
Proceedings of NAACL-HLT 2019, pages 3498–3508
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

3498

Subword-based Compact Reconstruction of Word Embeddings

Shota Sasaki1,2, Jun Suzuki2,1, Kentaro Inui2,1
1RIKEN AIP, 2Tohoku University

{sasaki.shota, jun.suzuki, inui}@ecei.tohoku.ac.jp

Abstract
The idea of subword-based word embeddings
has been proposed in the literature, mainly
for solving the out-of-vocabulary (OOV) word
problem observed in standard word-based
word embeddings. In this paper, we propose
a method of reconstructing pre-trained word
embeddings using subword information that
can effectively represent a large number of
subword embeddings in a considerably small
fixed space. The key techniques of our method
are twofold: memory-shared embeddings and
a variant of the key-value-query self-attention
mechanism. Our experiments show that our
reconstructed subword-based embeddings can
successfully imitate well-trained word embed-
dings in a small fixed space while preventing
quality degradation across several linguistic
benchmark datasets, and can simultaneously
predict effective embeddings of OOV words.
We also demonstrate the effectiveness of our
reconstruction method when we apply them to
downstream tasks1.

1 Introduction

Pre-trained word embeddings (or embedding vec-
tors), especially those trained on a vast amount of
text data, such as the Common Crawl (CC) cor-
pus2, are now considered as highly beneficial, fun-
damental language resources. Typical examples
of large, well-trained word embeddings are those
trained on the CC corpus with 600 billion tokens
by fastText (Bojanowski et al., 2017) and with 840
billion tokens by GloVe (Pennington et al., 2014),
which we refer to as fastText.600B3 and
GloVe.840B4, respectively. In fact, we often

1Our code and reconstructed subword-based word embed-
dings trained from GloVe.840B and fastText.600B
are available: https://github.com/losyer/
compact_reconstruction

2http://commoncrawl.org
3https://fasttext.cc/docs/en/

english-vectors.html
4https://nlp.stanford.edu/projects/

glove/

leverage such word embeddings to further improve
the task performance of many natural language
processing (NLP) tasks, such as constituency
parsing (Suzuki et al., 2018; Gómez-Rodrı́guez
and Vilares, 2018), discourse parsing (Yu et al.,
2018), semantic parsing (Groschwitz et al., 2018;
Dong and Lapata, 2018), and semantic role label-
ing (Strubell et al., 2018).

Despite their significant impact on the NLP
community, well-trained word embeddings still
have several disadvantages. In this paper, we focus
on two issues surrounding well-trained word em-
beddings: i) the massive memory requirement and
ii) the inapplicability of out-of-vocabulary (OOV)
words. It is crucial to address such issues, es-
pecially when applying them to real-world open
systems. The total number of embeddings (i.e.,
the total memory requirement of such word em-
beddings) often becomes unacceptably large, es-
pecially in limited-memory environments, includ-
ing GPUs, since the vocabulary size is more than
2 million words, which require at least 2 gigabytes
(GB) of memory for storage.

One possible solution is to merely discard (less
important) words from the vocabulary, which can
straightforwardly reduce the memory requirement.
However, such a naive method can cause another
well-known drawback regarding the inapplicabil-
ity of OOV words. The applicability of OOV
words is highly desirable in real systems since in-
put words can be uncontrollably diverse. There-
fore, there is a trade-off between the number of
embedding vectors and the applicability of OOV
words; thus, our goal is to investigate and develop
a method that simultaneously has less memory re-
quirement and high applicability of OOV words,
which are both desirable properties for word em-
beddings in real-world open systems.

Recently, methods that leverage subword infor-
mation have been proposed and have become pop-
ular for overcoming the OOV word issue. Con-

3499

ceptually, the subword-based approach can cover
all the words that can be constructed by a com-
bination of subwords. Thus, the subword-based
approach can greatly mitigate (or solve) the OOV
word issue. We extend this approach to simul-
taneously enabling a reduction in the total num-
ber of embedding vectors through the reconstruc-
tion of word embeddings by subwords. The key
techniques of our approach are twofold: memory-
shared embeddings and a variant of the key-value-
query (KVQ) self-attention mechanism (Vaswani
et al., 2017). That is, our approach reconstructs
well-trained word embeddings using a limited
number of embedding vectors that are shared by
all the subwords with an effective weighting cal-
culated by the self-attention mechanism.

In our experiments, we show that our re-
constructed subword-based embeddings can suc-
cessfully imitate well-trained word embeddings,
such as fastText.600B and GloVe.840B,
in a small fixed space while preventing quality
degradation across several linguistic benchmark
datasets from word similarity and analogy tasks.
We also demonstrate the effectiveness of our re-
constructed embeddings for representing the em-
beddings of OOV words. Lastly, we confirm the
performance of our reconstructed embeddings on
several downstream tasks from the named entity
recognition task and the textual entailment task.

