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Abstract
Adversarial training has shown impressive
success in learning bilingual dictionary with-
out any parallel data by mapping monolingual
embeddings to a shared space. However, re-
cent work has shown superior performance for
non-adversarial methods in more challenging
language pairs. In this work, we revisit ad-
versarial autoencoder for unsupervised word
translation and propose two novel extensions
to it that yield more stable training and im-
proved results. Our method includes regu-
larization terms to enforce cycle consistency
and input reconstruction, and puts the target
encoders as an adversary against the corre-
sponding discriminator. Extensive experimen-
tations with European, non-European and low-
resource languages show that our method is
more robust and achieves better performance
than recently proposed adversarial and non-
adversarial approaches.

1 Introduction

Learning cross-lingual word embeddings has been
shown to be an effective way to transfer knowl-
edge from one language to another for many
key linguistic tasks including machine translation,
named entity recognition, part-of-speech tagging,
and parsing (Ruder et al., 2017). While earlier ef-
forts solved the associated word alignment prob-
lem using large parallel corpora (Luong et al.,
2015), broader applicability demands methods to
relax this requirement since acquiring a large cor-
pus of parallel data is not feasible in most sce-
narios. Recent methods instead use embeddings
learned from monolingual data, and learn a linear
mapping from one language to another with the
underlying assumption that two embedding spaces
exhibit similar geometric structures (i.e., approx-
imately isomorphic). This allows the model to
learn effective cross-lingual representations with-
out expensive supervision (Artetxe et al., 2017).

Given monolingual word embeddings of two
languages, Mikolov et al. (2013a) show that a lin-
ear mapping can be learned from a seed dictio-
nary of 5000 word pairs by minimizing the sum of
squared Euclidean distances between the mapped
vectors and the target vectors. Subsequent works
(Xing et al., 2015; Artetxe et al., 2016, 2017;
Smith et al., 2017) propose to improve the model
by normalizing the embeddings, imposing an or-
thogonality constraint on the mapper, and modi-
fying the objective function. While these methods
assume some supervision in the form of a seed dic-
tionary, recently fully unsupervised methods have
shown competitive results. Zhang et al. (2017a,b)
first reported encouraging results with adversar-
ial training. Conneau et al. (2018) improved this
approach with post-mapping refinements, show-
ing impressive results for several language pairs.
Their learned mapping was then successfully used
to train a fully unsupervised neural machine trans-
lation system (Lample et al., 2018a,b).

Although successful, adversarial training has
been criticized for not being stable and failing to
converge, inspiring researchers to propose non-
adversarial methods more recently (Xu et al.,
2018a; Hoshen and Wolf, 2018; Alvarez-Melis
and Jaakkola, 2018; Artetxe et al., 2018b). In par-
ticular, Artetxe et al. (2018b) show that the adver-
sarial methods of Conneau et al. (2018) and Zhang
et al. (2017a,b) fail for many language pairs.

In this paper, we revisit adversarial training and
propose a number of key improvements that yield
more robust training and improved mappings. Our
main idea is to learn the cross-lingual mapping in a
projected latent space and add more constraints to
guide the unsupervised mapping in this space. We
accomplish this by proposing a novel adversarial
autoencoder framework (Makhzani et al., 2015),
where adversarial mapping is done at the (latent)
code space as opposed to the original embedding
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space (Figure 1). This gives the model the flexibil-
ity to automatically induce the required geometric
structures in its latent code space that could poten-
tially yield better mappings. Søgaard et al. (2018)
recently find that the isomorphic assumption made
by most existing methods does not hold in general
even for two closely related languages like English
and German. In their words “approaches based
on this assumption have important limitations”.
By mapping the latent vectors through adversar-
ial training, our approach therefore departs from
the isomorphic assumption.

In our adversarial training, not only the map-
per but also the target encoder is trained to fool
the discriminator. This forces the discriminator
to improve its discrimination skills, which in turn
pushes the mapper to generate indistinguishable
translation. To guide the mapping, we include
two additional constraints. Our first constraint en-
forces cycle consistency so that code vectors after
being translated from one language to another, and
then translated back to their source space remain
close to the original vectors. The second constraint
ensures reconstruction of the original input word
embeddings from the back-translated codes. This
grounding step forces the model to retain word se-
mantics during the mapping process.

