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Abstract
We describe a cross-lingual transfer method
for dependency parsing that takes into account
the problem of word order differences between
source and target languages. Our model only
relies on the Bible, a considerably smaller par-
allel data than the commonly used parallel
data in transfer methods. We use the concate-
nation of projected trees from the Bible cor-
pus, and the gold-standard treebanks in multi-
ple source languages along with cross-lingual
word representations. We demonstrate that re-
ordering the source treebanks before training
on them for a target language improves the ac-
curacy of languages outside the European lan-
guage family. Our experiments on 68 tree-
banks (38 languages) in the Universal Depen-
dencies corpus achieve a high accuracy for all
languages. Among them, our experiments on
16 treebanks of 12 non-European languages
achieve an average UAS absolute improve-
ment of 3.3% over a state-of-the-art method.

1 Introduction

There has recently been a great deal of interest in
cross-lingual transfer of dependency parsers, for
which a parser is trained for a target language of
interest using treebanks in other languages. Cross-
lingual transfer can eliminate the need for the ex-
pensive and time-consuming task of treebank an-
notation for low-resource languages. Approaches
include annotation projection using parallel data
sets (Hwa et al., 2005; Ganchev et al., 2009), direct
model transfer through learning of a delexicalized
model from other treebanks (Zeman and Resnik,
2008; Täckström et al., 2013), treebank transla-
tion (Tiedemann et al., 2014), using synthetic tree-
banks (Tiedemann and Agić, 2016; Wang and Eis-
ner, 2016), using cross-lingual word representa-
tions (Täckström et al., 2012; Guo et al., 2016;
Rasooli and Collins, 2017) and using cross-lingual
dictionaries (Durrett et al., 2012).

Recent results from Rasooli and Collins (2017)
have shown accuracies exceeding 80% on unla-
beled attachment accuracy (UAS) for several Eu-
ropean languages.1 However non-European lan-
guages remain a significant challenge for cross-
lingual transfer. One hypothesis, which we inves-
tigate in this paper, is that word-order differences
between languages are a significant challenge for
cross-lingual transfer methods. The main goal
of our work is therefore to reorder gold-standard
source treebanks to make those treebanks syntac-
tically more similar to the target language of in-
terest. We use two different approaches for source
treebank reordering: 1) reordering based on dom-
inant dependency directions according to the pro-
jected dependencies, 2) learning a classifier on the
alignment data. We show that an ensemble of
these methods with the baseline method leads to
higher performance for the majority of datasets in
our experiments. We show particularly significant
improvements for non-European languages.2

The main contributions of this work are as fol-
lows:

• We propose two different syntactic reorder-
ing methods based on the dependencies pro-
jected using translation alignments. The first
model is based on the dominant dependency
direction in the target language according
to the projected dependencies. The second
model learns a reordering classifier from the
small set of aligned sentences in the Bible
parallel data.

1Specifically, Table 9 of Rasooli and Collins (2017) shows
13 datasets, and 11 languages, with UAS scores of over 80%;
all of these datasets are in European languages.

2Specifically, performance of our method gives an im-
provement of at least 2.3% absolute scores in UAS on 11
datasets in 9 languages—Coptic, Basque, Chinese, Viet-
namese, Turkish, Persian, Arabic, Indonesian Hebrew—with
an average improvement of over 4.5% UAS.
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• We run an extensive set of experiments on
68 treebanks for 38 languages. We show
that by just using the Bible data, we are able
to achieve significant improvements in non-
European languages. Our ensemble method
is able to maintain a high accuracy in Euro-
pean languages.

• We show that syntactic transfer methods can
outperform a supervised model for cases in
which the gold-standard treebank is very
small. This indicates the strength of these
models when the language is truly low-
resource.

Unlike most previous work for which a sim-
ple delexicalized model with gold part-of-speech
tags are used, we use lexical features and auto-
matic part-of-speech tags. Our final model im-
proves over two strong baselines, one with anno-
tation projection and the other one inspired by the
non-neural state-of-the-art model of Rasooli and
Collins (2017). Our final results improve the per-
formance on non-European languages by an aver-
age UAS absolute improvement of 3.3% and LAS
absolute improvement of 2.4%.

2 Related Work

There has recently been a great deal of research
on dependency parser transfer. Early work on
direct model transfer (Zeman and Resnik, 2008;
McDonald et al., 2011; Cohen et al., 2011; Rosa
and Zabokrtsky, 2015; Wang and Eisner, 2018a)
considered learning a delexicalized parser from
one or many source treebanks. A number of pa-
pers (Naseem et al., 2012; Täckström et al., 2013;
Zhang and Barzilay, 2015; Ammar et al., 2016;
Wang and Eisner, 2017) have considered mak-
ing use of topological features to overcome the
problem of syntactic differences across languages.
Our work instead reorders the source treebanks to
make them similar to the target language before
training on the source treebanks.

Agić (2017) use part-of-speech sequence simi-
larity between the source and target language for
selecting the source sentences in a direct trans-
fer approach. Ponti et al. (2018) preprocess
source trees to increase the isomorphy between the
source and the target language dependency trees.
They apply their method on a simple delexicalized
model and their accuracy on the small set of lan-
guages that they have tried is significantly worse

than ours in all languages. The recent work by
Wang and Eisner (2018b) reorders delexicalized
treebanks of part-of-speech sequences in order to
make it more similar to the target language of in-
terest. The latter work is similar to our work in
terms of using reordering. Our work is more so-
phisticated by using a full-fledged parsing model
with automatic part-of-speech tags and every ac-
cessible dataset such as projected trees and multi-
ple source treebanks as well as cross-lingual word
embeddings for all languages.

