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Abstract

Neural word representations are at the core of
many state-of-the-art natural language process-
ing models. A widely used approach is to pre-
train, store and look up word or character em-
bedding matrices. While useful, such represen-
tations occupy huge memory making it hard to
deploy on-device and often do not generalize
to unknown words due to vocabulary pruning.

In this paper, we propose a skip-gram based
architecture coupled with Locality-Sensitive
Hashing (LSH) projections to learn efficient
dynamically computable representations. Our
model does not need to store lookup tables
as representations are computed on-the-fly and
require low memory footprint. The representa-
tions can be trained in an unsupervised fash-
ion and can be easily transferred to other NLP
tasks. For qualitative evaluation, we analyze
the nearest neighbors of the word representa-
tions and discover semantically similar words
even with misspellings. For quantitative evalu-
ation, we plug our transferable projections into
a simple LSTM and run it on multiple NLP
tasks and show how our transferable projec-
tions achieve better performance compared to
prior work.

1 Introduction

Pre-trained word representations are at the core
of many neural language understanding models.
Among the most popular and widely used word
embeddings are word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and ELMO (Peters
et al., 2018). The biggest challenge with word
embedding is that they require lookup and a large
memory footprint, as we have to store one entry
(d-dim vector) per word and it blows up.

In parallel, the tremendous success of deep learn-
ing models and the explosion of mobile, IoT de-
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vices coupled together with the growing user pri-
vacy concerns have led to the need for deploying
deep learning models on-device for inference. This
has led to new research in compressing large and
complex deep learning models for low power on-
device deployment. Recently, (Ravi and Kozareva,
2018) developed an on-device neural text classifi-
cation model. They proposed to reduce the mem-
ory footprint of large neural networks by replacing
the input word embeddings with projection based
representations. (Ravi and Kozareva, 2018) used
n-gram features to generate binary LSH (Charikar,
2002) randomized projections on the fly surpassing
the need to store word emebdding tables and reduc-
ing the memory size. The projection models reduce
the memory occupied by the model from O(|V |)
to O(nP), where |V | refers to the vocabulary size
and nP refers to number of projection operations
(Ravi, 2017). Two key advantages of the projection
based representations over word embeddings are:
(1) they are fixed and have low memory size; (2)
they can handle out of vocabulary words. However,
the projections in (Ravi and Kozareva, 2018) are
static and currently do not leverage pre-training on
large unsupervised corpora, which is an important
property to make the projections transferable to
new tasks.

In this paper, we propose to combine the best
of both worlds by learning transferable neural pro-
jection representations over randomized LSH pro-
jections. We do this by introducing new neural
architecture inspired by the skip gram model of
(Mikolov et al., 2013) and combined with a deep
MLP plugged on top of LSH projections. In order
to make this model train better, we introduce new
regularizing loss function, which minimizes the co-
sine similarities of the words within a mini-batch.
The loss function is critical for generalization.

In summary, our model (1) requires a fixed and
low memory footprint, (2) can handle out of vo-
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cabulary words and misspellings, (3) captures se-
mantic and syntactic properties of words; (4) can
be easily plugged to other NLP models and (5) can
support training with data augmentation by perturb-
ing characters of input words. To validate the per-
formance of our approach, we conduct a qualitative
analysis of the nearest neighbours in the learned
representation spaces and a quantitative evaluation
via similarity, language modeling and NLP tasks.

2 Neural Projection Model

We propose a novel model (NP-SG) to learn com-
pact neural representations that combines the bene-
fit of representation learning approaches like skip-
gram model with efficient LSH projections that can
be computed on-the-fly.

2.1 Vanilla Skip-Gram Model
In the skip-gram model (Mikolov et al., 2013),
we learn continuous distributed representations for
words in a large fixed vocabulary, V to predict the
context words surrounding them in documents. We
maintain an embedding look up table, v(w) ∈ Rd

for every word, w ∈ V.
For each word, wt in the training cor-

pus of size T , the set of context words
Ct = {wt−Wt , . . . , wt−1, wt+1, . . . , wt+Wt} in-
cludes Wt words to the left and right of wt re-
spectively. Wt is the window size randomly sam-
pled from the set {1, 2, . . . , N}, where N is the
maximum window size. Given a pair of words,
{wc, wt}, the probability of wc being within the
context window of wt is given by equation 1.