We conduct a series of experiments with six dif-
ferent language pairs (in both directions) compris-
ing European, non-European, and low-resource
languages from two different datasets. Our re-
sults show that our model is more robust and
yields significant gains over Conneau et al. (2018)
for all translation tasks in all evaluation mea-
sures. Our method also gives better initial map-
ping compared to other existing methods (Artetxe
et al., 2018b). We also perform an exten-
sive ablation study to understand the contribu-
tion of different components of our model. The
study reveals that cycle consistency contributes
the most, while adversarial training of the target
encoder and post-cycle reconstruction also have
significant effect. We have released our source
code at https://ntunlpsg.github.io/
project/unsup-word-translation/

The remainder of this paper is organized as fol-
lows. After discussing related work in Section 2,
we present our unsupervised word translation ap-
proach with adversarial autoencoder in Section 3.
We describe our experimental setup in Section 4,
and present our results with in-depth analysis in

Section 5. Finally, we summarize our findings
with possible future directions in Section 6.

2 Related Work

In recent years a number of methods have been
proposed to learn bilingual dictionary from mono-
lingual word embeddings.1 Many of these meth-
ods use an initial seed dictionary. Mikolov et al.
(2013a) show that a linear transformation can be
learned from a seed dictionary of 5000 pairs by
minimizing the squared Euclidean distance. In
their view, the key reason behind the good perfor-
mance of their model is the similarity of geomet-
ric arrangements in vector spaces of the embed-
dings of different languages. For translating a new
source word, they map the corresponding word
embedding to the target space using the learned
mapping and find the nearest target word. In their
approach, they found that simple linear mapping
works better than non-linear mappings with multi-
layer neural networks.

Xing et al. (2015) enforce the word vectors to
be of unit length during the learning of the embed-
dings and modify the objective function for learn-
ing the mapping to maximize the cosine similar-
ity instead of using Euclidean distance. To pre-
serve length normalization after mapping, they en-
force the orthogonality constraint on the mapper.
Instead of learning a mapping from the source
to the target embedding space, Faruqui and Dyer
(2014) use a technique based on Canonical Corre-
lation Analysis (CCA) to project both source and
target embeddings to a common low-dimensional
space, where the correlation of the word pairs in
the seed dictionary is maximized. Artetxe et al.
(2016) show that the above methods are variants
of the same core optimization objective and pro-
pose a closed form solution for the mapper un-
der orthogonality constraint. Smith et al. (2017)
find that this solution is closely related to the or-
thogonal Procrustes solution. In their follow-up
work, Artetxe et al. (2017) obtain competitive re-
sults using a seed dictionary of only 25 word pairs.
They propose a self-learning framework that per-
forms two steps iteratively until convergence. In
the first step, they use the dictionary (starting with
the seed) to learn a linear mapping, which is then
used in the second step to induce a new dictionary.

A more recent line of research attempts to elim-
inate the seed dictionary totally and learn the map-

1see (Ruder et al., 2017) for a nice survey
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ping in a purely unsupervised way. This was first
proposed by Miceli Barone (2016), who initially
used an adversarial network similar to Conneau
et al. (2018), and found that the mapper (which is
also the encoder) translates everything to a single
embedding, known commonly as the mode col-
lapse issue (Goodfellow, 2017). To preserve di-
versity in mapping, he used a decoder to recon-
struct the source embedding from the mapped em-
bedding, extending the framework to an adversar-
ial autoencoder. His preliminary qualitative analy-
sis shows encouraging results but not competitive
with methods using bilingual seeds. He suspected
issues with training and with the isomorphic as-
sumption. In our work, we successfully address
these issues with an improved model that also re-
laxes the isomorphic assumption. Our model uses
two separate autoencoders, one for each language,
which allows us to put more constraints to guide
the mapping. We also distinguish the role of an
encoder from the role of a mapper. The encoder
projects embeddings to latent code vectors, which
are then translated by the mapper.

Zhang et al. (2017a) improved adversarial train-
ing with orthogonal parameterization and cycle
consistency. To aid training, they incorporate
additional techniques like noise injection which
works as a regularizer. For selecting the best
model, they rely on sharp drops of the discrimi-
nator accuracy. In their follow-up work (Zhang
et al., 2017b), they minimize Earth-Mover’s dis-
tance between the distribution of the transformed
source embeddings and the distribution of the tar-
get embeddings. Conneau et al. (2018) show im-
pressive results with adversarial training and re-
finement with the Procrustes solution. Instead of
using the adversarial loss, Xu et al. (2018a) use
Sinkhorn distance and adopt cycle consistency in-
spired by the CycleGAN (Zhu et al., 2017). We
also incorporate cycle consistency along with the
adversarial loss. However, while all these meth-
ods learn the mapping in the original embedding
space, our approach learns it in the latent code
space considering both the mapper and the target
encoder as adversary. In addition, we use a post-
cycle reconstruction to guide the mapping.

A number of non-adversarial methods have also
been proposed recently. Artetxe et al. (2018b)
learn an initial dictionary by exploiting the struc-
tural similarity of the embeddings and use a robust
self-learning algorithm to improve it iteratively.

