
Proceedings of NAACL-HLT 2019, pages 3931–3937
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

3931

Recommendations for Datasets for Source Code Summarization

Alex LeClair, Collin McMillan
Department of Computer Science and Engineering

University of Notre Dame
{aleclair, cmc}@nd.edu

Abstract
Source Code Summarization is the task of
writing short, natural language descriptions
of source code. The main use for these de-
scriptions is in software documentation e.g.
the one-sentence Java method descriptions in
JavaDocs. Code summarization is rapidly
becoming a popular research problem, but
progress is restrained due to a lack of suit-
able datasets. In addition, a lack of commu-
nity standards for creating datasets leads to
confusing and unreproducible research results
– we observe swings in performance of more
than 33% due only to changes in dataset de-
sign. In this paper, we make recommendations
for these standards from experimental results.
We release a dataset based on prior work of
over 2.1m pairs of Java methods and one sen-
tence method descriptions from over 28k Java
projects. We describe the dataset and point out
key differences from natural language data, to
guide and support future researchers.

1 Introduction

Source Code Summarization is the task of writ-
ing short, natural language descriptions of source
code (Eddy et al., 2013). The most common use
for these descriptions is in software documen-
tation, such as the summaries of Java methods
in JavaDocs (Kramer, 1999). Automatic gener-
ation of code summaries is a rapidly-expanding
research area at the crossroads of Computational
Linguistics and Software Engineering, as a grow-
ing tally of new workshops and NSF-sponsored
meetings have recognized (Cohen and Devanbu,
2018; Quirk, 2015). The reason, in a nutshell, is
that the vast majority of code summarization tech-
niques are adaptations of techniques originally de-
signed to solve NLP problems.

A major barrier to ongoing research is a lack
of standardized datasets. In many NLP tasks such
as Machine Translation there are large, curated

datasets (e.g. Europarl (Koehn, 2018)) used by
several research groups. The benefit of these stan-
dardized datasets is twofold: First, scientists are
able to evaluate new techniques using the same test
conditions as older techniques. And second, the
datasets tend to conform to community customs of
best practice, which avoids errors during evalua-
tion. These benefits are generally not yet available
to code summarization researchers; while large,
public code repositories do exist, most research
projects must parse and process these repositories
on their own, leading to significant differences on
one project to another. The result is that research
progress is slowed as reproducibilty of earlier re-
sults is difficult.

Inevitably, differences in dataset creation also
occur that can mislead researchers and over or un-
derstate the performance of some techniques. For
example, a recent source code summarization pa-
per reports achieving 25 BLEU when generating
English descriptions of Java methods with an ex-
isting technique (Gu et al., 2018), which is 5 points
higher than the original paper reports (Iyer et al.,
2016). The paper also reports 35+ BLEU for a
vanilla seq2seq NMT model, which is 16 points
higher than what we are able to replicate. While it
is not our intent to single out any one paper, we do
wish to call attention to a problem in the research
area generally: a lack of standard datasets leads to
results that are difficult to interpret and replicate.

In this paper, we propose a set of guidelines
for building datasets for source code summariza-
tion techniques. We support our guidelines with
related literature or experimentation where strong
literary consensus is not available. We also com-
pute several metrics related to word usage to guide
future researchers who use the dataset. We have
made a dataset of over 2.1m Java methods and
summaries from over 28k Java projects available
via an online appendix (URL in Section 6).
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2 Related Work

Related work to this paper consists of approaches
for source code summarization. As with many
research areas, data-driven AI-based approaches
have superseded heuristic/template-based tech-
niques, though overall the field is quite new. Work
by Haiduc et al. (Haiduc et al., 2010a,b) in 2010
coined the term “source code summarization”, and
several heuristic/template-based techniques fol-
lowed including work by Sridhara et al. (Srid-
hara et al., 2010, 2011), McBurney et al. (McBur-
ney and McMillan, 2016), and Rodeghero et
al. (Rodeghero et al., 2015).

More recent techniques are data-driven, though
the overall size of the field is small. Literature
includes work by Hu et al. (Hu et al., 2018a,b)
and Iyer et al. (Iyer et al., 2016). Projects tar-
geting problems similar to code summarization
have been published widely, including on com-
mit message generation (Jiang et al., 2017; Loyola
et al., 2017), method name generation (Allamanis
et al., 2016), pseudocode generation (Oda et al.,
2015), and code search (Gu et al., 2018). Nazar et
al. (Nazar et al., 2016) provide a survey.

