flexibility of our model, we also evalu-
ated our models on the Newsroom dataset (Grusky
et al., 2018), which includes articles form a diverse
collection of sources (38 publishers) with different
summary style subsets: extractive (Ext.), mixed
(Mixed) and abstractive (Abs.). We used the stan-
dard splits of Grusky et al. (2018) for training, val-
idation, and testing (331,778/36,332/36,122 docu-
ments for Ext., 328,634/35,879/36,006 for Mixed
and 332,554/36,380/36,522 for Abs.). We did not
anonymize entities or lower case tokens.

4.1 Estimating Oracles
Datasets for training extractive summarization
systems do not naturally contain sentence/word-
level labels. Instead, they are typically accompa-
nied by abstractive summaries from which extrac-
tion labels are extrapolated. We create extractive
and compressive summaries prior to training using
two types of oracles.

We used an extractive oracle to identify the set
of sentences which collectively gives the highest
ROUGE (Lin and Hovy, 2003) with respect to the
gold summary (Narayan et al., 2018c).

To build a compressive oracle, we trained a su-
pervised sentence labeling classifier, adapted from
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Oracle R1 R2 RL
Extractive Oracle 54.67 30.37 50.81
Compressive Oracle 57.12 32.59 53.27

Table 1: Oracle scores obtained for the CNN and Dai-
lyMail testsets. We report ROUGE-1 (R1), ROUGE-2
(R2) and ROUGE-L (RL) F1 scores.

the Transition-Based Chunking Model (Lample
et al., 2016), to annotate spans in every sentence
that can be dropped in the final summary. We
used the publicly released set of 10,000 sentence-
compression pairs from the Google sentence com-
pression dataset (Filippova and Altun, 2013; Fil-
ippova et al., 2015) for training. After tagging all
sentences in the CNN and DailyMail corpora us-
ing this compression model, we generated oracle
compressive summaries based on the best average
of ROUGE-1 (R1) and ROUGE-2 (R2) F1 scores
from the combination of all possible sentences and
all removals of the marked compression chunks.

To verify the adequacy of our proposed ora-
cles, we show in Table 1 a comparison of their
scores. Our compressive oracle achieves much
better scores than the extractive oracle, because of
its capability to make summaries concise. More-
over, the linguistic quality of these oracles was
preserved due to the tagging of the entire span by
the sentence compressor trained on the sentence
compression dataset.4 We believe that our dataset
with oracle compression labels will be of signifi-
cant interest to the sentence compression and sum-
marization community.

4.2 Training Parameters
The parameters for the loss at the sentence-level
were λs0=2 and λs1=1 and at the word-level, λw0 =1
and λw1 =0.5. We used LSTMs with d = 512 for all
hidden layers. We performed mini-batch negative
log-likelihood training with a batch size of 2 docu-
ments for 5 training epochs.We observed the con-
vergence of the model between the 2nd and the
3rd epochs. It took around 12 hrs on a single GTX
1080 GPU to train. We evaluated our model on
the validation set after every 5,000 batches. We
trained with Adam (Kingma and Ba, 2015) with
an initial learning rate of 0.001. Our system was
implemented using DyNet (Neubig et al., 2017).

4.3 Model Evaluation
We evaluated summarization quality using F1

ROUGE (Lin and Hovy, 2003). We report results
4We show examples of both oracles in Appendix §A.1.

in terms of unigram and bigram overlap (R1) and
(R2) as a means of assessing informativeness, and
the longest common subsequence (RL) as a means
of assessing fluency.5 In addition to ROUGE,
which can be misleading when used as the only
means to assess summaries (Schluter, 2017), we
also conducted a question-answering based human
evaluation to assess the informativeness of our
summaries in their ability to preserve key informa-
tion from the document (Narayan et al., 2018c).6

First, questions are written using the gold sum-
mary, we then examined how many questions par-
ticipants were able to answer by reading system
summaries alone, without access to the article.7

Figure 5 shows a set of candidate summaries along
with questions used for this evaluation.