Hoshen and Wolf (2018) align the second moment
of word distributions of the two languages us-
ing principal component analysis (PCA) and then
refine the alignment iteratively using a variation
of the Iterative Closest Point (ICP) method used
in computer vision. Alvarez-Melis and Jaakkola
(2018) cast the problem as an optimal transport
problem and exploit the Gromov-Wasserstein dis-
tance which measures how similarities between
pairs of words relate across languages.

3 Approach

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}
be two sets consisting of n and m word embed-
dings of d-dimensions for a source and a target
language, respectively. We assume that X and Y
are trained independently from monolingual cor-
pora. Our aim is to learn a mapping f(x) in an un-
supervised way (i.e., no bilingual dictionary given)
such that for every xi, f(x) corresponds to its
translation in Y . Our overall approach follows the
same sequence of steps as Conneau et al. (2018):

(i) Induction of seed dictionary through adver-
sarial training.

(ii) Iterative refinement of the initial mapping
through the Procrustes solution.

(iii) Apply CSLS for nearest neighbor search.

We propose a novel adversarial autoencoder
model to learn the initial mapping for inducing a
seed dictionary in step (i), and we adopt existing
refinement methods for steps (ii) and (iii).

3.1 Adversarial Autoencoder for Initial
Dictionary Induction

Our proposed model (Figure 1) has two autoen-
coders, one for each language. Each autoencoder
comprises an encoder EX (res. EY ) and a decoder
DX (res. DY ). The encoders transform an input x
(res. y) into a latent code zx (res. zy) from which
the decoders try to reconstruct the original input.
We use a linear encoder and l2 reconstruction loss

zxi = θEX xi; x̂i = θDX zxi (1)

LautoencX (θEX , θDX ) =
1

n

n∑
i=1

‖xi − x̂i‖2 (2)

where θEX ∈ Rc×d and θDX ∈ Rd×c are the pa-
rameters of the encoder and the decoder for d-
dimensional word embedding and c-dimensional
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Figure 1: Our proposed adversarial autoencoder frame-
work for unsupervised word translation.

code vector.2 The encoder, decoder and the recon-
struction loss for the other autoencoder (autoencY )
is similarly defined.

Let q(zx|x) and q(zy|y) be the encoding distri-
butions of the two autoencoders. We use adver-
sarial training to find a mapping between q(zx|x)
and q(zy|y). This is in contrast with most exist-
ing methods (e.g., Conneau et al. (2018); Artetxe
et al. (2017)) that directly map the distribution of
the source word embeddings p(x) to the distribu-
tion of the target p(y). As Søgaard et al. (2018)
pointed out, the isomorphism does not hold in gen-
eral between the word embedding spaces of two
languages. Mapping the latent codes gives our
model more flexibility to induce the required se-
mantic structures in its code space that could po-
tentially yield more accurate mappings.

As shown in Figure 1, we include two linear
mappings G : Zx → Zy and F : Zy → Zx

to project the code vectors (samples from q(.|.))
from one language to the other. In addition, we
have two language discriminators, LX and LY .
The discriminators are trained to discriminate be-
tween the mapped codes and the encoded codes,
while the mappers and encoders are jointly trained
to fool their respective discriminator. This results
in a three-player game, where the discriminator
tries to identify the origin of a code, and the map-
per and the encoder act together to prevent the dis-
criminator to succeed by making the mapped vec-
tor and the encoded vector as similar as possible.

Discriminator Loss Let θLX and θLY denote the
parameters of the two discriminators, and WG and
WF are the mapping weight matrices. The loss for
the source discriminator LX can be written as

2We also experimented with a non-linear encoder, but it
did not work well.

LLX (θLX |WF , θEX ) = −
1

m

m∑
j=1

logPLX (src = 0|F (zyj ))

− 1

n

n∑
i=1

logPLX (src = 1|zxi) (3)

where PLX (src|z) is the probability according to
LX to distinguish whether z is coming from the
source encoder (src = 1) or from the target-to-
source mapper F (src = 0). The discrimination
loss LLY (θLY |WG, θEY ) is similarly defined for
the target discriminator LY using G and EY .

Our discriminators have the same architecture
as Conneau et al. (2018). It is a feed-forward
network with two hidden layers of size 2048 and
Leaky-ReLU activations. We apply dropout with
a rate of 0.1 on the input to the discriminators. In-
stead of using 1 and 0, we also apply a smoothing
coefficient (s = 0.2) in the discriminator loss.

Adversarial Loss The mappers and encoders
are trained jointly with the following adversarial
loss to fool their respective discriminators.