Of note is that no standard datasets for code
summarization have yet been published. Each of
the above papers takes an ad hoc approach, in
which the authors download large repositories of
code and apply their own preprocessing. There
are few standard practices, leading to major dif-
ferences in the reported results in different papers,
as discussed in the previous section. For example,
the works by LeClair et al. (LeClair and McMil-
lan, 2019) and Hu et al. (Hu et al., 2018a) both
modify the CODENN model from Iyer et al. (Iyer
et al., 2016) to work on Java methods and com-
ments. LeClair et al. and Hu et al. report very
disparate results: A BLEU-4 score of 6.3 for CO-
DENN on one dataset, and 25.3 on another, even
though both datasets were generated from Java
source code repositories.

These disparate results happen for a variety of
reasons, such as a difference in data set sizes and
tokenization schemes. LeClair et al. use a data set
of 2.1 million Java method-comment pairs while
Hu et al. use a total of 69,708. Hu et al. also re-
place out of vocabulary (OOV) tokens in the com-
ments with <UNK> in the training, validation,
and testing sets, while LeClair et al. remove OOV
tokens from the training set only.

3 Dataset Preparations

The dataset we use in this paper is based on the
dataset provided by LeClair et al. (LeClair and
McMillan, 2019) in a pre-release. We used this
dataset because it is both the largest and most re-
cent in source code summarization. That dataset
has its origins in the Sourcerer project by Lopes et
al. (Lopes et al., 2010), which includes over 51
million Java methods. LeClair et al. provided
the dataset after minimal initial processing that fil-
tered for Java methods with JavaDoc comments
in English, and removed methods over 100 words
long and comments >13 and <3 words. The result
is a dataset of 2.1m Java methods and associated
comments. LeClair et al. do additional process-
ing, but do not quantify the effects of their deci-
sions – this is a problem because other researchers
would not know which of the decisions to follow.
We explore the following research questions to
help provide guidelines and justifications for our
design decisions in creating the dataset.

3.1 Research Questions
Our research objective and contribution in this pa-
per is to quantify the effect of key dataset pro-
cessing configurations, with the aim to make rec-
ommendations on which configurations should be
used. We ask the following Research Questions:

RQ1 What is the effect of splitting by method ver-
sus splitting by project?

RQ2 What is the effect of removing automatically
generated Java methods?

The scope of the dataset in this paper is source
code summarization of Java methods – the dataset
contains pairs of Java methods and JavaDoc de-
scriptions of those methods. However, we be-
lieve these RQs will provide guidance for similar
datasets e.g. C/C++ functions and descriptions, or
other units of granularity e.g. code snippets in-
stead of methods/functions.

The rationale behind RQ1 is that many papers
split the dataset into training, validation, and test
sets at the unit of granularity under study. For
example, dividing all Java methods in the dataset
into 80% in training, 10% in validation, and 10%
in testing. However, this results in a situation
where it is possible for code from one project to
be in both the testing set and the training set. It is
possible that similar vocabulary and code patterns
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Figure 1: Word count histogram for code, comment,
and the book summaries. About 22% of words occur
one time across all Java methods, versus 35% in the
book summaries.

are used in methods from the same project, and
even worse, it is possible that overloaded methods
appear in both the training and test sets. How-
ever, this possibility is theoretical and a nega-
tive effect has never been shown. In contrast, we
split by project: randomly divide the Java projects
into training/validation/test groups, then place all
methods from e.g. test projects into the test set.

The rationale behind RQ2 is that automati-
cally generated code is common in many Java
projects (Shimonaka et al., 2016), and that it
is possible that very similar code is generated
for projects in the training set and the test-
ing/validation sets. Shimonaka et al. (Shimonaka
et al., 2016) point out that the typical approach for
identifying auto-generated code is a simple case-
insensitive text search for the phrase “generated
by” in the comments of the Java files. LeClair et
al. (LeClair and McMillan, 2019) report that this
search turns out to be quite aggressive, catching
nearly all auto-generated code in the repository.
However, as with RQ1, the effect of this filter is
theoretical and has not been measured in practice.

