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Abstract

Domain classification is the task of mapping
spoken language utterances to one of the natu-
ral language understanding domains in intelli-
gent personal digital assistants (IPDAs). This
is a major component in mainstream IPDAs in
industry. Apart from official domains, thou-
sands of third-party domains are also created
by external developers to enhance the capa-
bility of IPDAs. As more domains are de-
veloped rapidly, the question of how to con-
tinuously accommodate the new domains still
remains challenging. Moreover, existing con-
tinual learning approaches do not address the
problem of incorporating personalized infor-
mation dynamically for better domain classi-
fication. In this paper, we propose CONDA,
a neural network based approach for domain
classification that supports incremental learn-
ing of new classes. Empirical evaluation
shows that CONDA achieves high accuracy
and outperforms baselines by a large margin
on both incrementally added new domains and
existing domains.

1 Introduction

Domain classification is the task of mapping spo-
ken language utterances to one of the natural lan-
guage understanding (NLU) domains in intelligent
personal digital assistants (IPDAs), such as Ama-
zon Alexa, Google Assistant, and Microsoft Cor-
tana, etc. (Sarikaya, 2017). Here a domain is de-
fined in terms of a specific application or function-
ality such as weather, calendar or music, which
narrows down the scope of NLU. For example,
given an utterance “Ask Uber to get me a ride”
from a user, the appropriate domain would be one
that invokes the “Uber” app.

Traditionally IPDAs have only supported
dozens of well-separated domains, where each is
defined in terms of a specific application or func-
tionality such as calendar and weather (Sarikaya

et al., 2016; Tur and De Mori, 2011; El-Kahky
et al., 2014). In order to increase the domain cov-
erage and extend the capabilities of the IPDAs,
mainstream IPDAs released tools to allow third-
party developers to build new domains. Ama-
zons Alexa Skills Kit, Googles Actions and Mi-
crosofts Cortana Skills Kit are examples of such
tools. To handle the influx of new domains, large-
scale domain classification methods like SHORT-
LISTER (Kim et al., 2018b) have been proposed
and have achieved good performance.

As more new domains are developed rapidly,
one of the major challenges in large-scale domain
classification is how to quickly accommodate the
new domains without losing the learned predic-
tion power on the known ones. A straightforward
solution is to simply retraining the whole model
whenever new domains are available. However,
this is not desirable since retraining is often time
consuming. Another approach is to utilize con-
tinual learning where we dynamically evolve the
model whenever a new domain is available. There
is extensive work on the topic of continual learn-
ing, however there is very little on incrementally
adding new domains to a domain classification
system.

To mitigate this gap, in this paper we propose
the CONDA solution for continuous domain adap-
tation. Given a new domain, we keep all learned
parameters, but only add and update new parame-
ters for the new domain. This enables much faster
model updates and faster deployment of new fea-
tures to customers. To preserve the learned knowl-
edge on existing domains to avoid the notorious
catastrophic forgetting problem (Kemker et al.,
2018), we propose cosine normalization for output
prediction and domain embedding regularization
for regularizing the new domain embedding. Also,
we summarize the data for existing domains by
sampling exemplars, which will be used together
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with the new domain data for continuous domain
adaptation. This is shown to further alleviate the
overfitting on the new domain data. Empirical
evaluation on real data with 900 domains for initial
training and 100 for continuous adaptation shows
that CONDA out performs the baselines by a large
margin, achieving 95.6% prediction accuracy on
average for the 100 new domains and 88.2% accu-
racy for all seen domains after 100 new domains
have been accommodated (only 3.6% lower than
the upperbound by retraining the model using all
domain data). To summarize, we make the follow-
ing contributions in this paper:

• We introduce the problem of continuous do-
main adaptation for large-scale personalized
domain classification.

• We describe CONDA, a new solution for
continuous domain adaptation with Cosine
normalization, domain embedding regular-
ization and negative exemplar sampling tech-
niques. Our solution advances the research in
continuous domain adaptation.