2 Related Work

The OOV word issue is one of the widely dis-
cussed topics in word embedding research, which
several researches have recently attempted to
solve. For example, methods that leverage sub-
word information, such as character N -grams (in-
cluding character unigrams) (Bojanowski et al.,
2017; Pinter et al., 2017; Zhao et al., 2018) and
morphological features (Luong et al., 2013), have
recently been discussed as means of constructing
word embeddings that consider the applicability
of OOV words. Moreover, Pilehvar and Collier
(2017) have proposed a method called SemLand,
which induces OOV word embeddings by leverag-
ing external resources. Bahdanau et al. (2017) and
Herbelot and Baroni (2017) have also proposed
methods that estimate OOV word embeddings us-
ing an additional LSTM and leveraging a small ad-
ditional dataset, respectively.

Among them, the study most closely related to
ours is that of Zhao et al. (2018). Their basic idea

is to reconstruct each pre-trained word embedding
using a bag-of-character N -grams. We refer to
their method as ‘BoS’. The motivation for recon-
structing pre-trained word embeddings and utiliz-
ing character N -grams in our approach is substan-
tially the same, however, an essential difference
from BoS is that we additionally consider jointly
reducing the total number of embedding vectors.

Another study that shares the same motivation
and goal is that of Pinter et al. (2017). Their
method, referred to as MIMICK, utilizes only char-
acter information instead of characterN -grams by
mixing it with more sophisticated neural networks,
i.e., LSTM (Hochreiter and Schmidhuber, 1997).
MIMICK can produce a more compact model than
the original word embeddings. The important dif-
ference between their method and ours is that our
method only consists of the subword embeddings,
whereas their method consists of the character em-
beddings and several transformation matrices for
calculating LSTMs. We compare their method
with ours in our experiments and empirically show
the effectiveness of our approach.

Moreover, Bojanowski et al. (2017) have pro-
posed a method called fastText, which also in-
corporates character N -gram embeddings in ad-
dition to word embeddings. However, they did
not explicitly prove the effectiveness of OOV word
embeddings. Thus, it is still unclear how well the
combination of characterN -grams can reconstruct
appropriate embeddings for OOV words. In addi-
tion, their method trains word embeddings from a
corpus, which is not a reconstruction setting we
discuss in this paper. Therefore, their method is
orthogonal to ours.

We often aim to reduce memory consumption of
word embeddings in the real-world since they re-
quire relatively large memory. Suzuki and Nagata
(2016) proposed a parameter reduction method
for word embeddings by using machine learning
techniques. Our method can also be interpreted
as a kind of parameter reduction method based
on the subword features. However, their method
only considers the model shrinkage, and does not
utilize any subword information nor consider the
OOV issue.

To summarize, none of the previous stud-
ies have attempted to simultaneously achieve a
smaller number of embedding vectors and higher
applicability of OOV words. Thus, in this paper,
we report the first attempt to investigate how we

3500

can simultaneously achieve them.
Additionally, deep contextualized pre-trained

language models, such as ELMo (Peters et al.,
2018), have recently been proposed as alterna-
tives to the pre-trained word embeddings to fur-
ther improve task performances. However, ELMo
still takes advantage of Glove.840B to achieve
its state-of-the-art performance. This fact implies
that we can still combine the pre-trained word em-
beddings with strong pre-trained language models;
thus, the importance of word embeddings in the
literature remains unchanged even though stronger
pre-trained models have been established.

3 Reconstruction of Word Embeddings
Using Subwords

In this section, we explain a formal task definition
that we tackle in this paper.

3.1 Preliminaries

Notation rules: In this paper, we use the fol-
lowing notation rules unless otherwise specified.
First, a lower-case bold letter, e.g., v and e, rep-
resents a column vector, and an upper-case bold
letter, e.g., V and E, represents a matrix. Then,
‖v‖p represents Lp-norm of the given vector v.
Next, let a lower-case letter, e.g., z or i, be a scalar
variable or index, and an upper-case letter, e.g., C
or H , indicate a scalar but hyper-parameter dur-
ing the training. Here, we introduce the notation
V [i] to represent the i-th column vector in the ma-
trix V to simplify the representation. Moreover,
an upper-case letter in a calligraphy form, e.g.,W
and S , denotes a set, and the absolute value of
a set, such as |W| and |S|, indicates the number
of instances in the corresponding set. Finally, the
Greek letter, such as Φ and η, indicates a function.

Words and their embedding: LetW be a vo-
cabulary, i.e., a set of words. Let ζ(·) represent a
mapping function from a word to the correspond-
ing index of the word, namely,

ζ(·) :W → Iw where Iw = {1, . . . , |W|}. (1)

In this paper, we always assume that ζ(·) is a bijec-
tive function; thus, each word has its own unique
index between 1 and |W|. This also implies that
the relation |W| = |Iw| always holds.

Let ew be a D-dimensional embedding vector
for the word w ∈ W , and let E denote an em-
bedding matrix for all words in W , where E =

RD×|Iw|. Then, we assume that the following re-
lation always holds between ew and E:

ew = E[ze] where ze = ζ(w). (2)

Therefore, the i-th column vector in the matrix E
represents the word embedding of the correspond-
ing word w that satisfies i = ζ(w).