P(wc|wt) = σ(v′(wc)
ᵀv(wt))

=
1

1 + exp(−v′(wc)ᵀv(wt))

(1)

where v, v′ are input and context embedding look
up tables.

2.2 Neural Projection Skip-Gram (NP-SG)
In the neural projection approach, we replace the
input embedding look up table, v(w) in equation 1
with a deep n-layer MLP over the binary projection,
P(w) as shown equation 2.

vP(w) = N(fn(P(w))) (2)

where vP(w) ∈ Rd, fn is a n-layer deep neural net-
work encoder with ReLU non-linear activations
after each layer except for the last layer as shown

Figure 1: Neural Projection Skip-gram (NP-SG) model

in Figure 1. N refers to a normalization applied to
the final layer of fn. We experimented with Batch-
normalization, L2-normalization and layer normal-
ization; batch-normalization works the best.

The binary projection P(w) is computed us-
ing locality-sensitive projection operations (Ravi,
2017) which can be performed on-the-fly (i.e., with-
out any embedding look up) to yield a fixed, low-
memory footprint binary vector. Unlike (Ravi and
Kozareva, 2018) which uses static projections to
encode the entire input text and learn a classifier,
NP-SG creates a trainable deep projection repre-
sentation for words using LSH projections over
character-level features combined with contextual
information learned via the skip-gram architecture.

2.3 Training NP-SG Model
We follow a similar approach as Mikolov et al.
(2013) and others for training our neural projection
skip-gram model (NP-SG). We define the training
objective to maximize the probability of predicting
the context words given the current word. Formally,
the model tries to learn the word embeddings by
maximizing the objective, J(θ) known as negative
sampling (NEG), given by equation 3.

J(θ) =

T∑
t=1

∑
wc∈Ct

Jwt,wc(θ) (3)

Jwt,wc(θ) = log(P(wc|wt))

+
k∑

i=1,wi∼Pn(w)

log(1− P(wi|wt))
(4)

where k is the number of randomly sampled words
from the training corpus according to the noise
distribution, Pn(w) ∝ U(w)3/4, where U(w) is
the unigram distribution of the training corpus.
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Model improvements: Training an NP-SG model
as is, though efficient, may not lead to highly dis-
criminative representations. During training, we
noticed that the word representations, vP(w) were
getting projected in a narrow sub-space where the
cosine similarities of all the words in the dataset
were too close to 1.0. This made the convergence
slower and led to poor generalization.

2.4 Discriminative NP-SG Models

To encourage the word representations to be more
spaced out in terms of the cosine similarities, we
introduce an additional explicit regularizing L2-
loss function. With the assumption that the words
in each mini-batch are randomly sampled, we add a
L2-loss over the cosine similarities between all the
words within a mini-batch, as shown in equation 6.

Loss = J(θ) + Lcs
2 (wmb) (5)

Lcs
2 (wmb) = λ · ‖ {CS(wi, wj) | i, j ∈ [0,mb)} ‖22 (6)

where CS(wi, wj) refers to the cosine similarity
between wi and wj , mb refers to the mini-batch
size and wmb refers to the words in the mini-batch.
We enforce this using a simple outerproduct trick.
We extract the cosine-similarities between all the
words within a mini-batch in a single shot by com-
puting the outer-product of the L2 row normalized
word representations corresponding to each mini-
batch v̂P(wmb), as shown in equation 7.

Lcs
2 (wmb) =

λ

2
· ‖Flatten(v̂P(wmb) · v̂P(wmb)

ᵀ) ‖22 (7)

2.5 Improved NP-SG Training

Since the NP-SG model does not have a fixed vo-
cabulary size, we can be flexible and leverage a lot
more information during training compared to stan-
dard skip-gram models which require vocabulary
pruning for feasibility.