• We conduct extensive experiments showing
that CONDA achieves good accuracy on both
new and existing domains, and outperforms
the baselines by a large margin.

2 Background and Problem Definition

2.1 Domain Classification
Domain classification is the task of mapping spo-
ken language utterances to one of the NLU do-
mains in IPDAs. A straightforward solution to
tackle this problem is to ask users to explicitly
mention the domain name with a specific invoca-
tion pattern. For example, for the utterance “Ask
Uber to get me a ride”, the invocation pattern is
“Ask {domain} to {perform action}”. While it
makes things much simpler for the domain clas-
sifier, this significantly limits natural interaction
with IPDAs as users need to remember the do-
main names as well as the invocation pattern. To
address this limitation, name-free domain classi-
fication methods were developed for more user
friendly interactions, and have been getting more
attention recently. We specifically focus on the
name-free scenario in this paper.

2.2 The Shortlister System
To our knowledge, the state-of-the-art for name-
free domain classification is SHORTLISTER (Kim

et al., 2018b), which leverages personalized user
provided information for better classification per-
formance. Specifically, it contains three main
modules.

The first module is the LSTM-based encoder
to map an utterance to a dimension-fixed vector
representation. Given an utterance, each word is
first represented as dense vectors using word em-
beddings, then a bidirectional LSTM (Graves and
Schmidhuber, 2005) is be used to encode the full
utterance.

The second module is the personalized domain
summarization module. For each utterance from
an IPDA user, a list of domains have been enabled
by the user. These enabled domains can be viewed
as user-specific personalized information. It has
been shown that the domain classification accu-
racy can be significantly improved by leveraging
information about enabled domains (Kim et al.,
2018b). To represent the domain enablement in-
formation, first each enabled domain is mapped
to a fixed-dimensional embedding, then a summa-
rization vector is generated by taking an attention
weighted sum (Luong et al., 2015) over the en-
abled domain embeddings.

Once the utterance representation and the en-
abled domain summarization are calculated, we
concatenate the two vectors as the final represen-
tation. Then the third module, a feed-forward net-
work, is used to predict the confidence score with
a sigmoid function for each domain.

2.3 Continuous Domain Adaptation

As more new domains are developed, a major
challenges in large-scale domain classification is
quickly accommodating the new domains into the
live production domain classification model with-
out having to perform a full retrain. We refer to
this problem as Continuous Domain Adaptation
(CDA). In this paper, we specifically focus on the
case of purely online learning where new domains
where added one by one, since in practice we want
to quickly integrate a new domain into the system
as soon as it becomes available. We formally de-
fine the problem below.

Definition 1 (Online continuous domain adapta-
tion) Given a collection of k domains Sk =
{s1, s2, . . . , sk}, suppose we have a dataset Dk

defined on Sk where each item is a triple (u, s, E)
with the utterance u ∈ U (the set for all possible
utterances), the ground-truth domain s ∈ Sk, and
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the enabled domains E ⊆ Sk. Denote P(Sk) as
the powerset of Sk, a model Mk : U × P(Sk) →
Sk has been trained on Dk for domain classifica-
tion with the accuracy Mk(Dk). At some point,
a new domain sk+1 is available with the corre-
sponding dataset Dk+1 = {(u, sk+1, E) | E ⊆
Sk+1} with Sk+1 = Sk ∪ {sk+1}. Taking advan-
tage of Dk+1, the continuous adaptation for sk+1

is to update Mk to Mk+1 : U ×P(Sk+1)→ Sk+1

so that the model can make predictions for sk+1,
with the goal of maximizing Mk+1(Dk+1) and
minimizing Mk(Dk)−Mk+1(Dk).

3 The CoNDA Solution

We introduce CONDA (Continuous Neural
Domain Adaptation), a variation of SHORTLISTER

that is capable of handling online CDA decribed
in Definition 1. Similar to SHORTLISTER, it has
three main modules.