4.4 Model and Baselines

We evaluated our model EXCONSUMM in two set-
tings: Extractive (selects sentences to assemble
the summary) and Compressive (selects sentences
and compresses them by removing unnecessary
spans of words). We compared our models against
a baseline (LEAD) that selects the first m lead-
ing sentences from each document,8 three neural
extractive models, and various abstractive models.
For the extractive models, we used SUMMARUN-
NER (Nallapati et al., 2017), since it shares some
similarity to our model, REFRESH (Narayan et al.,
2018c) trained with reinforcement learning and
LATENT (Zhang et al., 2018) a neural architecture
that makes use of latent variable to avoid creat-
ing oracle summaries. We further compare against
LATENT+COMPRESS (Zhang et al., 2018), an ex-
tension of the LATENT model that learns to map
extracted sentences to final summaries using an
attention-based seq2seq model (Rush et al., 2015).
All models, unlike ours, extract a fixed number of
sentences to assemble their summaries. For ab-
stractive models, we compare against the state-
of-the art models of POINTER+COVERAGE (See
et al., 2017), ML+RL (Paulus et al., 2018), and
Tan et al. (2017) among others.

5We used pyrouge to compute the ROUGE scores. The
parameters we used were “-a -c 95 -m -n 4 -w 1.2.”

6We used the CNN/DailyMail QA test set of Narayan
et al. (2018c) for evaluation. It includes 20 documents with a
total of 71 manually written question-answer pairs.

7See Appendix §A.2 for more details.
8We follow Narayan et al. (2018c) and set m = 3 for CNN

and 4 for DailyMail. We follow Grusky et al. (2018) and set
m = 2 for Newsroom.
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Models CNN DailyMail Newsroom Ext. Newsroom Mixed Newsroom Abs.
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

LEAD 29.1 11.1 25.9 40.7 18.3 37.2 53.1 49.0 52.4 — — — 13.7 2.4 11.2
REFRESH 30.0 11.7 26.9 41.0 18.8 37.7 — — — — — — — — —
EXCONSUMM Extractive 32.5 12.6 28.5 42.8 19.3 38.9 69.4 64.3 68.3 31.9 16.3 26.9 17.2 3.1 13.6
EXCONSUMM Compressive 32.5 12.7 29.2 41.7 18.5 38.4 68.4 62.9 67.3 31.7 16.1 27.0 17.1 3.1 14.1
Pointer+Coverage ⋄ — — — — — — 39.1 28.0 36.2 25.5 11.0 21.1 14.7 2.3 11.4
Tan et al. (2017)∗ 30.3 9.8 20.0 — — — — — — — — — — — —

Table 2: Results on the CNN, DailyMail and Newsroom test sets. We report ROUGE R1, R2 and RL F1 scores.
Extractive systems are in the first block, compressive in the second and abstractive in the third. We use — whenever
results are not available. Models marked with ∗ are not directly comparable to ours as they are based on an
anonymized version of the dataset. The model marked with ⋄ show here the results for the best configuration of
See et al. (2017), referred to as Pointer-N in Grusky et al. (2018), which is trained on the whole Newsroom dataset.

Models CNN+DailyMail
R1 R2 RL

LEAD 39.6 17.7 36.2
SUMMARUNNER

∗ 39.6 16.2 35.3
REFRESH 40.0 18.2 36.6
LATENT 41.1 18.8 37.4
EXCONSUMM Extractive 41.7 18.6 37.8
LATENT+COMPRESS 36.7 15.4 34.3
EXCONSUMM Compressive 40.9 18.0 37.4
Pointer+Coverage 39.5 17.3 36.4
ML + RL∗ 39.9 15.8 36.9
Tan et al. (2017)∗ 38.1 13.9 34.0
Li et al. (2018) 39.0 17.1 35.7
Chen and Bansal (2018) 40.4 18.0 37.1
Hsu et al. (2018) 40.7 18.0 37.1
Pasunuru and Bansal (2018) 40.9 17.8 38.5
Gehrmann et al. (2018) 41.2 18.7 38.3

Table 3: Results for combined CNN/DailyMail test set.