To improve training for NP-SG model, we aug-
ment the dataset with inputs words after applying
character level perturbations to them. The pertur-
bations are such a way that they are commonly
occurring misspellings in documents. We mainly
experiment with three types of pertub operation
APIs (Gao et al., 2018).

• insert(word, n) : We randomly choose n chars
from the character vocabulary and insert them

randomly into the input word. We ignore the
locations of first and last character in the word
for the insert operation. Example transforma-
tion: sample→ samnple.

• swap(word, n) : We randomly swap the lo-
cation of two characters in the word n times.
As with the insert operation, we ignore the
first and last character in the word for the
swap operation. Example transformation:
sample→ sapmle.

• duplicate(word, n) : We randomly duplicate
a character in the word by n times. Example
transformation: sample→ saample.

We would like to note that the perturbation oper-
ations listed above are not exhaustive and we plan
to experiment with more operations in the future.

3 Training Setup

3.1 Dataset
We train our skipgram models on the wikipedia
data XML dump, enwik91. We extract the nor-
malized English text from the XML dump using
the Matt Mahoneys pre-processing perl script2.
We fix the vocabulary to the top 100k frequently
occurring words. We sub-sample words in the
training corpus, dropping them with probability,
P(w) = 1−

√
t/freq(w), where freq(w) is the

frequency of occurrence of w in the corpus and we
set the threshold, t to 10−5. We perturb the input
words with a probability of 0.4 using a randomly
chosen perturbation described in Section 2.5.

3.2 Implementation Details
We fix the number of random projections to 80
and the projection dimension to 14. We use a 2-
layer MLP (sizes: [2048, 100]) regularized with
dropout (with probability of 0.65) and weight decay
(regularization parameter of 0.0005) to transform
the binary random projections to continuous word
representation. For the vanilla skipgram model, we
fix the embedding size to 100. For both models, we
use 25 negative samples for the NEG loss. We learn
the parameters using the Adam optimizer (Kingma
and Ba, 2014) with a default learning rate of 0.001,
clipping the gradients which have a norm larger
than 5.0. We initialize the weights of the MLP
using Xavier initialization, and output embeddings

1http://mattmahoney.net/dc/enwik9.zip
2http://mattmahoney.net/dc/textdata
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Dataset SG (10M) NP-SG (w/oOP) NP-SG (1M) NP-SG (2M) NP-SG (4M)
EN-MTurk-287 0.5409 0.0107 0.5629 0.5517 0.5494

EN-WS-353-ALL 0.5930 0.0710 0.4891 0.5215 0.5370
EN-WS-353-REL 0.5359 0.0203 0.4956 0.5746 0.5671
EN-WS-353-SIM 0.6242 0.1043 0.4994 0.5116 0.5111

EN-RW-STANFORD 0.1505 0.0401 0.0184 0.0375 0.0835
EN-VERB-143 0.2452 0.0730 0.1333 0.1500 0.2108

Table 1: Similarity Tasks: # of params, 100k vocabulary size for skipgram baseline, 100 embedding size.

uniformly random in the range [−1.0, 1.0]. We use
a batch size of 1024 in all our experiments. We
found that λ = 0.01 for the outerproduct loss to
be working better after experimenting with other
values. Training time for our model was around
0.85 times that of the skipgram model. Both the
models were trained for 10 epochs.

4 Experiments

We show both qualitative and quantitative evalua-
tion on multiple tasks for the NP-SG model.

4.1 Qualitative Evaluation and Results
Table 2 shows the nearest neighbors produced by
NP-SG for select words. Independent of whether
it is an original or misspelled word, our NP-SG
model accurately retrieves relevant and semanti-
cally similar words.

Word Nearest neighbours
king reign, throne, kings, knights, vii, regent
kingg vii, younger, peerage, iv, tiberius, frederick
woman man, young, girl, child, girls, women
wwoamn man, herself, men, couple, herself, alive
city town, village, borough, township, county
ciity town, village, borough, county, unorganized
time few, times, once, entire, prominence, since
tinme times, once, takes, taken, another, only
zero two, three, seven, one, eight, four
zzero two, three, five, six, seven, four

Table 2: Sampled nearest neighbors for NP-SG.