The first module is the LSTM-based utterance
encoder which shares the same architecture as the
one used in SHORTLISTER, that maps an input ut-
terance into a dense vector. After the training on
the initial k-domain data Dk, we freeze all param-
eters (i.e., the word embedding lookup and the bi-
LSTM parameters) of this module from changing
for the subsequent online domain adaptation tasks.
Usually the value of k is large enough (hundreds
or even thousands in real-world, at least 100 in our
experiments), thus it is safe to assume that the pa-
rameters have been tuned sufficiently well to en-
code utterances from all existing and future do-
mains. In this work we treat new words in the
new domains as unknown and leave the problem
of vocabulary expansion as future work.

The second module is the personalized domain
summarization module which will map the en-
abled domains of an input utterance to a dense
vector representation. It is also similar to the one
in SHORTLISTER, except we will evolve the mod-
ule as we are adding new domains. Specifically,
given dataset Dk on k domains for initial training,
a domain embedding table Tk ∈ Rk×ds will be
learned where ds is the size of the domain embed-
dings. When a new domain sk+1 is available, we
expand Tk to Tk+1 ∈ R(k+1)×ds by: (1) freezing
the learned embeddings for all known domains;
(2) adding a new row tk+1 ∈ Rds to Tk as the
domain embedding for sk+1 and updating the new
parameters tk+1 using all available training data
at hand (i.e., the dataset Dk+1 and the negative

samples which will be discussed later in this sec-
tion). We repeat this procedure whenever a new
domain is available. To avoid over-fitting on tk+1,
we introduce a new regularization term into the
loss function. We describe the details in Section
3.2.

The third module is a two-layer feed-forward
network as the classifier. The first layer f (1) :
Rdu+ds → Rdh maps the concatenation of the ut-
terance embedding (in size du) and domain sum-
marization (in size ds) into fix-sized hidden repre-
sentation (in size dh) using a fully connected layer
followed by SELU activation (Klambauer et al.,
2017), which is identical to the one in SHORTLIS-
TER. Then the prediction layer f (2) : Rdh → Rk

maps the hidden representation to the final domain
prediction scores. Unlike SHORTLISTER where
the final prediction score is the dot product of
the weight vector and the hidden representation,
we choose to use the cosine score of the two, re-
ferred to as cosine normalization. To support on-
line CDA when a new domain is available, we ap-
ply a similar approach to the domain embedding
expansion described above to expand the predic-
tion layer. Specifically, denote W (2)

k ∈ Rk×dh

be the weights for the prediction layer that has
been trained on the initial k domains. To adapt the
new domain dk+1, we expand W (2)

k to W (2)
k+1 ∈

R(k+1)×dh by first freezing all learned parame-
ters and adding a new row of learnable parameters
wk+1 ∈ Rdh to W (2)

k .
As each time we only add one new domain, all

training utterances during the update will have the
same label. Thus, it’s easy to overfit the new data
such that catastrophic forgetting occurs. Inspired
by (Rebuffi et al., 2017), we also propose a neg-
ative sampling procedure to leverage (limited) in-
formation on the known domains to alleviate the
catastrophic forgetting problem. For the rest of the
section, we will first talk about cosine normaliza-
tion, and then domain embedding regularization,
and finally negative sampling.

3.1 Cosine Normalization

As mentioned above, we use the cosine similarity
of the weights and the hidden representation vec-
tor instead of the linear dot product in the predic-
tion layer. Formally, let f (2)k : Rdh → [−1, 1]k be
the prediction layer for k domains with parameters
W

(2)
k ∈ Rk×dh . Given an input hidden represen-

tation h ∈ Rdh from f (1), the score for the i-th
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Figure 1: Cosine Example.

domain under cosine normalization is:

f
(2)
k,i (h) = cos

(
h,W

(2)
k,i

)
=

h ·W (2)
k,i

‖h‖
∥∥∥W (2)

k,i

∥∥∥ (1)

To understand why cosine is better in the case
of online CDA, let’s first see the problem with the
dot-product method. Suppose we are accommo-
dating sk+1 with dataset Dk+1, because we train
the new parameters wk+1 only on Dk+1 where
all utterances have the same domain sk+1, the
model can easily get good training performance on
Mk+1(Dk+1) by simply maximizing the values in
wk+1 such that the dot product of the hidden repre-
sentation with wk+1 is larger than the dot product
with any other wi, 1 ≤ i ≤ k. Effectively this
leads to the model predicting domain sk+1 for any
given utterance. Using cosine normalization in-
stead as described in Eq. 1 removes the incentive
to maximize the vector length of wk+1.