Ladv(WF , θEX |θLX ) = −
1

m

m∑
i=1

logPLX (src = 1|F (zyj ))

− 1

n

n∑
i=1

logPLX (src = 0|zxi) (4)

The adversarial loss for mapperG and encoderEY
is similarly defined. Note that we consider both
the mapper and the target encoder as generators.
This is in contrast to existing adversarial methods,
which do not use any autoencoder in the target
side. The mapper and the target encoder team up
to fool the discriminator. This forces the discrim-
inator to improve its skill and vice versa for the
generators, forcing them to produce indistinguish-
able codes through better mapping.

Cycle Consistency and Reconstruction The
adversarial method introduced above maps a
“bag” of source embeddings to a “bag” of target
embeddings, and in theory, the mapper can match
the target language distribution. However, map-
ping at the bag level is often insufficient to learn
the individual word level mappings. In fact, there
exist infinite number of possible mappings that can
match the same target distribution. Thus to learn
better mappings, we need to enforce more con-
straints to our objective.

The first form of constraints we consider is cy-
cle consistency to ensure that a source code zx
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translated to the target language code space, and
translated back to the original space remains un-
changed, i.e., zx→G(zx)→F (G(zx))≈zx. For-
mally, the cycle consistency loss in one direction:

Lcyc(WG,WF ) =
1

n

n∑
i=1

‖zxi − F (G(zxi))‖ (5)

The loss in the other direction (zy → F (zy) →
G(F (zy)) ≈ zy) is similarly defined. In addition
to cycle consistency, we include another constraint
to guide the mapping further. In particular, we ask
the decoder of the respective autoencoder to recon-
struct the original input from the back-translated
code. We compute this post-cycle reconstruction
loss for the source autoencoder as follows:

Lrec(θEX , θDX ,WG,WF ) =
1

n

n∑
i=1

‖xi −DX (F (G(zxi)))‖
2

(6)

The reconstruction loss at the target autoencoder
is defined similarly. Apart from improved map-
ping, both cycle consistency and reconstruction
lead to more stable training in our experiments.
Specifically, they help our training to converge and
get around the mode collapse issue (Goodfellow,
2017). Since the model now has to translate the
mapped code back to the source code and recon-
struct the original word embedding, the generators
cannot get away by mapping all source codes to a
single target code.

Total Loss The total loss for mapping a batch
from source to target is

Lsrc→tar = Ladv + λ1Lcyc + λ2Lrec (7)

where λ1 and λ2 control the relative importance
of the three loss components. Similarly we define
the total loss for mapping in the opposite direction
Ltar→src. The complete objective of our model is:

Ltotal = Lsrc→tar + Ltar→src (8)

3.2 Training and Dictionary Construction
We present the training procedure of our model
and the overall word translation process in Algo-
rithm 1. We first pre-train the autoencoders sepa-
rately on monolingual embeddings (Step 1). This
pre-training is required to induce word semantics
(and relations) in the latent code space.

We start adversarial training (Step 2) by updat-
ing the discriminators for n critics (5) times, each

Algorithm 1: Unsupervised word translation
with cycle-consistent adversarial autoencoder

Input : Two sets of word embeddings: X and Y
// Initial autoencoder training
1. Train autoencX and autoencY separately for some

epochs on monolingual embeddings (Eq. 2);
// Adversarial training
2. for n epochs do

for n iterations do
// Critic update
for n critics do

(i) Sample a batch from X and Y
(ii) Update discriminators (LX , LY ) (Eq. 3)

end
(a) Sample a batch from X as source and Y as

target
(b) Update mapper G and encoder EY on

adversarial loss to fool LY (Eq. 4)
(c) Update mappers G and F on cycle

consistency loss (Eq. 5)
(d) Update mappers (G, F ) and autoencX on

post-cycle reconstruction loss (Eq. 6)
// Orthogonalize the mapper
(e) Update weight matrices of mapper G and F

using:
WG ← (1+β)WG−β(WGW

T
G )WG

WF ← (1+β)WF −β(WFW
T
F )WF

(f) Sample a batch from Y as source and X as
target and update accordingly (symmetric to
(b) -(e) steps).

end
Use validation criterion to save the best model.

end
// Iterative Procrustes/fine-tuning
3. Load the best model.
for n iterations do

(a) Build a synthetic dictionary (using source
encoder, source-to-target mapper, and CSLS)

(b) Apply the Procrustes solution on the dictionary.
end
// Test
4. Test the model on gold bilingual dictionary.

time with a random batch. Then we update the
generators (the mapper and target encoder) on the
adversarial loss. The mappers then go through two
more updates, one for cycle consistency and an-
other for post-cycle reconstruction. The autoen-
coders (encoder-decoder) in this stage get updated
only on the post-cycle reconstruction loss. We also
apply the orthogonalization update to the mappers
following Conneau et al. (2018) with β = 0.01.

Our training setting is similar to Conneau et al.
(2018), and we apply the same pre- and post-
processing steps. We use stochastic gradient de-
scent (SGD) with a batch size of 32, a learning
rate of 0.1, and a decay of 0.98.