Previous work (Täckström et al., 2012; Duong
et al., 2015; Guo et al., 2015, 2016; Ammar et al.,
2016) has considered using cross-lingual word
representations. A number of authors (Durrett
et al., 2012; Rasooli and Collins, 2017) have used
cross-lingual dictionaries. We also make use of
cross-lingual word representations and dictionar-
ies in this paper. We use the automatically ex-
tracted dictionaries from the Bible to translate
words in the source treebanks to the target lan-
guage. One other line of research in the delex-
icalized transfer approach is creating a synthetic
treebank (Tiedemann and Agić, 2016; Wang and
Eisner, 2016, 2018b).

Annotation projection (Hwa et al., 2005;
Ganchev et al., 2009; McDonald et al., 2011; Ma
and Xia, 2014; Rasooli and Collins, 2015; Lacroix
et al., 2016; Agić et al., 2016) is another approach
in parser transfer. In this approach, supervised de-
pendencies are projected through word alignments
and then used as training data. Similar to previ-
ous work (Rasooli and Collins, 2017), we make
use of a combination of projected dependencies
from annotation projection in addition to partially
translated source treebanks. One other approach is
treebank translation (Tiedemann et al., 2014) for
which a statistical machine translation system is
used to translate source treebanks to the target lan-
guage. These models need a large amount of par-
allel data for having an accurate translation sys-
tem.

Using the Bible data goes back to the work of
Diab and Finch (2000) and Yarowsky et al. (2001).
Recently there has been more interest in using the
Bible data for different tasks, due to its availabil-
ity for many languages (Christodouloupoulos and
Steedman, 2014; Agić et al., 2015, 2016; Rasooli
and Collins, 2017). Previous work (Östling and
Tiedemann, 2017) has shown that the size of the
Bible dataset does not provide a reliable machine
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translation model. Previous work in the context of
machine translation (Bisazza and Federico, 2016;
Daiber et al., 2016) presumes the availability of
a parallel data that is often much larger than the
Bible data.

3 Baseline Model

Our model trains on the concatenation of projected
dependencies P and all of the source treebanks
T1 . . . Tk. The projected data is from the set of
projected dependencies for which at least 80%
of words have projected dependencies or there is
a span of length l ≥ 5 such that all words in
that span achieve a projected dependency. This
is the same as the definition of dense structures
P80 ∪ P≥5 by Rasooli and Collins (2015).

We use our reimplementation of the state-of-
the-art neural biaffine graph-based parser of Dozat
and Manning (2016)3. Because many words in
the projected dependencies do not have a head as-
signment, the parser ignores words without heads
during training. Inspired by Rasooli and Collins
(2017), we replace every word in the source tree-
banks with its most frequent aligned translation
word from the Bible data in the target language. If
that word does not appear in the Bible, we use the
original word. That way, we have a code-switched
data for which some of the words are being trans-
lated. In addition to fine-tuning the word embed-
dings, we use the fixed pre-trained cross-lingual
word embeddings using the training approach of
Rasooli and Collins (2017) using the Wikipedia
data and the Bible dictionaries.

4 Approach

Before making use of the source treebanks
T1 . . . Tk in the training data, we reorder each
tree in the source treebanks to be syntactically
more similar to the word order of the target lan-
guage. In general, for a head h that has c modi-
fiers m1 . . .mc, we decide to put each of the de-
pendents mi on the left or right of the head h. Af-
ter placing them in the correct side of the head, the
order in the original source sentence is preserved.
Figure 1 shows a real example of an English tree
that is reordered for the sake of Persian as the tar-
get language. Here we see that we have a verb-
final sentence, with nominal modifiers following

3https://github.com/rasoolims/
universal-parser

I had a routine surgery for an ingrown toenail .
nsubj

ROOT

det
amod

obj case
det

amod

nmod

punct

(a) Original tree.

I a surgery routine for an toenail ingrown had .

nsubj

ROOT

det amod

obj

case
det

amod

nmod

punct

(b) Persian-specific reordered tree.

Figure 1: An example of a gold-standard English tree
that is reordered to look similar to the Persian syntactic
order.

the head noun. If one aims to translate this En-
glish sentence word by word, the reordered sen-
tence gives a very good translation without any
change in the sentence.

As mentioned earlier, we use two different ap-
proaches for source treebank reordering: 1) re-
ordering based on dominant dependency direc-
tions according to the projected dependencies, 2)
learning a classifier on the alignment data. We
next describe these two methods.

4.1 Model 1: Reordering Based on Dominant
Dependency Direction

The main goal of this model is to reorder source
dependencies based on dominant dependency di-
rections in the target language. We extract domi-
nant dependency directions according to the pro-
jected dependencies P from the alignment data,
and use the information for reordering source tree-
banks.

Let the tuple 〈i,m, h, r〉 show the dependency
of the m’th word in the i’th projected sentence for
which the h’th word is the parent with the depen-
dency label r. 〈i,m, NULL, NULL〉 shows an un-
known dependency for the m’th word: this occurs
when some of the words in the target sentence do
not achieve a projected dependency. We use the
notations h(i,m) and r(i,m) to show the head in-
dex and dependency label of the m’th word in the
i’th sentence.

Definition 1 Dependency direction: d(i,m)
shows the dependency direction of the m’th

https://github.com/rasoolims/universal-parser
https://github.com/rasoolims/universal-parser
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modifier word in the i’th sentence:

d(i,m) =

{
1 if h(i,m) > m

−1 otherwise

Definition 2 Dependency direction proportion:
Dependency direction proportion of each depen-
dency label l with direction d ∈ {−1, 1} is defined
as:

α(P)(l, d) =∑|P|
i=1

∑|P(i)|
m=1 I(r(i,m) = l & d(i,m) = d)∑|P|
i=1

∑|P(i)|
m=1 I(r(i,m) = l)

Definition 3 Dominant dependency direction:
For each dependency label l, we define the
dominant dependency direction λ(P)(l) = d if
α(P)(l, d) > 0.75. In cases where there is no
dominant dependency direction, λ(P)(l) = 0.