Example 1 SupposeMk has been initially trained
on Dk, and domain s1=“Weather”. Given an ut-
terance u = “What’s the weather today?”, Mk

correctly classifies u into s1. Now a new domain
sk+1=“Uber” is coming and we evolve Mk to
Mk+1. As the norm of the weights wk+1 could be
much larger than w1 in the prediction layer, even
if the hidden representation h of u is closer to s1 in
direction,Mk+1 will classifier u into sk+1 as it has
a higher score, shown in Figure 1.a. However if
we measure the cosine similarity, Mk+1 will clas-
sify u correctly because we now care more about
the directions of the vectors, and the angle θ1 be-
tween h and s1 is smaller (representing higher
similarity) than the angle θ2 between h and sk+1,
as shown in Figure 1.b.

As we use the cosine normalization, all pre-
diction scores are mapped into the range [-1, 1].
Therefore it’s not proper to use log-Sigmoid loss
function as in SHORTLISTER. So accompanying
with the cosine normalization, the following hinge

loss function has been used instead:

(2)
Lhinge =

n∑
i=1

yi max{∆pos − oi, 0}

+
n∑

i=1

(1− yi) max{oi −∆neg, 0}

where n is the number of all domains, oi is the pre-
dicted score for each domain, y is a n-dimensional
one-hot vector with 1 in the ground-truth label and
0 otherwise. ∆pos and ∆neg are the hinge thresh-
olds for the true and false label predictions respec-
tively. The reason we use hinge loss here is that it
can be viewed as another way to alleviate the over-
fitting on new data, as the restrictions are less by
only requiring the prediction for the ground-truth
to be above ∆pos and false domain predictions be-
low ∆neg. Our experiments show that this helps
the model get better performance on the seen do-
mains.

3.2 Domain Embedding Regularization
In this section, we introduce the regularizations on
the domain embeddings used in the personalized
domain summarization module. Recall that given
an utterance u with hu as the hidden representa-
tion from the encoder and its enabled domains E,
personalized domain summarization module first
compares u with each si ∈ E (by calculating
the dot product of hu and the domain embedding
ti of si) to get a score ai, then gets the weight
ci = exp (ai)/

∑
aj exp (aj) for domain si, and fi-

nally computes the personalized domain summary
as
∑

ei∈E ci · ti. We observed that after training on
the initial dataset Dk, the domain embedding vec-
tors tend to roughly cluster around a certain (ran-
dom) direction in the vector space. Thus, when
we add a new domain embedding sk+1 to this per-
sonalization module, the model tends to learn to
move this vector to a different part of the vector
space such that its easier to distinguish the new
domain from all other domains. Moreover, it also
increases the `2 norm of the new domain embed-
ding tk+1 to win over all other domains.

Example 2 Suppose a similar scenario to Exam-
ple 1 where we have s1 = “Weather” in Sk and a
new domain sk+1 = “Uber”. As most utterances
inDk+1 have sk+1 as an enabled domain, it’s easy
for the model to learn to enlarge the norm of the
new domain embedding tk+1 as well as make it
close to the context of ride sharing, so that tk+1
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can dominate the domain summarization. Then
coordinating with the new weights wk+1 in the
prediction layer f (2)k+1, the network can easily pre-
dict high scores sk+1 and fit the dataset Dk+1.
However, when we have utterances belonging to
s1 with sk+1 as an enabled domain, sk+1 may
still dominate the summarization which makes the
prediction layer tends to cast those utterances to
sk+1. We don’t observe this on the initial training
on Dk because sk+1 was not visible at that time,
thus cannot be used as an enabled domain. And
it’s even worse if s1 is similar to sk+1 in concept.
For example if s1 = “Lyft”, in this case the utter-
ances of the two domains are also similar, making
the dot product of tk+1 and the hidden representa-
tions of the s1’s utterances even larger.