4.2 Quantitative Evaluation and Results
We evaluate our NP-SG model on similarity, lan-
guage modeling and text classification tasks. Simi-
larity tests the ability to capture words, while lan-
guage modeling and classification warrant the abil-
ity to transfer the neural projections.

4.2.1 Similarity Task
We evaluate our NP-SG word representations on 4
different widely used benchmark datasets for mea-
suring similarities.

Dataset: MTurk-287 (Radinsky et al., 2011) has
287 pairs of words and was constructed by crowd-
sourcing the human similarity ratings using Ama-
zon Mechanical Turk. WS353 (Finkelstein et al.,
2001) has 353 pairs of similar English words rated
by humans and is further split into WS353-SIM.
WS353-REL (Agirre et al., 2009) captures differ-
ent types of similarities and relatedness. RW-
STANFORD (Luong et al., 2013) has 2034 rare
word pairs sampled from different frequency bins.
Evaluation: For all the datasets, we compute the
Spearmans rank correlation coefficient between the
rankings computed by skip-gram models (baseline
SG and NP-SG) and the human rankings. We use
cosine similarity metric to measure word similarity.
Results: Table 1 shows that NP-SG, with signifi-
cantly smaller number of parameters comes close
to the skip-gram model (SG) and even outperforms
it with 2.5x-10x compression. NP-SG gets bet-
ter representations even with misspellings which
cannot be handled by vanilla SG.

It is interesting to note that the vanilla skip-
gram model does well on WS353-SIM compared
to WS353-REL. This behavior is reversed in our
NP-SG model, which indicates that it captures
meronym-holonym relationships better than the
vanilla skip-gram model. Although NP-SG handles
out of vocabulary words in the form of misspellings,
it needs further improvement for rare word similar-
ity task. We plan to improve it by including context
word n-gram features in the LSH projection func-
tion, allowing NP-SG to also leverage information
from the context words in the case of rare words
and provide word sense disambiguation.

4.2.2 Language Modeling
We applied NP-SG to language modeling task
on the Penn Treebank (PTB)(Taylor et al., 2003)
dataset. We consider a single layer LSTM with
hidden size of 2048 for the language model task.
With the input embedding size of 200, we observed
a perplexity of ≈ 120 on the test set after training
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for 5 epochs. We replace the input embeddings in
the LSTM with transferable encoder layer of the
NP-SG model. We train the LSTMs with and with-
out pretrained initializations. Since we observed
convergence issues with the single layer NP-SG
representation, we considered 2-layer MLP with
layer sizes (1024, 256) for the NP-SG represen-
tations. We found that while the model without
pretrained NP-SG layer got stuck at a perplexity
of around 300, the pretrained version converged to
a perplexity of 140, comparable to the embedding
based network. We leave the analysis of the impact
of the deeper NP-SG layers to the future work.

4.2.3 Text Classification
For the text classification evaluations, we used two
different tasks and datasets. For the dialog act clas-
sification task, we used the MRDA dataset from the
ICSI Meeting Recorder Dialog Act Corpus (Adam
et al., 2003). MRDA is a multiparty dialog an-
notated with 5 dialog act tags. For the question
classification task, we used the TREC dataset (Lin
and Katz, 2006). The task is given a question to
predict the most relevant category.

We trained a single layer LSTM (hidden size:
256) with and without the pretrained NP-SG layers.
Overall, we observed accuracy improvements of
+5.7% and +3.75% compared to baseline models
without pretrained NP-SG initializations on TREC
and MRDA respectively.

5 Conclusion

In this paper, we introduced a new neural archi-
tecture (NP-SG), which learns transferable word
representations that can be efficiently and dynami-
cally computed on device without any embedding
look up. We proposed an unsupervised method to
train the new architecture and learn more discrimi-
native word representations. We compared the new
model with a skip-gram approach and showed qual-
itative and quantitative comparisons on multiple
language tasks. The evaluations show that our NP-
SG model learns better representations even with
misspellings and reaches competitive results with
skip-gram on similarity tasks, even outperforming
with 2.5x-10x fewer parameters.
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