5 Results

5.1 Automatic Evaluation
Table 2 and 3 show results for the evaluations on
the CNN/DailyMail and Newsroom test sets.

Comparison with Extractive Systems. EX-
CONSUMM Compressive performs best on the
CNN dataset and EXCONSUMM Extractive on the
DailyMail dataset, probably due to the fact that
the CNN dataset is less biased towards extrac-
tive methods than the DailyMail dataset (Narayan
et al., 2018b). We report similar results on the
Newsroom dataset. EXCONSUMM Compressive
tends to perform better for mixed (Mixed) and ab-
stractive (Abs.) subsets, while EXCONSUMM Ex-
tractive performs better for the extractive (Ext.)
subset. Our experiments demonstrate that our
compressive model tends to perform better on the
dataset which promotes abstractive summaries.

We find that EXCONSUMM Extractive consis-
tently performs better on all metrics when com-
pared to any of the other extractive models, except
for the single case where it is narrowly behind LA-

TENT on R2 (18.6 vs 18.8) for the CNN/DailyMail
combined test set. It even outperforms REFRESH,
which is trained with reinforcement learning. We
hypothesize that its superior performance stems
from the ability to generate variable length sum-
maries. REFRESH or LATENT, on the other hand,
always produces a fixed length summary.

Comparison with Compressive System. EX-
CONSUMM Compressive reports superior perfor-
mance compared to LATENT+COMPRESS (+4.2
for R1, +2.6 for R2 and +3.1 for RL). Our re-
sults demonstrate that our compressive system
is more suitable for document summarization.
It first selects sentences and then compresses
them by removing irrelevant spans of words. It
makes use of an advance oracle sentence com-
pressor trained on a dedicated sentence com-
pression dataset (Sec. 4.1). In contrast, LA-
TENT+COMPRESS naively trains a sequence-to-
sequence compressor to map a sentence in the doc-
ument to a sentence in the summary.

Comparison with Abstractive Systems. Both
EXCONSUMM Extractive and Compressive out-
perform most of the abstractive systems including
Pointer+Coverage (See et al., 2017). When com-
paring with more recent methods (Pasunuru and
Bansal, 2018; Gehrmann et al., 2018), our model
has comparable performance.

Summary Versatility. We evaluate the ability
of our model to generate variable length sum-
maries. Table 4 show the Pearson correlation co-
efficient between the lengths of the human gen-
erated summaries against each unbounded model.
Our compressive approach obtains the best re-
sults, with a Pearson correlation coefficient of 0.72
(p < 0.001).

Figure 4 also shows the distribution of words
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Models
Bounded Unbounded

Human QA ROUGE Human QA ROUGE Pearson
score rank R1 R2 RL score rank R1 R2 RL r

LEAD 25.50 4rd 30.9 11.9 29.1 36.33 5th 31.6 13.5 29.3 0.40
REFRESH 20.88 6th 37.4 17.3 34.8 66.34 1st 43.8 25.8 41.6 0.60
LATENT 38.45 2nd 38.9 19.6 36.4 53.38 4th 40.7 22.0 38.1 -0.02
EXCONSUMM Extractive 36.34 3rd 38.4 18.5 35.9 54.93 3rd 40.8 21.0 38.2 0.68
EXCONSUMM Compressive 39.44 1ST 38.8 19.0 37.0 57.32 2nd 41.4 22.6 39.1 0.72
Pointer+Coverage 24.51 5th 38.4 19.7 36.7 28.73 6th 40.2 21.4 38.0 0.30

Table 4: QA evaluations: limited length (Bounded) and full length (Unbounded) summaries. We also show
ROUGE scores for the summaries being evaluated. We report the Pearson correlation coefficient between the
human and predicted summary lengths

Figure 4: Word distribution in comparison with the hu-
man summaries for CNN dataset. Density curves show
the length distributions of human authored and system
produced summaries.

per summary for the models where predictions
were available. Interestingly, both EXCON-
SUMM Extractive and Compressive follow the hu-
man distribution much better than other extractive
systems (LEAD, REFRESH and LATENT), since
they are able to generate variable-length sum-
maries depending on the input text. Our com-
pressive model generates a word distribution much
closer to the abstractive Pointer+Coverage model
but achieves better compression ratio; the sum-
maries generated by Pointer+Coverage contain
59.8 words, while those generated by EXCON-
SUMM Compressive have 54.3 words on average.