We consider the following dependency labels
for extracting dominant dependency direction in-
formation: nsubj, obj, iobj, csubj, ccomp, xcomp,
obl, vocative, expl, dislocated, advcl, advmod,
aux, cop, nmod, appos, nummod, acl, amod. We
find the direction of other dependency relations,
such as most of the function word dependencies
and other non-core dependencies such as conjunc-
tion, not following a fixed pattern in the Universal
Dependencies corpus.

Reordering condition Given a set of projec-
tionsP , we calculate the dominant dependency di-
rection information for the projections λ(P). Sim-
ilar to the projected dependencies, we extract su-
pervised dominant dependency directions from
the gold-standard source treebank D: λ(D). When
we encounter a gold-standard dependency relation
〈i,m, h, r〉 in a source treebank D, we change the
direction if the following condition holds:

λ(D)(r) 6= λ(P)(r) and λ(P)(r) = −d(i,m)

In other words, if the source and target lan-
guages do not have the same dominant depen-
dency direction for r and the dominant direction
of the target language is the reverse of the cur-
rent direction, we change the direction of that de-
pendency. Reordering multiple dependencies in a
gold standard tree then results in a reordering of
the full tree, as for example in the transformation
from Figure 1a to Figure 1b.

4.2 Model 2: Reordering Classifier

We now describe our approach for learning a
reordering classifier for a target language using
the alignment data. Unlike the first model for
which we learn concrete rules, this model learns
a reordering classifier from automatically aligned
data. This model has two steps; the first step
prepares the training data from the automatically
aligned parallel data, and the second step learns a
classifier from the training data.

4.2.1 Preparing Training Data from
Alignments

The goal of this step is to create training data for
the reordering classifier. This data is extracted
from the concatenation of parallel data from all
source languages translated to the target language.
Given a parallel dataset (e(i), f (i)) for i = 1 . . . n
that contains pairs of source and target sentences
e(i) and f (i), the following steps are applied to cre-
ate training data:

1. Extracting reordering mappings from
alignments: We first extract intersected word
alignments for each source-target sentence
pair. This is done by running the Giza++
alignments (Och and Ney, 2003) in both di-
rections. We ignore sentence pairs that more
than half of the source words do not get align-
ment. We create a new mapping µ(i) =

µ
(i)
1 . . . µ

(i)
si that maps each index 1 ≤ j ≤ si

in the original source sentence to a unique in-
dex 1 ≤ µ(i)j ≤ si in the reordered sentence.

2. Parsing source sentences: We parse each
source sentence using the supervised parser
of the source language. We use the mapping
µ(i) to come up with a reordered tree for each
sentence. In cases for which the number of
non-projective arcs in the projected tree in-
crease compared to the original tree, we do
not use the sentence in the final training data.

3. Extracting classifier instances: We create
a training instance for every modifier word
〈i,m, h, r〉. The decision about the direction
of each dependency can be made based on the
following condition:

d∗(i,m) =

{
1 if µ

(i)
h > µ

(i)
m

−1 otherwise
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The LORD is a man of war : the LORD is his name .
← ← → ← → ← → → ← → → ← → →

Y	Kð@Y 	g XQÓ úÆ	Jk. �I�@ ÐA 	K ð@ èñîE
 �I�@ .
God man war is name his Jehovah is .

det

nsubj

cop
det

root

case
nmod

punct

det

nsubj

cop

nmod

parataxis

punct

Figure 2: A reordering example from the Bible for
English-Persian language pair. The Persian words are
written from left to right for the ease of presentation.
The arrows below the English words show the new de-
pendency direction with respect to the word alignments
to the Persian side. The reordered sentence would be
“The LORD a man of war is : his name the LORD is
.”.

In other words, we decide about the new or-
der of a dependency according to the map-
ping µ(i).

Figure 2 shows an example for the data prepa-
ration step. As shown in the figure, the new direc-
tions for the English words are decided according
to the Persian alignments.

4.2.2 Classifier
The reordering classifier decides about the new
direction of each dependency according to the
recurrent representation of the head and depen-
dent words. For a source sentence e(i) =
e
(i)
1 . . . e

(i)
si that belongs to a source language

L, we first obtain its recurrent representation
η(i) = η

(i)
1 . . . η

(i)
si by running a deep (3 layers)

bi-directional LSTM (Hochreiter and Schmidhu-
ber, 1997), where η

(i)
j ∈ Rdh . For every de-

pendency tuple 〈i,m, h, r〉, we use a multi-layer
Perceptron (MLP) to decide about the new order
dir ∈ {−1, 1} of the m’th word with respect to its
head h:

p(dir|i,m, h, r) = softmaxdir(Wφ(i,m, h, r))

where W ∈ R2×dφ and φ(i,m, h, r) ∈ Rdφ is as
follows:

φ(i,m, h, r) = relu(Hq(i,m, h, r) +B)

where relu is the rectified linear unit activa-
tion (Nair and Hinton, 2010), H ∈ Rdφ×dq , B ∈
Rdφ , and q(i,m, h, r) ∈ Rdq is as follows:

q(i,m, h, r) = [η(i)m ; η
(i)
h ;R[r]; Λ[I(h > m)];L[L]]

I had a routine surgery for an ingrown nail .