For selecting the best model, we use the un-
supervised validation criterion proposed by Con-
neau et al. (2018), which correlates highly with the
mapping quality. In this criterion, 10, 000 most
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frequent source words along with their nearest
neighbors in the target space are considered. The
average cosine similarity between these pseudo
translations is considered as the validation metric.

The initial bilingual dictionary induced by
adversarial training (or any other unsupervised
method) is generally of lower quality than what
could be achieved by a supervised method. Con-
neau et al. (2018) and Artetxe et al. (2018b) pro-
pose fine-tuning methods to refine the initial map-
pings. Similar to Conneau et al. (2018)), we fine-
tune our initial mappings (G and F ) by iteratively
solving the Procrustes problem and applying a
dictionary induction step. This method uses singu-
lar value decomposition or SVD of ZT

y Zx to find
the optimal mappings G (similarly SVD(ZT

x Zy)
for F ) given the approximate alignment of words
from the previous step. For generating synthetic
dictionary in each iteration, we only consider the
translation pairs that are mutual nearest neigh-
bors. In our fine-tuning, we run five iterations of
this process. For finding the nearest neighbors,
we use the Cross-domain Similarity Local Scal-
ing (CSLS) which works better in mitigating the
hubness problem (Conneau et al., 2018).

4 Experimental Settings

Following the tradition, we evaluate our model on
word translation (a.k.a. bilingual lexicon induc-
tion) task, which measures the accuracy of the pre-
dicted dictionary to a gold standard dictionary.

4.1 Datasets

We evaluate our model on two different datasets.
The first one is from Conneau et al. (2018), which
consists of FastText monolingual embeddings of
(d =) 300 dimensions (Bojanowski et al., 2017)
trained on Wikipedia monolingual corpus and gold
dictionaries for 110 language pairs.3 To show
the generality of different methods, we consider
European, non-European and low-resource lan-
guages. In particular, we evaluate on English (En)
from/to Spanish (Es), German (De), Italian (It),
Arabic (Ar), Malay (Ms), and Hebrew (He).

We also evaluate on the more challenging
dataset of Dinu et al. (2015) and its subsequent
extension by Artetxe et al. (2018a). We will re-
fer to this dataset as Dinu-Artexe dataset. From
this dataset, we choose to experiment on English

3https://github.com/facebookresearch/
MUSE

from/to Italian and Spanish. English and Italian
embeddings were trained on WacKy corpora using
CBOW (Mikolov et al., 2013b), while the Spanish
embeddings were trained on WMT News Crawl.
The CBOW vectors are also of 300 dimensions.

4.2 Baselines

We compare our method with the unsupervised
models of Conneau et al. (2018), Artetxe et al.
(2018b), Alvarez-Melis and Jaakkola (2018), Xu
et al. (2018a), and Hoshen and Wolf (2018).

To evaluate how our unsupervised method com-
pares with methods that rely on a bilingual seed
dictionary, we follow Conneau et al. (2018), and
compute a supervised baseline that uses the Pro-
crustes solution directly on the seed dictionary
(5000 pairs) to learn the mapping function, and
then uses CSLS to do the nearest neighbor search.
We also compare with the supervised approaches
of Artetxe et al. (2017, 2018a), which to our
knowledge are the state-of-the-art supervised sys-
tems. For some of the baselines, results are re-
ported from their papers, while for the rest we re-
port results by running the publicly available codes
on our machine.

For training our model on European languages,
the weight for cycle consistency (λ1) in Eq. 7 was
always set to 5, and the weight for post-cycle re-
construction (λ2) was set to 1. For non-European
languages, we use different values of λ1 and λ2 for
different language pairs. 4 The dimension of the
code vectors in our model was set to 350.

5 Results

We present our results on European languages on
the datasets of Conneau et al. (2018) and Dinu
et al. (2015) in Tables 1 and 3, while the results
on non-European languages are shown in Table 2.
Through experiments, our goal is to assess:

(i) Does the unsupervised mapping method
based on our proposed adversarial autoen-
coder model improve over the best existing
adversarial method of Conneau et al. (2018)
in terms of mapping accuracy and conver-
gence (Section 5.1)?

(ii) How does our unsupervised mapping method
compare with other unsupervised and super-
vised approaches (Section 5.2)?