Subwords and their embedding: Let S be a
vocabulary for all pre-defined subwords obtained
from the words inW . Let ηv(·) represent a map-
ping function from a subword to the corresponding
index of the subword, that is,

ηv(·) : S → Is where Is = {1, . . . , |S|}. (3)

Similar to ζ in Eq. 1, ηv(·) is generally defined as
a bijective function5. In this case, each subword
has its own unique index between 1 and |S|, and
the relation |S| = |Is| always holds.

Here, we introduce vs as a D-dimensional vec-
tor for the subword s ∈ S and V as an embedding
matrix for all subwords in S, where V = RD×|Is|.
Then, we also assume the following relation be-
tween vs and V :

vs = V [zv] where zv = ηv(s). (4)

Therefore, the j-th column vector in the matrix V
represents the subword embedding of the corre-
sponding subword s that satisfies j = ηv(s).

Word to subword mapping: Additionally, we
introduce a (abstract) function φ(·) that maps a
word w ∈ W to a list of subwords contained in
the word w. We can define φ(·) in detail from
several choices. For example, if we define φ(·)
to extract all the character bi-grams appearing in a
given word and w = ‘higher’, then we obtain a list
of total seven distinct subword indices of ‘〈w〉h’,
‘hi’, ‘ig’, ‘gh’, ‘he’, ‘er’, ‘r〈/w〉’ as the return value
of φ(w), where ‘〈w〉’ and ‘〈/w〉’ are special char-
acters that represent the beginning and end of a
word, respectively.

3.2 Task definition
Conceptually, we aim to reconstruct all the em-
beddings in E using V and a pre-defined subword
mixing function τ(·). Formally, our reconstruction
problem is represented as a minimization problem
of the following form:

V̂ = arg min
V

{
Ψ(E,V , τ)

}
, (5)

5We redefine ηv as a surjective function in Section 5.2.

3501

where Ψ(·) is a loss function used to calculate the
total reconstruction loss between E and V .

As a brief summary, our goal is to find V̂ at
which the loss function Ψ(·) is minimized from
the machine learning perspective. Note that the
previous study, i.e., BoS, also utilized the above
formulation for the reconstruction problem. More-
over, MIMICK can also be considered to utilize
this formulation if V consists of all the single
characters.

Subword mixing function τ(·): The role of the
function τ(·) is to calculate an alternative embed-
ding of the word embedding ew using a list of sub-
words contained in the given word w. One of the
most popular definitions of τ(·) is to simply sum-
up all the obtained subwords as follows:

τsum(V , w) =
∑

s∈φ(w)

vs. (6)

In fact, a subword mixing function of this form
was utilized in the previous studies, such as
fastText and BoS.

Loss function Ψ(·): First, to improve read-
ability, we introduce v̂w as a short notation of
τ(V , w), namely v̂w = τ(V , w). There are also
several possible choices for the definition of the
loss function Ψ(·). Here, we consider utilizing a
squared loss function Ψlsq, which can be written
as the summation of the squared losses over an in-
dividual embedding vector ew:

Ψ(E,V , τ) =
∑
w∈W

Cw
∥∥ew − v̂w

∥∥2
2
, (7)

where Cw is a weight factor for each word. Intu-
itively, Ψ(·) is used to calculate the weighted sum
of the L2-norm distances between the reference
vector ew and a vector calculated by the subword
mixing function τ(·).

4 Reconstruction with Model Shrinkage

In this section, we briefly explains the background
that we still need to consider the number of em-
bedding vectors in the subword-based approach.
Table 1 shows the statistics of the total number
of embedding vectors and the total memory re-
quirement in several different settings. As shown
in row (a), the original fastText.600B word
embeddings consist of 2 million words, which re-
quire 2.2 GB to store them since each word has
a D = 300 dimensional vector. If we consider
using all the character N -grams obtained from all

ID Setting # of vecs mem. (GB)
(a) original fastText.600B 2.0 M 2.2 GB
(b) char N -gram N = 1, 2, 3 0.2 M 0.3 GB
(c) N = 3, 4, 5, 6 6.2 M 7.1 GB
(d) N = 1 to 6 6.3 M 7.2 GB
(e) N = 1 to ∞ 21.8 M 24.9 GB

Table 1: Statistics for each setting: The columns ‘# of
vecs’ and ‘mem.’ represent the number of embedding
vectors and the memory requirement, respectively. M
denotes one million, and we consider that a real value
requires 4 bytes of storage in the calculation of the
memory requirement.

the words (row (e)), then surprisingly, the mem-
ory requirement becomes approximately 25GB,
which is too large for practical use. Therefore, it is
crucial to technically reduce the memory require-
ment.