η1 η2 η3 η4 η5 η6 η7 η8 η9 η10

L[en]λ[−1]R[obj]

concat

H
×

+ B

W
relu

dir = 1argmax

obj

λ(Den)(obj) = −1 λ(Pfa)(obj) = 1

dir = 1

Figure 3: Two different approaches for reordering the
dependency order for the example in Figure 1. The re-
ordering classifier is shown on top, for the dependency
relation between the words “had” and “surgery” with
an “obj” relation. At the bottom, the reordering model
based on dominant dependency direction information
is shown.

where η
(i)
m and η

(i)
h are the recurrent represen-

tations for the modifier and head words respec-
tively, R is the dependency relation embedding
dictionary that embeds every dependency relation
to a Rdr vector, Λ is the direction embedding
for the original position of the head with respect
to its head and embeds each direction to a 2-
dimensional vector, and L is the language embed-
ding dictionary that embeds the source language
id L to a RdL vector.

The input to the recurrent layer is the concate-
nation of two input vectors. The first vector is
the sum of the fixed pre-trained cross-lingual em-
beddings, and randomly initialized word vector.
The second vector is the part-of-speech tag em-
beddings.

Figure 3 shows a graphical depiction of the two
reordering models that we use in this work.

5 Experiments

Datasets and Tools We use 68 datasets from 38
languages in the Universal Dependencies corpus
version 2.0 (Nivre et al., 2017). The languages are
Arabic (ar), Bulgarian (bg), Coptic (cop), Czech
(cs), Danish (da), German (de), Greek (el), En-
glish (en), Spanish (es), Estonian (et), Basque
(eu), Persian (fa), Finnish (fi), French (fr), He-
brew (he), Hindi (hi), Croatian (hr), Hungarian
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(hu), Indonesian (id), Italian (it), Japanese (ja),
Korean (ko), Latin (la), Lithuanian (lt), Latvian
(lv), Dutch (nl), Norwegian (no), Polish (pl), Por-
tuguese (pt), Romanian (ro), Russian (ru), Slo-
vak (sk), Slovene (sl), Swedish (sv), Turkish (tr),
Ukrainian (uk), Vietnamese (vi), and Chinese (zh).

We use the Bible data from Christodouloupou-
los and Steedman (2014) for the 38 languages.
We extract word alignments using Giza++ de-
fault model (Och and Ney, 2003). Follow-
ing Rasooli and Collins (2015), we obtain in-
tersected alignments and apply soft POS consis-
tency to filter potentially incorrect alignments. We
use the Wikipedia dump data to extract mono-
lingual data for the languages in order to train
monolingual embeddings. We follow the method
of Rasooli and Collins (2017) to use the ex-
tracted dictionaries from the Bible and monolin-
gual text from Wikipedia to create cross-lingual
word embeddings. We use the UDPipe pretrained
models (Straka and Straková, 2017) to tokenize
Wikipedia, and a reimplementation of the Per-
ceptron tagger of Collins (2002)4 to achieve au-
tomatic POS tags trained on the training data of
the Universal Dependencies corpus (Nivre et al.,
2017). We use word2vec (Mikolov et al., 2013)5

to achieve embedding vectors both in monolingual
and cross-lingual settings.

Supervised Parsing Models We trained our su-
pervised models on the union of all datasets in a
language to obtain a supervised model for each
language. It is worth noting that there are two
major changes that we make to the neural parser
of Dozat and Manning (2016) in our implemen-
tation6 using the Dynet library (Neubig et al.,
2017): first, we add a one-layer character BiL-
STM to represent the character information for
each word. The final character representation is
obtained by concatenating the forward representa-
tion of the last character and the backward repre-
sentation of the first character. The concatenated
vector is summed with the randomly initialized as
well as fixed pre-trained cross-lingual word em-
bedding vectors. Second, inspired by Weiss et al.
(2015), we maintain the moving average parame-
ters to obtain more robust parameters at decoding
time.

4https://github.com/rasoolims/
SemiSupervisedPosTagger

5https://github.com/dav/word2vec
6https://github.com/rasoolims/

universal-parser

We excluded the following languages from the
set of source languages for annotation projection
due to their low supervised accuracy: Estonian,
Hungarian, Korean, Latin, Lithuanian, Latvian,
Turkish, Ukrainian, Vietnamese, and Chinese.

Baseline Transfer Models We use two baseline
models: 1) Annotation projection: This model
only trains on the projected dependencies. 2) An-
notation projection + direct transfer: To speed up
training, we sample at most thousand sentences
from each treebank, comprising a training data of
about 37K sentences.

5.1 Reordering Ensemble Model
We noticed that our reordering models perform
better in non-European languages, and perform
slightly worse in European languages. We use the
following ensemble model to make use of all of the
three models (annotation projection + direct trans-
fer, and the two reordering models), to make sure
that we always obtain an accurate parser.

The ensemble model is as follows: given three
output trees for the i’th sentence 〈ij ,m, hj , rj〉 for
j = 1, 2, 3 in the target language L, where the
first tuple (j = 1) belongs to the baseline model,
the second (j = 2) and third (j = 3) belong to
the two reordering models, we weight each depen-
dency edge with respect to the following condi-
tions:

ω(m,h, r) = z(m,h, r)·
3∑
j=1

c(j,L)·I(〈ij ,m, h, r〉)

where c(j,L) is a coefficient that puts more
weight on the first or the other two outputs depend-
ing on the target language family:

c(j,L) =


2 if j = 1 & L is European

2 if j > 1 &

L is not European

1 otherwise

and z(m,h, r) is a simple weighting depending
on the dominant order information:

z(m,h, r) =


1 if dir(〈m,h〉) = −λ(P)(r)
3 if dir(〈m,h〉) = λ(P)(r)

2 otherwise (λ(P)(r) = 0)

https://github.com/rasoolims/SemiSupervisedPosTagger
https://github.com/rasoolims/SemiSupervisedPosTagger
https://github.com/dav/word2vec
https://github.com/rasoolims/universal-parser
https://github.com/rasoolims/universal-parser
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Variable Notation Size
Word embedding dw 100
POS embedding dp 100
Bi-LSTM dh 400
Dep. relation embedding dr 50
Language ID embedding dL 50
Hidden layer dφ 200
Number of BiLSTM layers – 3
Mini-batch size (tokens) – ∼ 1000

Table 1: Parameter values in the reordering classifier
model.