3.2 Methodology
Our methodology for answering RQ1 is to com-
pare the results of a standard NMT algorithm with
the dataset split by project, to the results of the
same algorithm on the same dataset, except with
the dataset split by function. But because random
splits could be “lucky”, we created four random
datasets split by project, and four split by function,
seen in Table 2. We then use an off-the-shelf, stan-
dard NMT technique called attendgru provided
pre-release by LeClair et al. (LeClair and McMil-
lan, 2019) and used as a baseline approach in their
recent paper. The technique is just an attentional
encoder/decoder based on single-layer GRUs, and
represents a strong NMT baseline used by many
papers. We train attendgru with each of the four
training sets, find the best-performing model using

Figure 2: Histogram of word occurrences per docu-
ment. Approximately 34% of words occur in only one
Java method, 20% occur in two methods, etc.

the validation set associated with that training set
(out of 10 maximum epochs), and then obtain test
performance for that model. We report the average
of the results over the four random splits. Note that
we used the same configuration for attendgru as
LeClair et al. report, except that we reduced the
output vocabulary to 10k to reduce model size.

Our process for RQ2 is similar. We created four
random split-by-project sets in which automati-
cally generated code was not removed. Then we
compared them to the four random split-by-project
sets we created for RQ1 (in which auto-generated
code was removed).

3.3 Dataset Characteristics

We make three observations about the dataset that,
in our view, are likely to affect how researchers de-
sign source code summarization algorithms. First,
as depicted in Figure 1, words appear to be used
more often in code as compared to natural lan-
guage – there are fewer words used only one or
two times, and in general more used 3+ times.
At the same time (Figure 2), the pattern for word
occurrences per document appears similar, imply-
ing that even though words in code are repeated,
they are repeated often in the same method and
not across methods. Even though this may suggest
that the occurrence of unique words in source code
is isolated enough to have little affect on BLEU
score, we show in Section 4 that this word over-
lap causes BLEU score inflation when you split
by function. This is important because the typi-
cal MT use case assumes that a “dictionary” can
be created (e.g., via attention) to map words in a
source to words in a target language. An algorithm
applied to code summarization needs to tolerate
multiple occurrences of the same words. To com-
pare the source code, comments, and natural lan-
guage datasets we tokenized our data by removing
all special characters, lower casing, and for source
code – splitting camel case into separate tokens.
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SplittingStrategy Set1 Set2 Set3 Set4
Split by project 17.81 16.73 17.11 17.99

Split by function 20.97 23.74 23.67 23.68
Auto-generated code included 19.11 19.09 18.04 15.66

Table 1: Average BLEU Scores from 15 epochs for each of the four sets.

A related observation is that Java methods tend
to be much longer than comments (Figure 3 ar-
eas (c) and (d)). Typically, code summarization
tools take inspiration from NMT algorithms de-
signed for cases of similar encoder/decoder se-
quence length. Many algorithms such as recur-
rent networks are sensitive to sequence length, and
may not be optimal off-the-shelf.

A third observation is that the words in meth-
ods and comments tend to overlap, but in fact a
vast majority of words are different (70% of words
in code summary comments do not occur in the
code method, see Figure 3 area (b)). This situa-
tion makes the code summarization problem quite
difficult because the words in the comments repre-
sent high level concepts, while the words in the
source code represent low level implementation
details – a situation known as the “concept assign-
ment problem” (Biggerstaff et al., 1993). A code
summarization algorithm cannot only learn a word
dictionary as it might in a typical NMT setting,
or select summarizing words from the method for
a summary as a natural language summarization
tool might. A code summarization algorithm must
learn to identify concepts from code details, and
assign high level terms to those concepts.

Figure 3: Overlap of words between methods and com-
ments (areas a and b). Over 30% of words in com-
ments, on average also occur in the method it describes.
About 11% of words in code, on average, also occur in
the comment describing it. Also, word length of meth-
ods and comments (areas c and d). Methods average
around 30 words, versus 10 for comments.

4 Experimental Results & Conclusion

In this section, we answer our Research Questions
and provide supporting evidence and rational.