A practical approach is to partially take advan-
tage of a certain range of smaller N -grams, such
as N = 1 to 3 (row (b)) or N = 3 to 6 (row
(c)). However, smaller subword settings, such
as row (b), might markedly degrade the perfor-
mance from the original word embeddings. There-
fore, it is necessary to discover a better balance be-
tween the memory requirement (or the total num-
ber of embedding vectors) and performance.

5 Modifications to Improve Performance

In this section, we describe several modifications
to simultaneously achieve the purpose of smaller
number of embedding vectors but higher perfor-
mance with the applicability of OOV words. To
do so, we incorporate several techniques in the
baseline word embedding reconstruction approach
explained in Section 3. Roughly speaking, we en-
hance the mapping function ηv(·) and the subword
mixing function τ(·).

5.1 Frequent subwords: Modification of ηv(·)
We take advantage of the top-F frequent subwords
that can be counted from the words in vocabulary
W as a subword vocabulary instead of all possible
subwords S. Let SF represent the set of the top-
F frequent subwords, where SF ⊆ S . Then, we
define a new mapping function ηv,F (·) as follows:

ηv,F (·) :SF→Is,F where Is,F ={1, . . . , |SF |}.
(8)

5.2 Memory sharing: Modification of ηv(·)
In the baseline method, we assumed that the map-
ping function ηv(·) is a bijective function as de-

3502

Figure 1: Intuitive idea of our memory-shared embed-
dings by hashing. Here, we assume H ′ < H .

scribed in Section 3.1. Again, this means that
each subword has its own unique subword index.
Here, we modify ηv(·) as a surjective function by
introducing the following new mapping function
ηv,H(·) as a replacement of ηv(·) in Eq. 3:

ηv,H(·) :S→Is,H where Is,H = {1, . . . ,H}.
(9)

Here, we assume H < |S|. This mapping func-
tion ηv,H(·) implies that each subword is mapped
to an index, but the index is not unique and may
be shared between other subwords. Therefore, the
number of subword embeddings can also be re-
duced to H by sharing the embeddings; thus, the
subword embedding matrix V can also be reduced
from V = RD×|S| to V = RD×H . Here, if we as-
sume the relation H � |S|, then we can greatly
reduce the total embedding size.

There are several possible choices for the defini-
tion of the mapping function ηv,H(·). We select a
simple hash function for ηv,H(·). This means that
subword embeddings are randomly shared over
the subwords. One large merit of using simple
hash functions is that we require no external map-
ping structure of every (subword, subword index)
pair, which also matches our goal of reducing the
memory requirement in actual use cases. Figure 1
illustrates an intuitive idea of memory-shared em-
beddings by hashing.

5.3 Combination of ηv,F (·) and ηv,H(·)
Also ηv,F (·) and ηv,H(·) can be combined step by
step. First, we reduce the subword vocabulary S to
top-F frequent subwords SF as described in Sec-
tion 5.1. Second, we apply our memory sharing
method to only SF in contrast to applying it to S

Figure 2: Illustration of how our KVQ self-attention
operation calculates each word embedding.

in Section 5.2. Here, we define a new mapping
function ηv,FH(·) as follows:

ηv,FH(·) :SF→Is,H where Is,H = {1, . . . ,H}.
(10)

5.4 Attention operation: Modification of τ(·)
Previous researches such as fastText and BoS
treat τ(V , w) as a summation of all subword em-
beddings described by Eq. 6. However, the sum-
mation is less expressive and it may lack capabil-
ity in a memory-sharing setting since subwords
share their embeddings randomly. One possible
improvement is to handle the importance of each
subword based on a given word during the calcu-
lation of Φ(V , w).

A simple approach to deal with this phe-
nomenon is to incorporate a “context-dependent”
weighting factor for each subword in a given word.
Thus, we consider the following subword mixing
function τkvq(V , w) as:

τkvq(V , w) =
∑

s∈φ(w)

as,wvs (11)

where as,w represents a context-dependent
weighting factor of the subword s, where the
“context” here means all the subwords obtained
from word w.

To calculate as,w, we first introduce ks and
qs, which are similarly defined to vs in Eq. 4,
namely, ks = V [zk], where zk = ηk(s) and
qs = V [zq], where zq = ηq(s). Similar to ηv(·)
in Eq. 3, ηk(·) and ηq(·) are two distinct map-
ping functions that map a given subword s into a
subword index. Then, we introduce a key-value-
query (KVQ) self-attention operation inspired by

3503

data number of OOV data
abbre. size fastText.600B GloVe.840B
Word similarity estimation (WordSim)
MEN 3,000 0 0
M&C 30 0 0
MTurk 287 0 0
RW 2,034 37 36
R&G 65 0 0
SCWS 2,003 2 2
SLex 998 0 0
WSR 252 0 0
WSS 203 0 0
Word analogy estimation (Analogy)
GL 19,544 0 0
MSYN 8,000 1000 1000