The above coefficients are modestly tuned on
the Persian language as our development lan-
guage. We have not seen any significant change
in modifying the numbers: instead, the fact that an
arc with a dominant dependency direction is re-
garded as a more valuable arc, and the baseline
should have more effect in the European languages
suffices for the ensemble model.

We run the Eisner first-order graph-based algo-
rithm (Eisner, 1996) on top of the edge weights ω
to extract the best possible tree.

5.2 Parameters

We run all of the transfer models with 4000 mini-
batches, in which each mini-batch contains ap-
proximately 5000 tokens. We follow the same pa-
rameters as in Dozat and Manning (2016) and use
a dimension of 100 for character embeddings. For
the reordering classifier, we use the Adam algo-
rithm (Kingma and Ba, 2014) with default param-
eters to optimize the log-likelihood objective. We
filter the alignment data to keep only those sen-
tences for which at least half of the source words
have an alignment. We randomly choose 1% of
the reordering data as our heldout data for decid-
ing when to stop training the reordering models.
Table 1 shows the parameter values that we use in
the reordering classifier.

5.3 Results

Table 2 shows the results on the Universal Depen-
dencies corpus (Nivre et al., 2017). As shown in
the table, the algorithm based on dominant depen-
dency directions improves the accuracy on most of
the non-European languages and performs slightly
worse than the baseline model in the European
languages. The ensemble model, in spite of its
simplicity, improves over the baseline in most of

the languages, leading to an average UAS im-
provement of 0.9 for all languages and 3.3 for
non-European languages. This improvement is
very significant in many of the non-European lan-
guages; for example, from an LAS of 37.6 to 52.7
in Coptic, from a UAS of 44.9 to 53.7 in Basque,
from a UAS of 40.6 to 47.0 in Chinese. Our
model also outperforms the supervised models in
Ukrainian and Latvian. That is an interesting in-
dicator that for cases that the training data is very
small for a language (37 sentences for Ukrainian,
and 153 sentences for Latvian), our transfer ap-
proach outperforms the supervised model.

6 Analysis

In this section, we briefly describe our analysis
based on the results in the ensemble model and
the baseline. For some languages such as Coptic,
the number of dense projected dependencies is too
small (two trees) such that the parser gives a worse
learned model than a random baseline. For some
other languages, such as Norwegian and Spanish,
this number is too high (more than twenty thou-
sand trees), such that the baseline model performs
very well.

The dominant dependency direction model gen-
erally performs better than the classifier. Our
manual investigation shows that the classifier kept
many of the dependency directions unchanged,
while the dominant dependency direction model
changed more directions. Therefore, the dominant
direction model gives a higher recall with the ex-
pense of losing some precision. The training data
for the reordering classifier is very noisy due to
wrong alignments. We believe that the dominant
direction model, besides its simplicity, is a more
robust classifier for reordering, though the classi-
fier is helpful in an ensemble setting.

Our detailed analysis show that we are able
to improve the head dependency relation for the
three most important head POS tags in the depen-
dency grammar. We see that this improvement is
more consistent for all non-European languages.
Table 3 shows the differences in parsing f-score
of dependency relations for adjectives, nouns and
verbs as the head. As we see in the Table, we are
able to improve the head dependency relation for
the three most important head POS tags in the de-
pendency grammar. We see that this improvement
is more consistent for all non-European languages.
We skip the details of those analysis due to space
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Dataset
Baselines Reordering SupervisedProjection Direct+Proj Dominant Classifier Ensemble Difference