To alleviate this problem, we add a new domain
embedding regularization term in the loss func-
tion to constrain the new domain embedding vec-
tor length and force it to direct to a similar area
where the known domains are heading towards, so
that the new domain will not dominate the domain
summarization. Specifically,

(3)
Lder =

k∑
i=1

λi max{∆der − cos(tk+1, ti), 0}

+
λnorm

2
‖tk+1‖2

We call the first part of Eq. 3 on the right
hand side as the domain similarity loss where we
ask the new domain embedding tk+1 to be simi-
lar to known domain ti’s controlled by a Cosine-
based hinge loss. As we may not need tk+1 to
be similar to all seen domains, a coefficient λi is
used to weight the importance each similarity loss
term. In this paper we encourage tk+1 to be more
similar to the ones sharing similar concepts (e.g.
“Uber” and “Lyft”). We assume all training data
are available to us, and measure the similarity of
two domains by comparing their average of utter-
ance hidden representations.

Specifically, denote ϕ : U → Rdu as the
LSTM-encoder that will map an utterance to its
hidden representation with dimension du. For
each domain si ∈ Sk+1, we first calculate the av-
erage utterance representation on Di

h̃i =
∑

(u,si,e)∈Di

ϕ(u)

|Di|
(4)

Then we set λi = λdsl max{cos(h̃i, h̃k+1), 0}
with λdsl as a scaling factor.

Combining Eq. 2 and 3, the final loss function
for optimization is: Ltotal = Lhinge + Lder

3.3 Sampling Negative Exemplars
So far we developed our method by training only
on the new data Dk+1, and use regularizations to
prevent overfitting. However, in many real appli-
cations all of the training data, not only Dk+1, is
actually available, but it’s not affordable to retrain
the full model using all data. Inspired by (Rebuffi
et al., 2017), we can select a set of exemplars from
the previously trained data to further improve con-
tinual adaptation.

Suppose we are handling the new domain sk+1

with Dk+1, and all data trained previously is Dk

on k domains Sk. For each known si ∈ Sk,
we pick N utterances from Di as the exemplars
for si. Denote Pi be the exemplar set for si and
P =

⋃k
i=1 Pi be the total exemplar set. To gen-

erate each Pi, we pick the top-N utterances that
are closest to the average of the utterance hidden
representation. Specifically, following Eq. 4, we
first get the average representation h̃i, then Pi is
defined as follow:

Pi =Pi⊆Di,|Pi|=N

∑
(u,si,e)∈Pi

cos
(
ϕ(u), h̃i

)
(5)

If multiple candidates satisfying Eq. 5 for Pi, we
randomly pick one as Pi to break the tie. Once the
domain adaptation for sk+1 is done, we similarly
generate Pk+1 and merge it to P . We repeat this
procedure for negative sampling whenever a new
domain is coming later.

As we add more new domains, the exemplar set
P also grows. For some new domain Dk+1, we
may have |P |� |Dk+1|. In this case, the pre-
diction accuracy on the new domain data could be
very low as the model will tend to not making mis-
takes on P rather than fitting Dk+1. To alleviate
this problem, when |P |> |Dk+1|, we select a sub-
set P ′ ⊆ P with |P ′|= |Dk+1|, and P ′ will be
used as the final exemplar set to train together with
Dk+1. To generate P ′, we just randomly sample a
subset from P , since it was observed to be effec-
tive in our experiments.