Table 2: Evaluation datasets used in our experi-
ments. MEM (Bruni et al., 2014), M&C (Miller
and Charles, 1991), MTurk (Radinsky et al., 2011),
RW (Luong et al., 2013), R&G (Rubenstein and Good-
enough, 1965), SCWS (Huang et al., 2012), SLex (Hill
et al., 2014), WSR and WSS (Agirre et al., 2009),
GL (Mikolov et al., 2013a), and MSYN (Mikolov et al.,
2013b).

method hyper-parameters |W| |S| size (GB)
fastText.600B 2M – 2.23GB
SUM-F F = 0.5M - 2M 0.5M 0.59GB
SUM-H - H = 0.5M 2M 21.8M 0.59GB
KVQ-H - H = 0.5M 2M 21.8M 0.59GB
SUM-FH F = 1.0M H = 0.5M 2M 1.0M 0.59GB
KVQ-FH F = 1.0M H = 0.5M 2M 1.0M 0.59GB
SUM-F F = 0.2M - 2M 0.2M 0.23GB
SUM-H - H = 0.2M 2M 21.8M 0.23GB
KVQ-H - H = 0.2M 2M 21.8M 0.23GB
SUM-FH F = 1.0M H = 0.2M 2M 1.0M 0.23GB
KVQ-FH F = 1.0M H = 0.2M 2M 1.0M 0.23GB

Table 3: Statistics for our methods.

Transformer (Vaswani et al., 2017), that is,

as,w =
exp(Zq̂ · ks)∑

s′∈φ(w) exp(Zq̂ · ks′)
, (12)

where Z is a scaling hyper-parameter. and q̂ =∑
s∈φ(w) qs. Figure 2 illustrates how our KVQ

self-attention operation calculates each word em-
bedding.

6 Experiments

6.1 Evaluation of model shrinkage

This section describes our experiments for evalu-
ating the performance of the model shrinkage.

6.1.1 Settings
Evaluation data: Table 2 shows a summary of the
evaluation datasets used in our experiments. We
conducted experiments on well-studied linguistic

benchmark datasets, i.e., nine for word similar-
ity (WordSim) tasks and two for word analogy
(Analogy) tasks. In this evaluation, we discarded
data in the evaluation datasets if at least one of
the words in the data was an OOV word. Note
that this is the standard evaluation criterion used
in the previous studies. By following this crite-
rion, we investigate the effectiveness in terms of
model shrinkage since we can fairly compare the
performance with the original (word-based) word
embeddings.

Pre-trained word embeddings: For the recon-
struction target, we selected fastText.600B6.
Note that it achieved the state-of-the-art perfor-
mance on the WordSim and Analogy datasets (Bo-
janowski et al., 2017). The hyper-parameters D =
300 and |W| = 2M were automatically obtained
from the properties of fastText.600B.

Hyper-parameters for training: We took ad-
vantage of a N -grams’ range of N = 3 to 30. We
adopted Adam (Kingma and Ba, 2014) as our op-
timization algorithm to minimize Eq. 5. We set
the following hyper-parameters for Adam: α =
0.0001, β1 = 0.9, β2 = 0.999, and ε = 1× 10−8.
We leveraged a mini-batch training, whose size
was 200, and trained each method for 300 epochs.
For Cw in Eq. 7, we utilized the occurrence in-
formation calculated from a large external corpus.
Then, we set Z =

√
D for all experiments.

Comparison: We compared the following five
distinct settings of subword-based reconstruction
of word embeddings.

1. SUM-F: Select ηv,F (·) in Eq. 8 (Section 5.1)
for the subword mapping function and τsum(·)
in Eq. 6 for the subword mixing function.

2. SUM-H: As in the first setting but substitute
ηv,F (·) with ηv,H(·) in Eq. 9 (Section 5.2).

3. KVQ-H: As in the second setting but substi-
tute τsum(·) in Eq. 6 with τkvq(V , w) in Eq. 11
(Section 5.4).

4. SUM-FH: As in the second setting but sub-
stitute ηv,H(·) with ηv,FH(·) in Eq. 10 (Sec-
tion 5.3).

5. KVQ-FH: As in the third setting but substitute
ηv,H(·) with ηv,FH(·) in Eq. 10 (Section 5.3).

6.1.2 Results
Figures 3 show the performance/model size
(or performance/number of embedding vectors)

6Additionally, we also conducted the same experiments
using GloVe.840B instead of fastText.600B. See Ap-
pendix A for the results.

3504

Figure 3: Performance/model size curves for WordSim (left) and Analogy (right). The x-axis represents the number
of subword embeddings. The y-axis represents the performance evaluated by macro-average of Spearman’s rho
(left) and micro-average accuracy (right), respectively.