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Coptic 2.0 0.4 58.5 37.6 69.1 52.7 65.5 50.9 69.6 52.7 11.1 15.1 86.9 80.1
Basque 39.5 22.0 44.9 29.0 53.7 34.0 48.6 32.2 53.7 34.4 8.8 5.4 81.9 75.9
Chinese 23.6 10.8 40.6 17.8 47.3 25.4 45.4 23.5 47.0 25.6 6.4 7.8 81.1 74.8
Vietnamese 44.6 26.8 51.2 33.6 55.3 34.5 50.4 34.2 55.1 34.5 4.0 0.9 66.2 56.7
Turkish pud 44.7 19.9 46.6 24.5 50.3 26.7 42.6 22.0 49.9 26.3 3.4 1.8 56.7 31.7
Persian 54.4 46.2 61.8 53.0 64.3 54.7 63.0 53.4 65.1 55.4 3.3 2.4 87.8 83.6
Arabic pud 60.3 44.2 65.2 50.5 68.2 52.0 66.5 51.4 68.3 52.3 3.2 1.8 71.9 58.8
Indonesian 59.9 42.8 72.1 56.0 73.6 56.5 72.9 56.8 74.6 56.7 2.5 0.6 84.8 77.4
Turkish 44.6 23.9 46.6 29.3 48.9 30.6 44.9 26.6 49.0 30.0 2.4 0.7 64.2 52.5
Hebrew 63.1 46.9 70.4 55.4 72.4 54.9 71.6 55.7 72.7 55.4 2.3 0.0 88.2 82.4
Arabic 49.5 36.8 58.9 46.8 60.8 48.3 59.2 46.9 61.2 48.8 2.3 2.0 85.6 78.9
Japanese 54.8 38.9 65.2 46.5 65.9 46.8 64.1 44.8 66.6 46.8 1.4 0.3 94.5 92.7
Japanese pud 58.6 44.1 66.8 51.5 67.4 51.5 64.7 48.4 67.9 51.9 1.1 0.4 94.7 93.5
Korean 34.3 17.3 43.0 24.8 43.5 23.8 43.6 26.4 44.1 24.7 1.1 -0.2 76.2 69.9
Hindi pud 53.4 43.3 58.2 47.6 58.3 47.5 58.8 48.5 58.9 48.2 0.6 0.6 70.2 55.6
Lithuanian 60.6 42.5 66.6 49.5 63.7 46.8 64.6 46.0 67.2 49.9 0.6 0.4 54.8 40.0
Czech cac 33.9 14.8 76.2 66.9 76.3 66.7 75.2 65.8 76.7 67.4 0.5 0.6 92.1 88.3
Czech cltt 13.7 5.1 69.4 59.7 69.7 59.5 66.6 57.8 70.0 60.3 0.5 0.6 88.9 84.9
French partut 81.6 75.2 84.3 77.8 84.9 78.4 84.4 78.1 84.8 78.4 0.5 0.5 90.0 85.1
Croatian 70.6 59.9 79.4 69.9 79.3 69.5 77.9 67.7 79.9 70.1 0.5 0.2 86.8 80.4
Greek 62.3 47.2 75.9 63.9 75.4 63.1 74.7 62.5 76.4 64.1 0.4 0.2 88.0 84.4
Russian pud 75.7 65.8 81.1 72.2 80.9 72.2 79.9 70.7 81.5 72.7 0.4 0.5 86.5 74.1
German 71.4 62.3 75.4 67.1 75.6 67.1 75.5 66.4 75.8 67.3 0.4 0.2 85.9 81.2
French 80.2 72.9 83.0 75.9 82.9 75.9 83.3 75.9 83.4 76.2 0.4 0.3 90.4 86.9
Czech 33.9 14.5 74.6 65.3 74.1 64.4 73.0 63.7 75.0 65.8 0.4 0.5 92.5 89.1
Finnish pud 64.1 52.5 67.2 55.0 66.8 55.0 67.3 55.1 67.5 55.5 0.4 0.5 81.6 74.5
Dutch 59.2 48.2 68.5 55.2 69.6 55.9 68.3 54.4 68.8 55.4 0.4 0.1 83.5 76.6
Russian 68.9 59.4 75.1 63.9 75.4 64.1 74.5 63.4 75.5 64.3 0.4 0.4 85.7 77.9
Latin ittb 56.4 42.5 63.0 49.2 63.2 49.5 62.4 48.7 63.3 49.7 0.4 0.4 89.5 86.5
Norwegian nynorsk 72.5 62.9 76.4 68.1 76.5 68.0 76.1 67.3 76.8 68.4 0.3 0.3 91.3 88.8
Ukrainian 55.1 36.9 64.3 46.1 64.5 45.7 61.7 42.2 64.6 45.9 0.3 -0.2 43.3 22.1
Bulgarian 80.4 69.4 83.8 73.8 84.0 73.8 83.1 73.0 84.1 73.9 0.3 0.1 90.9 86.0
English lines 75.6 66.5 77.8 69.0 78.9 69.9 77.0 68.2 78.1 69.2 0.3 0.3 85.8 80.5
Finnish ftb 63.9 46.5 66.0 48.3 65.8 47.6 65.7 48.1 66.3 48.4 0.3 0.1 81.1 74.4
Russian syntagrus 69.4 57.5 73.9 62.2 73.8 61.8 73.2 61.2 74.2 62.3 0.3 0.1 91.3 88.3