4We did not tune the λ values much, rather used our initial
observation. Tuning λ values might yield even better results.
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En-Es En-De En-It
→ ← → ← → ←

Supervised (Procrustes-CSLS) 82.4 83.9 75.3 72.7 78.1 78.1

Unsupervised Baselines
Artetxe et al. (2018b) 82.2 84.4 74.9 74.1 78.8 79.5
Alvarez and Jaakkola (2018) 81.7 80.4 71.9 72.8 78.9 75.2
Xu et al. (2018b) 79.5 77.8 69.3 67.0 73.5 72.6
Hoshen and Wolf (2018) 82.1 84.1 74.7 73.0 77.9 77.5
Conneau et al. (2018) (paper) 81.7 83.3 74.0 72.2 - -
Conneau et al. (2018) (code) 82.3 83.7 74.2 72.6 78.3 78.1

Our Unsupervised Approach
Adversarial autoencoder +

Conneau et al. (2018) Refinement 82.6 84.4 75.5 73.9 78.8 78.5
Artetxe et al. (2018b) Refinement 82.7 84.7 75.4 74.3 79.0 79.6

Table 1: Word translation accuracy (P@1) on European
languages on the dataset of Conneau et al. (2018) using
fastText embeddings (trained on Wikipedia). ‘-’ indi-
cates the authors did not report the number.

(iii) Which components of our adversarial autoen-
coder model attribute to improvements (Sec-
tion 5.3)?

5.1 Comparison with Conneau et al. (2018)
Since our approach follows the same steps as Con-
neau et al. (2018), we first compare our proposed
model with their model on European (Table 1),
non-European and low-resource languages (Table
2) on their dataset. In the tables, we present the
numbers that they reported in their paper (Con-
neau et al. (2018) (paper)) as well as the results
that we get by running their code on our machine
(Conneau et al. (2018) (code)). For a fair compari-
son with respect to the quality of the learned map-
pings (or induced seed dictionary), here we only
consider the results of our approach that use the
refinement procedure of Conneau et al. (2018).

In Table 1, we see that our Adversarial autoen-
coder + Conneau et al. (2018) Refinement out-
performs Conneau et al. (2018) in all the six trans-
lation tasks involving European language pairs,
yielding gains in the range 0.3 - 1.3%. Our method
is also superior to theirs for the non-European
and low-resource language pairs in Table 2. Here
our method gives more gains ranging from 1.8 to
4.3%. Note specifically that Malay (Ms) is a low-
resource language, and the FastText contains word
vectors for only 155K Malay words. We found
their model to be very fragile for En from/to Ms,
and does not converge at all for Ms→En. We ran
their code 10 times for Ms→En but failed every
time. Compared to that, our method is more ro-
bust and converged most of the time we ran.

If we compare our method with Conneau et al.
(2018) on the dataset of (Dinu et al., 2015; Artetxe

En-Ar En-Ms En-He
→ ← → ← → ←

Supervised Baselines
Artetxe et al. (2017) 24.8 43.3 38.8 41.6 32.7 51.1
Artetxe et al. (2018a) 36.2 52.9 51.2 47.7 43.6 56.8
Supervised (Procrus-CSLS) 34.5 49.7 47.3 46.6 39.2 54.1

Unsupervised Baselines
Hoshen and Wolf (2018) 34.4 49.3 ** ** 36.5 52.3
Artetxe et al. (2018b) 36.1 48.7 54.0 55.4 43.8 57.5
Conneau et al. (2018) (code) 29.3 47.6 46.2 ** 36.8 53.1

Our Unsupervised Approach
Adversarial autoencoder +

Conneau et al. (2018) Refinement 33.6 49.7 49.5 44.3 40.0 54.9
Artetxe et al. (2018b) Refinement 36.3 52.6 54.1 51.7 44.0 57.1

Table 2: Word translation accuracy (P@1) on non-
European and low-resource languages on the dataset of
Conneau et al. (2018) using fastText embeddings. **
indicates the model failed to converge.

et al., 2017) in Table 3, we see here also our
method performs better than their method in all
the four translation tasks involving European lan-
guage pairs. In this dataset, our method shows
more robustness compared to their method. For
example, their method had difficulties in converg-
ing for En from/to Es translations; for En→Es, it
converges only 2 times out of 10 attempts, while
for Es→En it did not converge a single time in 10
attempts. Compared to that, our method was more
robust, converging 4 times out of 10 attempts.

In Section 5.3, we compare our model with
Conneau et al. (2018) more rigorously by evaluat-
ing them with and without fine-tuning and measur-
ing their performance on P@1, P@5, and P@10.

5.2 Comparison with Other Methods
In this section, we compare our model with other
state-of-the-art methods that do not follow the
same procedure as us and Conneau et al. (2018).
For example, Artetxe et al. (2018b) do the initial
mapping in the similarity space, then they apply
a different self-learning method to fine-tune the
embeddings, and perform a final refinement with
symmetric re-weighting. Instead of mapping from
source to target, they map both source and target
embeddings to a common space.