4.1 RQ1: Splitting Strategy

We observe a large “false” boost in BLEU score
when split by function instead of split by project
(see Figure 4). We consider this boost false be-
cause it involves placing functions from projects
in the test set into the training set – an unrealis-
tic scenario. An average of four runs when split
by project was 17.41 BLEU, a result relatively
consistent across the splits (maximum was 18.28
BLEU, minimum 16.10). In contrast, when split
by function, the average BLEU score was 23.02,
and increase of nearly one third as seen in Ta-
ble 1. Our conclusion is that splitting by func-
tion is to be avoided during dataset creation for
source code summarization. Beyond this narrow
answer to the RQ, in general, any leakage of infor-
mation from test set projects into the training or
validation sets ought to be strongly avoided, even
if the unit of granularity is smaller than a whole
project. We reiterate from Section 1 that this is
not a theoretical problem: many papers published
using data-driven techniques for code summariza-
tion and other research problems split their data at
the level of granularity under study.

Figure 4: Boxplots of BLEU scores from attendgru for four
runs under configurations for RQ1 and RQ2.
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BP Set1 BP Set2 BP Set3 BP Set4 BF All Sets
Training Set 1,935,860 1,950,026 1,942,291 1,933,677 1,943,723

Validation Set 105,693 100,920 104,837 105,997 107,984
Testing Set 107,568 98,175 101,993 109,447 107,984

Table 2: Number of method-comment pairs in the train, validation, test sets used in each random split set when
split by project (BP) and by function (BF).

4.2 RQ2: Removing Autogen. Code
We also found a boost in BLEU score when not re-
moving automatically generated code, though the
difference was less than observed for RQ1. The
baseline performance increased to 18 BLEU when
not removing auto-generated code, and it varied
much more depending on the split (some projects
have much more auto-generated code than others).
Our recommendation is that, in general, reason-
able precautions should be implemented to remove
auto-generated code from the dataset because we
do find evidence that auto-generated code can af-
fect the results of experiments.

5 Discussion

This paper provides benefits to researchers in the
field of automatic source code summarization in
two areas. First, we provide insight into the effects
of splitting a Java method and comment dataset
by project or by function, and how these differ-
ent splitting methods effect the task of source code
summarization. Second, we provide a dataset
of 2.1m pairs of Java methods and one sentence
method descriptions in a cleaned and tokenized
format (discussed in 6) as well as a training, vali-
dation, testing split.

Note however that there may be cases where re-
searchers wish to adapt our recommendations for
a specific context. For example, when generating
comments in an IDE. The problem of code sum-
marization in an IDE is slightly different than what
we have presented, and would benefit from includ-
ing code-comment pairs from the same project.
IDEs have the advantage of access to a program-
mer’s source code and edit history in real time –
they do not rely on a repository collected post-hoc.
Moreno et al. (Moreno et al., 2013) take advantage
of this information to generate Java class sum-
maries in an eclipse plugin – their tool uses both
the class and project level information from com-
pleted projects to generate these summaries, while
not using any information from outside sources.

However, even in this case, care must be taken
to avoid unrealistic scenarios, such as ensuring

that the training set consists only of code older
than the code in the test set. For example, consider
a programmer at revision 75 of his or her project
who requests automatically generated comments
from the IDE, then goes on to write a total of 100
revisions for the project. An experiment simulat-
ing this situation should only use revisions 1-74
as training data – revisions 76+ are “in the future”
from the perspective of the real world situation.

6 Downloadable Dataset

In our online appendix we have made three down-
loadable sets available. The first is our SQL
database, generated using the tool from McMil-
lan et al. (McMillan et al., 2011), that contains the
file name, method comment, and start/end lines
for each method, we call this dataset our “Raw
Dataset”. We also provide a link to the Sourcerer
dataset (Linstead et al., 2009) which is used as a
base for the dataset in LeClair et al. (LeClair and
McMillan, 2019). In addition to the Raw Dataset,
we also provide a “Filtered Dataset” that consists
of a set of 2.1m method comment pairs. In the Fil-
tered Dataset we removed auto-generated source
code files, as well all method’s that do not have an
associated comment. No preprocessing was ap-
plied to the source code and comment strings in
the Filtered Dataset. The third downloadable set
we supply is the “Tokenized Dataset”. In the Tok-
enized Dataset, we processed the source code and
comments from the Filtered Dataset identically to
the tokenization scheme described in Section 5
of (LeClair and McMillan, 2019). This set also
provides a training, validation, and test set as well
as a script to easily reshuffle these sets.

The URL for download is:
http://leclair.tech/data/funcom
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