Finnish 60.6 48.7 64.6 51.9 63.5 51.2 63.7 51.1 64.8 52.0 0.2 0.1 80.9 73.5
Hungarian 58.3 41.1 67.8 49.0 67.8 48.9 65.8 47.4 68.0 49.1 0.2 0.1 78.2 69.8
Czech pud 35.7 16.6 77.5 69.3 76.7 67.6 76.2 67.7 77.7 69.4 0.2 0.2 89.9 84.4
Dutch lassysmall 61.8 52.1 73.9 63.4 73.8 62.8 73.0 61.9 74.0 63.3 0.2 0.0 91.3 87.3
Slovenian sst 58.4 44.1 61.7 47.7 61.6 47.7 61.6 47.4 61.9 48.0 0.2 0.3 70.6 63.6
English pud 73.5 65.5 75.9 69.3 77.1 69.9 74.5 67.7 76.0 69.4 0.2 0.2 88.3 84.2
German pud 74.1 65.3 77.8 68.9 77.7 68.5 76.9 67.4 78.0 68.8 0.1 0.0 85.9 79.0
Polish 77.6 64.7 79.9 67.9 79.7 67.5 79.5 67.2 80.1 68.0 0.1 0.1 89.4 83.3
Swedish lines 77.2 67.7 81.1 71.6 80.7 71.1 80.1 70.4 81.3 71.7 0.1 0.1 86.9 81.5
English 70.1 61.6 72.8 64.6 73.5 65.2 71.6 63.5 72.9 64.8 0.1 0.3 88.2 84.8
Spanish 78.5 68.0 83.1 73.8 83.2 73.8 82.3 72.8 83.2 73.9 0.1 0.1 89.3 83.9
Swedish 75.3 67.0 79.0 70.9 78.8 70.9 78.2 70.0 79.1 71.0 0.1 0.1 86.7 82.3
English partut 72.0 65.3 77.4 71.1 78.0 71.1 76.3 69.9 77.5 71.2 0.1 0.1 88.4 83.0
Swedish pud 75.9 67.4 80.5 72.1 80.2 72.0 79.2 71.0 80.6 72.1 0.1 0.0 84.0 77.6
Italian 81.3 74.4 85.0 79.0 85.4 79.5 84.4 78.1 85.1 79.1 0.1 0.0 92.1 89.5
Romanian 72.8 59.0 76.8 64.2 76.2 63.7 75.3 63.2 76.8 64.3 0.1 0.1 89.6 83.5
Estonian 63.1 40.8 66.7 46.0 65.6 45.8 65.5 45.2 66.7 46.1 0.1 0.2 71.6 60.7
Portuguese 62.6 50.7 84.1 76.9 83.7 76.6 83.4 76.2 84.2 77.1 0.0 0.2 90.6 85.6
Portuguese br 60.6 47.7 81.3 71.2 80.8 70.8 80.8 70.4 81.4 71.3 0.0 0.2 91.6 89.0
Norwegian bokmaal 78.0 70.5 80.5 73.2 80.6 73.4 79.7 72.1 80.5 73.2 0.0 0.0 92.1 89.7
French pud 81.0 72.8 83.7 75.7 84.2 76.2 83.3 75.2 83.7 75.7 0.0 0.0 89.1 83.8
Spanish pud 81.3 70.9 84.3 75.6 84.6 76.0 83.6 74.6 84.3 75.7 0.0 0.1 89.1 80.8
Latvian 59.0 43.6 63.3 47.2 62.1 45.6 60.7 44.7 63.3 47.0 0.0 -0.2 71.3 61.2
Italian pud 83.8 76.0 87.3 81.3 87.5 81.3 86.5 79.9 87.3 81.2 0.0 -0.1 91.9 88.4
French sequoia 79.1 73.0 82.2 76.4 81.6 75.8 81.9 76.0 82.2 76.4 0.0 0.0 90.4 86.7
Latin 49.2 33.6 53.9 36.2 51.3 33.3 54.0 35.5 53.9 35.4 0.0 -0.8 67.2 54.5
Slovene 76.4 67.6 82.1 74.2 81.3 73.0 81.3 73.3 82.0 74.2 -0.1 0.0 88.9 85.4
Spanish ancora 77.7 66.2 82.4 72.7 82.0 72.2 81.4 71.3 82.3 72.5 -0.1 -0.3 91.1 87.0
Danish 70.7 61.7 75.7 67.4 75.3 66.7 74.6 66.2 75.6 67.2 -0.1 -0.2 83.1 79.3
Portuguese pud 63.5 51.8 82.7 75.8 82.5 75.8 82.0 74.8 82.6 75.7 -0.2 -0.1 86.4 78.5
Latin proiel 59.2 46.2 61.5 47.4 60.9 47.1 60.2 46.0 61.3 47.2 -0.2 -0.2 80.9 75.4
Slovak 73.6 63.8 78.7 71.0 78.0 69.8 77.1 68.7 78.5 70.7 -0.2 -0.3 83.5 77.9
Hindi 58.7 47.2 63.7 50.0 62.3 49.0 62.6 49.3 62.7 49.4 -1.0 -0.6 94.2 90.4
Avg. All 62.0 49.7 71.2 59.3 71.7 59.6 70.6 58.7 72.1 60.0 0.9 0.7 83.9 77.3
Avg. Non-EU 46.6 32.0 57.1 40.9 60.1 43.1 57.8 41.9 60.4 43.3 3.3 2.4 80.3 72.2