WordSim Analogy
method hyper-parameters MEN MC MTurk RW R&G SCWS Slex WSR WSS Macro GL MSYN Micro
fastText.600B .815 .850 .735 .572 .871 .684 .471 .640 .835 .719 84.9 87.8 85.6
SUM-F F = 0.5M - .768 .829 .746 .566 .817 .668 .402 .578 .806 .687 53.3 71.2 58.0
SUM-H - H = 0.5M .740 .824 .708 .533 .811 .652 .367 .536 .797 .663 61.9 79.9 66.7
KVQ-H - H = 0.5M 789 .848 .734 .562 .836 .687 .423 .597 .811 .699 76.4 85.2 78.7
SUM-FH F = 1.0M H = 0.5M .772 .802 .743 .569 .813 .664 .397 .578 .816 .684 56.4 75.4 61.4
KVQ-FH F = 1.0M H = 0.5M .799 .812 .749 .564 .816 .684 .425 .630 .826 .701 70.9 81.2 73.6
SUM-F F = 0.2M - .731 .809 .710 .526 .777 .642 .369 .482 .762 .645 40.3 66.2 47.2
SUM-H - H = 0.2M .660 .762 .671 .476 .756 .600 .310 .414 .732 .598 42.9 70.4 50.2
KVQ-H - H = 0.2M .773 .820 .694 .523 .793 .652 .360 .500 .778 .650 50.8 74.6 61.9
SUM-FH F = 1.0M H = 0.2M .719 .801 .734 .525 .798 .635 .334 .490 .767 .645 39.3 63.9 45.8
KVQ-FH F = 1.0M H = 0.2M .754 .805 .731 .542 .800 .667 .385 .523 .797 .667 49.1 72.7 55.3

Table 4: Results of model shrinkage experiments by reconstructing the fastText.600B embeddings. Each
dataset in WordSim and Analogy was evaluated by Spearman’s rho and accuracy, respectively. ‘Macro’ and ‘Micro’
represent the macro-average of Spearman’s rho over all WordSim datasets and the micro-average of accuracy over
all Analogy datasets.

curves for WordSim and Analogy, respectively.
Each plot is the macro-average of Spearman’s rho
(WordSim) or micro-average of accuracy (Anal-
ogy) of all evaluation datasets. Moreover, Table 3
shows the statistics of each setting and Table 4
show a summary of the detailed results for all
datasets. Overall, we observed a consistent ten-
dency that the methods using KVQ obtained the
best performance compared with the methods us-
ing SUM. Notably, KVQ-H significantly outper-
formed SUM-F, SUM-H and SUM-FH by more
than 10 points in terms of the micro-average ac-
curacy of all Analogy datasets when the model
size was 0.5M. The difference between KVQ-H
and SUM-H shows that the approach of memory-
shared embeddings is particularly useful when we
combined it with the KVQ operation. Moreover,
in some cases, we observed that KVQ-H achieved
the performance of the original word embeddings
fastText.600B when H = 0.5M. This means
that KVQ-H with H = 0.5M with successfully
reduced the model size nearly fourfold compared

with the original word embeddings while main-
taining the original performance.

6.1.3 Analysis
Time efficiency of SUM and KVQ: We inves-
tigated the difference in time efficiency between
SUM and KVQ. We calculated the time com-
puting word embeddings from subword embed-
dings using each operation. SUM and KVQ took
5.7 × 10−6 and 1.6 × 10−5 seconds per word, re-
spectively, i.e., KVQ took 2.8 times longer than
SUM. However, the calculation speed per word is
sufficiently high to be negligible in the real appli-
cations since other operations such as calculating
deep neural networks may take much longer.

6.2 Experiments of OOV word embeddings
This section describes our experiments for evalu-
ating the performance of OOV word embeddings.

6.2.1 Settings
Evaluation data: We used the identical nine
WordSim datasets used in Section 6.1.

3505

method hyper-parameters Macro
Random - - .110
SUM-F F = 0.5M - .640
SUM-H - H = 0.5M .609
KVQ-FH - H = 0.5M .598
SUM-FH F = 1.0M H = 0.5M .626
KVQ-FH F = 1.0M H = 0.5M .636
SUM-F F = 0.2M - .611
SUM-H - H = 0.2M .552
KVQ-H - H = 0.2M .566
SUM-FH F = 1.0M H = 0.2M .609
KVQ-FH F = 1.0M H = 0.2M .614

Table 5: Results of (synthetic) OOV word experiments
on WordSim by reconstructing the fastText.600B
embeddings. The performance was evaluated by Spear-
man’s rho.

method hyper-parameters |W| |S| RW
Random - - 0.16M - .452
MIMICK - - 0.16M <1K .201
BoS - - 0.16M 0.53M .46*
SUM-F F = 0.04M - 0.16M 0.04M .513
SUM-H - H = 0.04M 0.16M 2.03M .485
KVQ-H - H = 0.04M 0.16M 2.03M .509
SUM-FH F = 0.50M H = 0.04M 0.16M 0.50M .488
KVQ-FH F = 0.50M H = 0.04M 0.16M 0.50M .522
fastText - - 0.16M 0.53M .48*

Table 6: Results of OOV experiments on the Stanford
Rare Word dataset. * indicates the values reported by
Zhao et al. (2018). Note that fastText learned sub-
word embeddings from an English Wikipedia dump
since this method is not a reconstruction method.