5.2 QA Evaluation

Table 4 shows results from our question answer-
ing based human evaluation. We elicited human
judgements in two settings: the “Unbounded”,
where participants were shown the full system
produced summaries; and the “Bounded”, where
participants were shown summaries that were lim-
ited to the same size as the gold summaries.

For the “Unbounded” setting, the output sum-
maries produced by REFRESH were able to an-
swer most of the questions correctly, our Com-
pressive and Extractive systems were placed at the
2nd and 3rd places respectively.9

We observed that our systems were able to pro-
duce more concise summaries than those produced
by REFRESH (avg. length in words: 76.0 for
REFRESH, 56.2 for EXCONSUMM Extractive and
54.3 for EXCONSUMM Compressive; see Fig-
ure 4). REFRESH is prone to generating ver-
bose summaries, consequently it has an advan-
tage of accumulating more information. In the
“Bounded” setting, we aim to reduce this unfair
advantage. Scores are overall lower since the sum-
mary sizes are truncated to gold size. The EX-
CONSUMM Compressive summaries rank first and
can answer 39.44% of questions correctly. EX-
CONSUMM Extractive retains its 3rd place an-
swering 36.34% of questions correctly.10 These
results demonstrate that our models generate con-
cise and informative summaries that correlate well
with the human summary lengths.11

5.3 Summary State Representation

Next, we performed an ablation study to investi-
gate the importance of the summary state repre-
sentation o

s
i w.r.t. the quality of the overall sum-

9We carried out pairwise comparisons between all mod-
els to assess whether system differences are statistically sig-
nificant. We found that there is no statistically signifi-
cant difference between REFRESH and EXCONSUMM Com-
pressive. We use a one-way ANOVA with posthoc Tukey
HSD tests with p < 0.01. The differences among LA-
TENT and both variants of EXCONSUMM, and between LEAD
and Pointer+Coverage are also statistically insignificant. All
other differences are statistically significant.

10The differences among both variants of EXCON-
SUMM and LATENT, and among LEAD, REFRESH and
Pointer+Coverage are statistically insignificant. All other
differences are statistically significant. We use a one-way
ANOVA with posthoc Tukey HSD tests with p < 0.01.

11App. §A.2 shows more examples of our summaries.
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LEAD
• (CNN) A top al Qaeda in the Arabian Peninsula leader–who
a few years ago was in a U.S. detention facility–was among five
killed in an airstrike in Yemen, the terror group said, showing
the organization is vulnerable even as Yemen appears close to
civil war.
• Ibrahim al-Rubaish died Monday night in what AQAP’s me-
dia wing, Al-Malahem Media, called a “crusader airstrike.”
• The Al-Malahem Media obituary characterized al-Rubaish
as a religious scholar and combat commander.
REFRESH
• (CNN) A top al Qaeda in the Arabian Peninsula leader–who
a few years ago was in a U.S. detention facility–was among five
killed in an airstrike in Yemen, the terror group said, showing
the organization is vulnerable even as Yemen appears close to
civil war.
• Ibrahim al-Rubaish died Monday night in what AQAP’s me-
dia wing, Al-Malahem Media, called a “crusader airstrike.”
• Al-Rubaish was once held by the U.S. government at its de-
tention facility in Guantanamo Bay, Cuba.
LATENT
• (CNN) A top al Qaeda in the Arabian Peninsula leader–who
a few years ago was in a U.S. detention facility–was among five
killed in an airstrike in Yemen, the terror group said, showing
the organization is vulnerable even as Yemen appears close to
civil war.
• Ibrahim al-Rubaish died Monday night in what AQAP’s me-
dia wing, Al-Malahem Media, called a “crusader airstrike.”
The Al-Malahem Media obituary characterized al-Rubaish as
a religious scholar and combat commander.
• A Yemeni Defense Ministry official and two Yemeni national
security officials not authorized to speak on record confirmed
that al-Rubaish had been killed, but could not specify how he
died.