Let us first consider the results for European
language pairs on the dataset of Conneau et al.
(2018) in Table 1. Our Adversarial autoencoder
+ Conneau et al. (2018) Refinement performs
better than most of the other methods on this
dataset, achieving the highest accuracy for 4 out of
6 translation tasks. For De→En, our result is very
close to the best system of Artetxe et al. (2018b)
with only 0.2% difference.
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En-It En-Es
→ ← → ←

Supervised Baselines
Artetxe et al. (2017) 39.7 33.8 32.4 27.2
Artetxe et al. (2018a) 45.3 38.5 37.2 29.6
Procrustes-CSLS 44.9 38.5 33.8 29.3

Unsupervised Baselines
Artetxe et al. (2018b) 47.9 42.3 37.5 31.2
Conneau et al. (2018) (paper) 45.1 38.3 - -
Conneau et al. (2018) (code) 44.9 38.7 34.7 **

Our Unsupervised Approach
Adversarial autoencoder +

Conneau et al. (2018) Refinement 45.3 39.4 35.2 29.9
Artetxe et al. (2018b) Refinement 47.6 42.5 37.4 31.9

Table 3: Word translation accuracy (P@1) on the
English-Italian and English-Spanish language pairs of
Dinu-Artetxe dataset (Dinu et al., 2015; Artetxe et al.,
2017). All methods use CBOW embeddings. ** in-
dicates the model failed to converge; ‘-’ indicates the
authors did not report the number.

On the dataset of Dinu et al. (2015); Artetxe
et al. (2017) in Table 3, our Adversarial autoen-
coder + Conneau et al. (2018) Refinement per-
forms better than other methods except Artetxe
et al. (2018b). On average our method lags be-
hind by about 2%. However, as mentioned, they
follow a different refinement and mapping meth-
ods. For non-European and low-resource language
pairs in Table 2, our Adversarial autoencoder +
Conneau et al. (2018) Refinement exhibits bet-
ter performance than others in one translation task,
where the model of Artetxe et al. (2018b) performs
better in the rest. One important thing to notice
here is that other unsupervised models (apart from
ours and Artetxe et al. (2018b)) fail to converge in
one or more language pairs.

We notice that the method of Artetxe et al.
(2018b) gives better results than other baselines,
even in some translation tasks they achieve the
highest accuracy. To understand whether the im-
provements of their method are due to a better
initial mapping or better post-processing, we con-
ducted two additional experiments. In our first ex-
periment, we use their method to induce the ini-
tial seed dictionary and then apply iterative Pro-
crustes solution (same refinement procedure of
Conneau et al. (2018)) for refinement. Table 4
shows the results. Surprisingly, on both datasets
their initial mappings fail to produce any reason-
able results. So we suspect that the main gain
in (Artetxe et al., 2018b) comes from their fine-
tuning method, which they call robust self learn-

En-It En-Es
→ ← → ←

Dinu-Artetxe Dataset ** ** ** **
Conneau Dataset 01.2 01.6 04.7 05.1

Table 4: Conneau et al. (2018) refinement applied to
the initial mappings of Artetxe et al. (2018b). ** indi-
cates the model failed to converge.

ing. In our second experiment, we use the initial
dictionary induced by our adversarial training and
then apply their refinement procedure. Here for
most of the translation tasks, we achieve better re-
sults; see the model Adversarial autoencoder +
Artetxe et al. (2018b) Refinement in Tables 1 - 3.
These two experiments demonstrate that the qual-
ity of the initial dictionary induced by our model
is far better than that of Artetxe et al. (2018b).

5.3 Model Dissection

We further analyze our model by dissecting it and
measuring the contribution of each novel compo-
nent that is proposed in this work. We achieve this
by incrementally removing a new component from
the model and evaluating it on different translation
tasks. In order to better understand the contribu-
tion of each component, we evaluate each model
by measuring its P@1, P@5, and P@10 with
fine-tuning and without fine-tuning. In case of
without fine-tuning, the models apply the CSLS
neighbor search directly on the mappings learned
from the adversarial training, i.e., no Procrustes
solution based refinement is done after the adver-
sarial training. This setup allows us to compare
our model directly with the adversarial model of
Conneau et al. (2018), putting the effect of fine-
tuning aside.