4 Empirical Evaluation

4.1 Experiment Setup
Dataset: We use a dataset defined on 1000 do-
mains for our experiments which has 2.53M utter-
ances, and we split them into two parts. The first
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Figure 2: Overall evaluation. (a) shows the accuracy for new domains. (b) shows the accumulated accuracy for
previous new domains that have been adapted to the model so far. (c) shows the accumulated accuracy for all
known domains including the ones used for initial training and all previously adapted new domains.
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Figure 3: The model performance on different number of initial training domains. The red dashed line shows the
upperbound of the accumulated accuracy, which is generated by retraining the model on all domains seen so far.

part contains 900 domains where we use it for the
initial training of the model. It has 2.06M utter-
ances, and we split into training, development and
test sets with ratio of 8:1:1. We refer to this dataset
as “InitTrain”. The second part consists of 100
domains and is used for the online domain adap-
tation. It has 478K utterances and we split into
training, development and test sets with the same
8:1:1 ratio. We refer to this dataset as “IncTrain”.

Training Setup: We implement the model in
PyTorch (Paszke et al., 2017). All of the ex-
periments are conducted on an Amazon AWS
p3.16xlarge1 cluster with 8 Tesla V100 GPUs. For
initial training, we train the model for 20 epochs
with learning rate 0.001, batch size 512. For the
continuous domain adaptation, we add the new do-
mains in a random order. Each domain data will be
trained independently one-by-one for 10 epochs,
with learning rate 0.01 and batch size 128. For
both training procedures, we use Adam as the op-
timizer. The development data is used to pick the
best model in different epoch runs. We evaluate
the classification accuracy on the test set.

4.2 Overall Performance

We first talk about the overall performance. In our
experiments we select two baselines. The first one
linear-full-update which simply extends

1https://aws.amazon.com/ec2/instance-types/p3/

SHORTLISTER by adding new parameters for new
domains and conducting full model updating. The
second linear is similar to the first baseline ex-
cept that we freeze all trained parameters and only
allow new parameter updating. Both the two base-
lines update the model with Dk+1 dataset only.
To show the effectiveness of each component of
CONDA, we choose four variations. The first one
is cos where we apply the Cosine Normaliza-
tion (CosNorm). The second one cos+der ap-
plies CosNorm with the domain embedding reg-
ularization. The third one cos+ns uses both
CosNorm and negative exemplars. And the last
one cos+der+ns is the combination of all three
techniques, which is our CONDA model. For
hyperparameters, we pick ∆pos = 0.5,∆neg =
0.3,∆der = 0.1, λdsl = 5, and λnorm = 0.4.

Figure 2 shows the accuracy for new do-
main adaptations. From the figure, here are the
main observations. First, without any constraints,
linear-full-update can easily overfits the
new data to achieve 100% accuracy as shown in
Figure 2(a), but it causes catastrophic forgetting
such that the accuracy on seen domains is (almost)
0 as shown in Figure 2(b) and (c). By freezing the
all trained parameters, the catastrophic forgetting
problem is a bit alleviated for linear, but the ac-
curacy on the seen domains is still very low as we
add more new domains. Second, cos produces
much better accuracy on seen domains with a bit
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lower accuracy on each new domain, showing the
effectiveness of the Cosine normalization. Third,
as we add more regularizations to the model, we
get better accuracy on the seen domains (Figure
2 (b) and (c)), at the cost of sacrificing a bit on
the new domain accuracy (Figure 2 (a)). Also,
cos+der+ns (the CONDA model) achieves the
best performance, with an average of 95.6% ac-
curacy for each new domain and 88.2% accuracy
for all previously seen domains after we add 100
new ones, which is only 3.6% lower than the up-
perbound (by retraining the model on the whole
dataset). These demonstrate the superiority of our
method.

4.3 Micro-benchmarks

Using Different Number of Initial Domains:
We vary the number of domains for initial train-
ing to see if it will have a big impact on the model
performance. Specifically, we pick 100 and 500
domains from InitTrain, and use the same IncTrain
data for domain adaptation. Figure 3 compares the
model performance on these three different num-
ber (i.e., 100, 500, 900) of initial training domains.
From the figure we can see that the curves share a
similar pattern regardless of the number of initial
domains, showing that our model is stable to the
number of domains used for initial training.