EXCONSUMM Extractive
• (CNN) A top al Qaeda in the Arabian Peninsula leader–who
a few years ago was in a U.S. detention facility–was among five
killed in an airstrike in Yemen, the terror group said, showing
the organization is vulnerable even as Yemen appears close to
civil war.
• Ibrahim al-Rubaish died Monday night in what AQAP’s me-
dia wing, Al-Malahem Media, called a “crusader airstrike.”

EXCONSUMM Compressive
• A top al Qaeda in the Arabian Peninsula leader–who a few
years ago was in a U.S. detention facility–was among five killed
in an airstrike in Yemen. • Ibrahim al-Rubaish died in what
AQAP’s media wing, Al-Malahem Media, called a “crusader
airstrike.”

Pointer+Coverage
• Ibrahim al-Rubaish was among a number of detainees who
sued the administration of then-president George W. Bush to
challenge the legality of their confinement in Gitmo. • al-
Rubaish was once held by the U.S. government at its detention
facility in Guantanamo bay, Cuba.

GOLD
• AQAP says a “crusader airstrike” killed Ibrahim al-Rubaish
• Al-Rubaish was once detained by the United States in Guan-
tanamo

Question-Answer Pairs
• Who said that an airstrike killed Ibrahim al-Rubaish?
(AQAP) • What was the airstrike called? (crusader airstrike) •
Where was Ibrahim al-Rubaish once detained? (Guantanamo)

Figure 5: Example output summaries on the
CNN/DailyMail dataset, gold standard summary, and
corresponding questions. The questions are manually
written using the GOLD summary. The same EXCON-
SUMM summaries are shown in Figure 1, but the strike-
through spans are now removed.

mary. We tested against a STATE AVERAGING

variant, where we replace o
s
i by a weighted aver-

age, analogous to Nallapati et al. (2017), oavg s
i =

∑j−1
i=1 e(si)p(zi ∣ pavg

i ), where p
avg
i has the same

State ROUGE
R1 R2 RL

EXCONSUMM Extractive 32.5 12.6 28.5
STATE AVERAGING 30.0 12.3 26.9
EXCONSUMM Compressive 32.5 12.7 29.2
EXCONSUMM Ext+Comp oracle 25.5 9.3 23.7

Table 5: Summary state ablation for the CNN dataset.

form as pi but depends recursively on the previous
summary state o

avg s
i−1 . Table 5 shows that using

an LSTM state o
s
i to model the current sentences

in the summary is very important. The other ab-
lation study shows how learning to extract and
compress in a disjoint approach (EXCONSUMM

Ext+Comp oracle) performs against a joint learn-
ing approach (EXCONSUMM Compressive). We
compared summaries generated from our best ex-
tractive model and compressed them with a com-
pressive oracle. Our joint learning model achieves
the best performance in all metrics compared with
the other ablations, suggesting that joint learning
and using a summary state representation is bene-
ficial for summarization.

6 Conclusions

We developed EXCONSUMM, a novel summariza-
tion model to generate variable length extractive
and compressive summaries. Experimental re-
sults show that the ability of our model to learn
a dynamic representation of the summary pro-
duces summaries that are informative, concise,
and correlate well with human generated summary
lengths. Our model outperforms state-of-the-art
extractive and most of abstractive systems on the
CNN and DailyMail datasets, when evaluated au-
tomatically, and through human evaluation for the
bounded scenario. We further obtain state-of-the-
art results on Newsroom, a more abstractive sum-
mary dataset.
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