Preparation of training data: As we showed
in Table 2, the numbers of OOV problems for
fastText.600B and GloVe.840B are indeed
very small. This is because their vocabulary sizes
exceeds 2 million words, and the words contained
in the evaluation datasets tend to be ‘non-rare
words’ in general. Therefore, it is difficult to pre-
cisely evaluate the effectiveness of the estimation
of OOV word embeddings.

To overcome this difficulty, we artificially made
our reconstruction problem much more difficult,
namely, we discarded the words contained in the
evaluation datasets from the vocabulary W for
training. This means that all the problems in the
evaluation datasets now became OOV problems.
In other words, the number of OOV data in Ta-
ble 2 in this setting always matches to the evalua-
tion data size, such as 2034 for RW.

Other settings: We used the same experi-
mental settings as used in Section 6.1 unless
otherwise specified. For example, we used
fastText.600B as the reconstruction target
and the same training hyper-parameters.

6.2.2 Results
Table 5 shows the results of the (synthetic) OOV
word experiments. First, we observed that the per-
formance of the Random baseline’s was nearly
equal to zero across all the datasets. This means
that there is no correlation between the Random
and human-annotated scores. Importantly, the per-
formances of KVQ-FH, SUM-FH and SUM-Fwere
significantly improved by 44-53 points from that
of Random. This result indicates that KVQ-FH,
SUM-FH and SUM-F successfully predicted the
OOV word embeddings.

However, we also observed no significant dif-
ference between KVQ-FH, SUM-FH and SUM-F
for both the H = 0.5M and H = 0.2M settings.

6.2.3 Comparison with previous studies
As we discussed in Section 2, several closely re-
lated methods have also tackled to solve the OOV
word issue, such as MIMICK and BoS. We aim
to directly compare our approach with these meth-
ods to investigate whether it can outperform them.
However, these methods (or available authors’
codes) do not work on the large-vocabulary set-
tings employed in Sections 6.1 and 6.2. Thus, as
an alternative, we strictly followed the experimen-
tal settings described in (Zhao et al., 2018) and
compared the performance under fair conditions.

Evaluation data: In their evaluation setting,
they evaluated the OOV word performance over
RW shown in Table 2. They included all the words
appearing in RW as the evaluation data, in contrast
to discarding the OOV data as in Section 6.1.

Pre-trained word embeddings: The target
word embeddings for the reconstruction were the
embeddings trained on Google News with 100 bil-
lion tokens7 that were pre-cleaned by (Zhao et al.,
2018). The resultant embeddings consist of 0.16M
lower-cased word embeddings.

Comparison: We compared our approach with
the following related methods:

1. Random: the performance when we used ran-
dom vectors for OOV words.

2. MIMICK8 (Pinter et al., 2017).
3. BoS9 (Zhao et al., 2018).

Other settings: The shared memory sizeH was
set to 0.04M since the vocabulary of this setting

7https://code.google.com/archive/p/
word2vec/

8https://github.com/yuvalpinter/Mimick
9https://github.com/jmzhao

3506

method hyper-parameters K size (GB) F1
fastText.600B - - 20 2.23GB 90.3
KVQ-FH F = 1.0MH = 0.5M 100 0.59GB 90.4
KVQ-FH F = 1.0MH = 0.2M 100 0.23GB 89.3
GloVe.840B - - 10 2.45GB 90.8
KVQ-FH F = 1.0MH = 0.5M 100 0.59GB 90.6
KVQ-FH F = 1.0MH = 0.2M 50 0.23GB 90.2

Table 7: Results of the NER experiments on the
CoNLL-2003 dataset.

method hyper-parameters K size (GB) Acc
fastText.600B - - 10 2.23GB 87.8
KVQ-FH F = 1.0MH = 0.5M 20 0.59GB 88.0
KVQ-FH F = 1.0MH = 0.2M 10 0.23GB 87.6
GloVe.840B - - 1 2.45GB 88.3
KVQ-FH F = 1.0MH = 0.5M 10 0.59GB 87.8
KVQ-FH F = 1.0MH = 0.2M 20 0.23GB 87.6

Table 8: Results of the TE experiments on the SNLI
dataset.

was relatively very small compared with that in
our experiments, i.e., 2M vs 0.16M.

Results: Table 6 shows a comparison with the
related methods. All our reconstruction methods
outperformed BoS, which was the previous state-
of-the-art method, with substantial improvements
by 2-6 points. Moreover, KVQ-FH achieved the
best performance in this comparison.

6.3 Evaluation on downstream tasks
To investigate the effectiveness of our recon-
stucted embeddings in downstream tasks, we eval-
uated them in the named entity recognition (NER)
and the textual entailment (TE) tasks.

6.3.1 Settings
Evaluation data: We used the CoNLL 2003
dataset (Tjong Kim Sang and De Meulder, 2003)
for an NER experiment and the Stanford Natu-
ral Language Inference (SNLI) dataset (Bowman
et al., 2015) for a TE experiment.