Varying the hinge loss thresholds: We vary the
classification hinge loss thresholds ∆pos and ∆neg

to see how it will affect the performance. Specif-
ically, we fix ∆neg = 0.3 and vary ∆pos from 0.5
to 1.0, and fix ∆pos = 0.5 and vary ∆neg from 0 to
0.4, respectively. For both of the them we use 0.1
as the step size. Figure 4 shows the model perfor-
mance. From the figures, we summarize the fol-
lowing observations. First, as we increase ∆pos,
on average the accuracy on each new domain gets
better (Figure 4(a)), but we loss performance on
all seen domains (Figure 4(b)). This is in accord
with our intuition that a larger ∆pos puts more con-
straint on the new domain predictions such that it
tends to overfit the new data and exacerbates catas-
trophic forgetting on existing domains. Second, as
we increase ∆neg, on average the accuracy on each
new domain gets worse (Figure 4(c)), but we get
better performance on existing domains. This is
because a larger ∆neg narrows down the predic-
tion “margin” between positive and negative do-
mains (similar to decreasing ∆pos), so that less
constraint has been put onto predictions to allevi-

ate overfitting on the new domain data.

Varying the domain similarity loss threshold:
We vary the threshold ∆der to see how it will af-
fect the model performance. Specifically, we vary
∆der from 0 to 0.5 with step size 0.1, and Figure
5 shows the model performance. As we increase
∆der, the performance on the new domains gets
worse, and the drop is significant when ∆der is
large. On the other hand, the accumulated accu-
racy on seen domains increases when we start to
increase ∆der, and drops when ∆der is too large.
This means we when we start to make the new
domain embeddings to be similar to the existing
ones, we alleviate the problem that the new do-
main dominates the domain summarization. Thus
the accuracy on existing domains improves at the
cost of sacrificing some accuracy on the new do-
mains. However, if we continue to increase ∆der

to make it very similar to some of existing do-
mains, the new domain will compete with some
existing ones so that we loss accuracy on both new
and existing domains.

Varying the weights for domain similarity loss:
To see how the weighted domain similarity loss
will affect the performance, we compare it against
the plain version without the utterance similar-
ity weights. Specifically, we set each λi = λdsl
having the same value. And our experiments
show that the plain version gets the average ac-
curacy 94.1% on the new domains, which is 1.5%
lower than the weighted version, and 88.7% ac-
cumulated accuracy on all domains after adding
100 new domains, which is 0.5% higher than the
weighted version. This means we can get a bit
higher accumulated accuracy at the cost of sacri-
ficing more new domain accuracy. In real appli-
cations, the decision to whether use weighted do-
main similarity loss should be made by trading off
the importance of the new and existing domains.

Varying the number of used negative exem-
plars: As we mentioned before, we down-
sample the negative exemplar set P to reduce
the impact on new domain performance. To see
if it’s necessary, we compare it against the one
without down-sampling. Our experiments show
that without down-sampling, the model achieves
87.5% new domain accuracy on average which
is 8.1% lower than the down-sampling version,
and 87.2% accumulated accuracy on all domains
which is 1.0% lower than the down-sampling one.
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Figure 4: Model performance by varying the hinge loss thresholds. (a) and (b) shows accuracy on new domain and
accumulated accuracy for all seen domains respectively by varying ∆pos. Similarly, (c) and (d) shows the accuracy
performance by varying ∆neg .

Prediction
Method

100 initial 
domains

500 initial 
domains

900 initial 
domains

Linear 95.2 93.9 93.4
Cosine 94.5 92.9 92.4

Table 1: Linear dot product versus Cosine normaliza-
tion on initial training for different number of domains.

This means down-sampling effectively improve
the model performance.

Effect of Cosine normalization in initial train-
ing: We have shown Cosine normalization with
hinge loss works better than linear dot product
with sigmoid loss (used in SHORTLISTER) for
CDA. Here we compare the two on the regular
training setting where we train the model from
scratch on a large dataset. Specifically, we com-
pare the initial training performance on 100, 500,
and 900 domains which are the same as we used
earlier. Table 1 shows the accuracy numbers.
From the table we see that Linear works better
than Cosine by 0.7-1.0% across different number
of domains. Though the difference is not large,
this means Linear could be a better option than
Cosine when we train the model from scratch.