Table 2: Dependency parsing results, in terms of unlabeled attachment accuracy (UAS) and labeled attachment
accuracy (LAS) after ignoring punctuations, on the Universal Dependencies v2 test sets (Nivre et al., 2017) using
supervised part-of-speech tags. The results are sorted by their “difference” between the ensemble model and the
baseline. The rows for non-European languages are highlighted with cyan. The rows that are highlighted by pink
are the ones that the transfer model outperforms the supervised model. For all of the non-European datasets except
“hi”, our model outperforms significantly better in terms of UAS with p < 0.001 using McNemar’s test.
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data ADJ NOUN VERB
Base Ens. Base Ens. Base Ens.

ar 40.4 46.7 70.6 72.5 55.3 58.8
ar pud 32.3 39.7 73.2 75.9 67.2 70.1
bg 70.6 71.1 85.8 86.2 86.2 86.5
cop 0.0 0.0 63.4 75.7 64.6 76.4
cs 64.8 64.9 77.9 78.5 76.5 76.7
cs cac 66.0 65.7 79.7 80.5 77.3 77.6
cs cltt 55.9 56.5 76.9 77.7 68.3 68.9
cs pud 71.2 70.9 79.4 80 80.2 80.3
da 70.9 71.2 79.5 79.3 79.5 79.6
de 65.7 66.7 81.3 81.5 75.8 76.3
de pud 61.3 62.4 81.5 81.5 81.0 81.2
el 64.3 64.8 79.8 80.5 75.6 75.8
en 77.7 78.8 70.6 70.4 81.0 81.3
en lines 74.4 74.7 78.3 78.5 82.2 82.8
en partut 71.9 72.1 76.6 76.7 82.6 82.7
en pud 69.5 70.6 75.4 75.5 81.2 81.6
es 75.6 74.6 88.0 88.4 80.6 80.9
es ancora 71.3 71.4 87.4 87.4 83.0 82.9
es pud 66.5 66.3 89.0 89.1 83.2 83.2
et 59.5 59.6 59.6 59.5 75.4 75.5
eu 31.1 35.4 37.6 47.9 52.4 61.2
fa 46.2 51.6 68.7 70.7 53.7 59.7
fi 65.8 66.3 61.8 62.5 70.5 70.5
fi ftb 64.7 65.5 64.7 65.1 69.2 69.5
fi pud 58.1 59.4 63.8 64.1 74.6 74.8
fr 74.1 74.6 87.3 87.5 81.9 82.7
fr partut 72.2 72.9 88.4 88.8 83.1 83.8
fr pud 71.3 71.1 88.7 88.8 81.0 81.1
fr sequoia 72.0 72.0 86.5 86.6 82.2 82.0
he 64.7 69.1 75.6 77.8 68.1 70.6
hi 22.3 23.5 75.9 74.9 57.5 57.9
hi pud 48.1 49.3 67.8 67.9 56.6 58.7
hr 72.3 71.8 82.2 82.4 83.1 83.8
hu 42.5 43.3 71.8 72.5 73.6 73.7
id 63.2 67.3 70.7 74.5 78.0 79.7
it 61.4 63.3 89.1 89.1 85.2 85.4
it pud 71.7 72.0 90.7 90.7 87.1 87.2
ja 52.8 59.5 73.1 74.6 65.1 66.5
ja pud 60.4 65.4 71.5 72.6 66.7 68.3
ko 55.7 52.9 23.5 24.3 52.4 54.3
la 35.1 35.6 43.8 44.4 58.8 58.5
la ittb 57.9 57.4 65.5 66.5 63.5 63.6
la proiel 55.2 55.4 61.8 61.6 64.3 64.1
lt 54.0 57.1 70.8 72.2 69.7 69.7
lv 58.7 60.2 57.0 57.2 70.3 70.6
nl 57.7 61.3 81.9 81.7 66.4 67.2
nl lassysmall 46.4 47.6 79.8 80.0 75.4 75.3
no bokmaal 76.0 75.9 83.4 83.4 84.2 84.4
no nynorsk 69.7 70.5 81.4 81.8 79.6 79.9
pl 66.1 67.2 79.2 79.4 85.2 85.2
pt 72.1 73.3 88.7 88.8 82.9 82.7
pt br 39.5 39.5 88.2 88.2 77.8 77.7
pt pud 61.4 60.5 89.0 88.8 81.2 81.2
ro 55.6 56.4 79.3 79.5 80.3 80.3
ru 52.3 53.1 77.9 78.5 79.8 80.0
ru pud 64.4 64.5 83.1 83.7 81.9 82.4
ru syntagrus 57.3 56.9 78.7 79.2 74.3 74.6
sk 69.5 69.5 80.5 80.3 84.0 83.5
sl 73.6 72.6 83.3 83.4 85.2 85.2
sl sst 60.6 61.6 69.4 69.6 67.4 67.1
sv 77.0 76.9 82.8 82.9 81.1 81.4
sv lines 78.7 78.9 85.1 85.1 83.1 83.3
sv pud 77.2 77.3 83.4 83.4 83.8 84.1
tr 42.3 46.8 49.4 47.9 48.0 51.5
tr pud 43.2 46.7 50.0 52.0 49.5 53.5
uk 49.3 48.8 64.1 64.6 71.9 72.3
vi 31.5 35.7 50.6 56.5 55.1 58.3
zh 47.7 52.1 47.5 56.4 43.0 45.7

Table 3: Unlabeled attachment f-score of POS tags
as heads for the baseline and the reordering ensemble
model. As shown in the table, our model improves over
the baseline in most cases.

limitations. More thorough analysis can be found
in (Rasooli, 2019, Chapter 6).

For a few number of languages such as Viet-
namese, the best model, even though improves

over a strong baseline, still lacks enough accu-
racy to be considered as a reliable parser in place
of a supervised model. We believe that more re-
search on those language will address the men-
tioned problem. Our current model relies on su-
pervised part-of-speech tags. Future work should
study using transferred part-of-speech tags instead
of supervised tags, leading to a much more realis-
tic scenario for low-resource languages.

We have also calculated the POS trigram co-
sine similarity between the target language gold
standard treeebanks, and the three source training
datasets (original, and the two reordered datasets).
In all of the non-European languages, the co-
sine similarity of the reordered datasets improved
with different values in the range of (0.002, 0.02).
For Czech, Portuguese, German, Greek, English,
Romanian, Russian, and Slovak, both of the re-
ordered datasets slightly decreased the trigram co-
sine similarity. For other languages, the cosine
similarity was roughly the same.

7 Conclusion

We have described a cross-lingual dependency
transfer method that takes into account the prob-
lem of word order differences between the source
and target languages. We have shown that ap-
plying projection-driven reordering improves the
accuracy of non-European languages while main-
taining the high accuracies in European languages.
The focus of this paper is primarily of dependency
parsing. Future work should investigate the effect
of our proposed reordering methods on truly low-
resource machine translation.
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2016. Universal reordering via linguistic typology.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 3167–3176.

Mona Diab and Steve Finch. 2000. A statisti-
cal word-level translation model for comparable
corpora. In Content-Based Multimedia Informa-
tion Access-Volume 2, pages 1500–1508. LE CEN-
TRE DE HAUTES ETUDES INTERNATIONALES
D’INFORMATIQUE DOCUMENTAIRE.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. Cross-lingual transfer for unsupervised
dependency parsing without parallel data. In Pro-
ceedings of the Nineteenth Conference on Computa-
tional Natural Language Learning, pages 113–122,
Beijing, China. Association for Computational Lin-
guistics.

Greg Durrett, Adam Pauls, and Dan Klein. 2012. Syn-
tactic transfer using a bilingual lexicon. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 1–11,
Jeju Island, Korea. Association for Computational
Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Pro-
ceedings of the 16th conference on Computational
linguistics-Volume 1, pages 340–345. Association
for Computational Linguistics.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induction via
bitext projection constraints. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
369–377, Suntec, Singapore. Association for Com-
putational Linguistics.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1234–1244, Beijing, China. Association for Com-
putational Linguistics.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representation learn-
ing framework for multi-source transfer parsing. In
The Thirtieth AAAI Conference on Artificial Intelli-
gence (AAAI-16), Phoenix, Arizona, USA.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
parsers via syntactic projection across parallel texts.
Natural language engineering, 11(03):311–325.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.
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