Other settings: We used fastText.600B
and GloVe.840B as the target word embeddings
for the reconstruction. For our reconstruction em-
beddings, we calculated the embeddings of all the
words in the datasets, thus there exist no OOV
words when using our methods.

We used AllenNLP10 to train base NER and TE
models. We basically used the provided hyper-
parameter values in their repository for both train-
ing and testing. Additionally, we added one hyper-
parameter K to re-scale embeddings (i.e., mul-
tiply all the elements in the embeddings by K)

10https://allennlp.org/

since we learned that the re-scaling may signif-
icantly affect the overall performance of down-
stream tasks in certain situation. We search K
from [1, 5, 10, 20, 50, 100] on the validation set of
each dataset.

6.3.2 Results
Tables 7 and 8 show the comparison between the
original (large) embeddings and our reconstructed
(small) embeddings. When H = 0.5M, the per-
formances of our reconstructed embeddings are
equivalent to or even better than the ones of the
original embeddings. One might be surprised
the improved results by KVQ-FH since the model
sizes of KVQ-FH were relatively very small com-
paring with the original embeddings. However,
this may be a reasonable observation since our
method additionally offered the embeddings of
OOV words that cannot be handled by the original
embeddings. Moreover, even when H = 0.2M,
i.e. the model size was approximately ten times
smaller, the degradation was less than 1.0, which
is considered to be sufficiently acceptable for real-
world systems if we can significantly reduce the
model (system) size.

7 Conclusion

We discussed and investigated an approach that
reconstructs subword-based word embeddings in
a reduced memory space. We demonstrated that
memory-shared embeddings with the KVQ self-
attention operation significantly outperformed the
conventional summation-based approach, such as
BoS. Moreover, our best setting successfully
reduced the number of embedding vectors to
approximately ten times smaller than that of
the original word embeddings while maintain-
ing an acceptable performance loss on the down-
stream tasks. We also confirmed the effective-
ness of our approach in terms of the applica-
bility of OOV words. We believe that our re-
constructed subword-based word embeddings can
be better alternatives of fastText.600B and
GloVe.840B because they require less memory
requirement and have high applicability of OOV
words.

Acknowledgments

This work was supported by JSPS KAKENHI
Grant Number 15H01702 and JST CREST Grant
Number JPMJCR1513, Japan.

3507

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
Study on Similarity and Relatedness Using Distribu-
tional and WordNet-based Approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL), pages 19–27.

Dzmitry Bahdanau, Tom Bosc, Stanislaw Jastrzebski,
Edward Grefenstette, Pascal Vincent, and Yoshua
Bengio. 2017. Learning to compute word embed-
dings on the fly. arXiv preprint arXiv:1706.00286.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 632–642.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal Distributional Semantics. J. Artif. Int.
Res., 49(1):1–47.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 731–742.

Carlos Gómez-Rodrı́guez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1314–1324.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
Amr dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1831–1841.

Aurélie Herbelot and Marco Baroni. 2017. High-risk
learning: acquiring new word vectors from tiny
data. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 304–309.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
SimLex-999: Evaluating Semantic Models with
(Genuine) Similarity Estimation. arXiv preprint
arXiv:1408.3456.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving Word
Representations via Global Context and Multiple
Word Prototypes. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (ACL), pages 873–882.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better Word Representations with Re-
cursive Neural Networks for Morphology. In Pro-
ceedings of the Seventeenth Conference on Com-
putational Natural Language Learning (CoNLL),
pages 104–113.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL), pages 746–751.

George A. Miller and Walter G. Charles. 1991. Con-
textual Correlates of Semantic Similarity. Language
& Cognitive Processes, 6(1):1–28.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Represqentation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL), pages 2227–2237.

Mohammad Taher Pilehvar and Nigel Collier. 2017.
Inducing embeddings for rare and unseen words by
leveraging lexical resources. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL),
pages 388–393.

Yuval Pinter, Robert Guthrie, and Jacob Eisenstein.
2017. Mimicking word embeddings using subword
rnns. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 102–112.

Kira Radinsky, Eugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
Word at a Time: Computing Word Relatedness
Using Temporal Semantic Analysis. In Proceedings
of the 20th International Conference on World Wide
Web (WWW), pages 337–346.

3508

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual Correlates of Synonymy. Commun.
ACM, 8(10):627–633.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 5027–5038.

Jun Suzuki and Masaaki Nagata. 2016. Learning com-
pact neural word embeddings by parameter space
sharing. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence
(IJCAI), pages 2046–2052.

Jun Suzuki, Sho Takase, Hidetaka Kamigaito, Makoto
Morishita, and Masaaki Nagata. 2018. An empirical
study of building a strong baseline for constituency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 612–618.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning (CoNLL), pages 142–147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 5998–6008.

Nan Yu, Meishan Zhang, and Guohong Fu. 2018.
Transition-based neural rst parsing with implicit
syntax features. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics
(COLING), pages 559–570.

Jinman Zhao, Sidharth Mudgal, and Yingyu Liang.
2018. Generalizing word embeddings using bag of
subwords. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 601–606.