Table 5 presents the ablation results for En-Es,
En-De, and En-It in both directions. The first
row (Conneau-18) presents the results of Con-
neau et al. (2018) that uses adversarial training to
map the word embeddings. The next row shows
the results of our full model. The subsequent
rows incrementally detach one component from
our model. For example, - Enc. adv denotes the
variant of our model where the target encoder is
not trained on the adversarial loss (θEX in Eq. 4);
- - Recon excludes the post-cycle reconstruction
loss from - Enc. adv, and - - - Cycle excludes the
cycle consistency from - - Recon. Thus, - - - Cycle
is a variant of our model that uses only adversarial
loss to learn the mapping. However, it is important
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En→Es Es→En En→De De→En En→It It→En
P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

Without Fine-Tuning

Conneau-18 65.3 73.8 80.6 66.7 78.3 80.8 61.5 70.1 78.2 60.3 70.2 77.0 64.8 75.3 79.4 63.8 77.1 81.8

Our (full) 71.8 81.1 85.7 72.7 81.5 83.8 64.9 74.4 81.8 63.1 71.3 79.8 68.2 78.9 83.7 67.5 77.6 82.1
- Enc. adv 70.5 79.7 83.5 71.3 80.4 83.3 63.7 73.5 79.3 62.6 70.5 79.0 67.6 77.3 82.7 66.2 78.3 82.5
- - Recon 70.1 78.9 83.4 70.8 81.1 83.4 63.1 73.8 80.5 62.2 71.7 78.7 66.9 79.7 82.1 64.8 78.6 82.1
- - - Cycle 66.8 76.5 82.1 67.2 79.9 82.7 61.4 69.7 77.8 60.1 69.8 76.5 65.3 75.1 78.9 64.4 77.6 81.7

With Fine-Tuning

Conneau-18 82.3 90.8 93.2 83.7 91.9 93.5 74.2 89.0 91.5 72.6 85.7 88.8 78.3 88.4 91.1 78.1 88.2 90.6

Our (full) 82.6 91.8 93.5 84.4 92.3 94.3 75.5 90.1 92.9 73.9 86.5 89.3 78.8 89.2 91.9 78.5 88.9 91.1
- Enc. adv 82.5 91.6 93.5 84.3 92.1 94.3 75.4 89.7 92.7 73.5 86.3 89.2 78.4 89.0 91.8 78.1 88.7 91.0
- - Recon 82.5 91.6 93.4 84.1 92.2 94.3 75.3 89.4 92.6 73.2 85.9 89.0 78.2 89.1 91.9 78.2 88.8 91.2
- - - Cycle 82.4 91.0 93.1 83.6 92.2 94.0 74.3 89.7 92.6 72.7 86.1 89.1 77.8 89.2 91.8 77.4 88.3 90.8

Table 5: Ablation study of our adversarial autoencoder model on the dataset of Conneau et al. (2018).

to note that in contrast to Conneau et al. (2018),
our mapping is performed at the code space.

As we compare our full model with the model
of Conneau et al. (2018) in the without fine-tuning
setting, we notice large improvements in all mea-
sures across all datasets: 5.1 - 7.3% in En→Es, 3
- 6% in Es→En, 3.4 - 4.3% in En→De, 1 - 3% in
De→En, 3.4 - 4.3% in En→It, and 0.3 - 3.7% in
It→En. These improvements demonstrate that our
model finds a better mapping compared to Con-
neau et al. (2018). Among the three components,
the cycle consistency is the most influential one
across all languages. Training the target encoder
adversarially also gives a significant boost. The
reconstruction has less impact. If we compare the
results of - - - Cycle with Conneau-18, we see size-
able gains for En-Es in both directions. This shows
the benefits of mapping at the code level.

Now let us turn our attention to the results with
fine-tuning. Here also we see gains across all
datasets for our model, although the gains are not
as verbose as before (about 1% on average). How-
ever, this is not surprising as it has been shown
that iterative fine-tuning with Procrustes solution
is a robust method that can recover many er-
rors made in the initial mapping (Conneau et al.,
2018). Given a good enough initial mapping, the
measures converge nearly to the same point even
though the differences were comparatively more
substantial initially; for example, notice that the
scores are very similar for P@5 and P@10 mea-
sures after fine-tuning.

6 Conclusions

We have proposed an adversarial autoencoder
framework to learn the cross-lingual mapping of
monolingual word embeddings of two languages
in a completely unsupervised way. In contrast to
the existing methods that directly map word em-
beddings, our method first learns to transform the
embeddings into latent code vectors by pretraining
an autoencoder. We apply adversarial training to
map the distributions of the source and target code
vectors. In our adversarial training, both the map-
per and the target encoder are treated as generators
that act jointly to fool the discriminator. To guide
the mapping further, we include constraints for cy-
cle consistency and post-cycle reconstruction.

Through extensive experimentations on six dif-
ferent language pairs comprising European, non-
European and low-resource languages from two
different data sources, we demonstrate that our
method outperforms the method of Conneau et al.
(2018) for all translation tasks in all measures
(P@{1,5,10}) across all settings (with and with-
out fine-tuning). Comparison with other existing
methods also shows that our method learns better
mapping (not considering the fine-tuning). With
an ablation study, we further demonstrated that the
cycle consistency is the most important compo-
nent followed by the adversarial training of target
encoder and the post-cycle reconstruction. In fu-
ture work, we plan to incorporate knowledge from
the similarity space in our adversarial framework.
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