Varying the order of the new domains: To see
if the incoming order of the new domains will af-
fect the performance, we generate two different or-

ders apart from the one used in overall evaluation.
The first one sorts the new domains on the num-
ber of utterances in the decreasing order, and the
second in the increasing order. Denote these three
orders as “random”, “decreasing”, and “increas-
ing”, and we conduct domain adaptation on these
orders. Our experiments show that they achieve
95.6%, 95.5%, and 95.6% average accuracy on
new domains respectively, and 88.2%, 88.2%, and
88.1% accumulated accuracy on all domains after
accommodating all 100 new domains. This indi-
cates that there is no obvious difference on model
performance, and our model is insensitive to the
order of the new domains.

Using more new domains: We also experi-
mented with adding a large number of new do-
mains to see the limit of CONDA. Figure 6 shows
the results by continuously adapting 900 new do-
mains one-by-one. From the figure we can see that
at the early stage of the new domain adaptation
(e.g., first 200 new domains), we get high new do-
main accuracy with little performance decrease on
the existing domains. After that, the new domain
performance becomes more unstable with violent
oscillation, and the existing domain accuracy de-
creases more quickly. This suggests that we can-
not run the new domain adaptation forever, and
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Figure 5: Model performance by varying ∆der. (a)
shows the accuracy on new domains, and (b) shows the
accumulated accuracy for all seen domains.

after adapting a certain number of new domains
(e.g., 200 new domains), it’s more preferable to
train the whole model from scratch.

5 Related Work

Domain Classification: Traditional domain
classifiers were built on simple linear models such
as Multinomial logistic regression or Support
Vector Machines (Tur and De Mori, 2011). They
were typically limited to a small number of
domains which were designed by specialists to
be well-separated. To support large-scale domain
classification, (Kim et al., 2018b) proposed
SHORTLISTER, a neural-based model. (Kim
et al., 2018a) extended SHORTLISTER by using
additional contextual information to rerank the
predictions of SHORTLISTER. However, none
of them can continuously accommodate new
domains without full model retrains.

Continuous Domain Adaptation: To our
knowledge, there is little work on the topic of con-
tinuous domain adaptation for NLU and IPDAs.
(Kim et al., 2017) proposed an attention-based
method for continuous domain adaptation, but it
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Figure 6: Using 900 new domains for continual learn-
ing.

introduced a separate model for each domain and
therefore is difficult to scale.

Continual Learning: Several techniques have
been proposed to mitigate the catastrophic forget-
ting (Kemker et al., 2018). Regularization meth-
ods add constraints to the network to prevent im-
portant parameters from changing too much (Kirk-
patrick et al., 2017; Zenke et al., 2017). Ensemble
methods alleviate catastrophic forgetting by ex-
plicitly or implicitly learning multiple classifiers
and using them to make the final predictions (Dai
et al., 2009; Ren et al., 2017; Fernando et al.,
2017). Rehearsal methods use data from exist-
ing domains together with the new domain data
being accommodated to mitigate the catastrophic
forgetting (Robins, 1995; Draelos et al., 2017; Re-
buffi et al., 2017). Dual-memory methods intro-
duce new memory for handling the new domain
data (Gepperth and Karaoguz, 2016). Among the
existing techniques, our model is most related to
the regularization methods. However, unlike ex-
isting work where the main goal is to regularize
the learned parameters, we focus on regulariza-
tions on the newly added parameters. Our model
also shares similar ideas to (Rebuffi et al., 2017)
on the topic of negative exemplar sampling.

6 Conclusion and Future Work

In this paper, we propose CONDA for continuous
domain adaptation. By using various normaliza-
tion and regularizations, our model achieves high
accuracy on both the accommodated new domains
and the existing known domains, and outperforms
the baselines by a large margin. For future work,
we consider extending the model to handle un-
known words. Also, we want to find a more princi-
pled way to down sample the negative exemplars.
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