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Abstract

In this paper we present a method to
learn word embeddings that are resilient to
misspellings. Existing word embeddings
have limited applicability to malformed texts,
which contain a non-negligible amount of out-
of-vocabulary words. We propose a method
combining FastText with subwords and a su-
pervised task of learning misspelling patterns.
In our method, misspellings of each word are
embedded close to their correct variants. We
train these embeddings on a new dataset we are
releasing publicly. Finally, we experimentally
show the advantages of this approach on both
intrinsic and extrinsic NLP tasks using public
test sets.

1 Introduction

Word embeddings constitute a building block of
many practical applications across NLP and re-
lated disciplines. Techniques such as Word2Vec
(Mikolov et al., 2013a,b) and GloVe (Pennington
et al., 2014) have been extensively used in prac-
tice. One of their drawbacks, however, is that they
cannot provide embeddings for words that have
not been observed at training time, i.e. Out-Of-
Vocabulary (OOV) words. In real-world tasks,
the input text is often generated by people and
misspellings, a common source of OOV words,
are frequent (e.g. (Cucerzan and Brill, 2004) re-
port that misspellings appear in up to 15% of web
search queries). As a consequence, the quality of
downstream applications of word embeddings in
real-world scenarios diminishes.

Simply allowing the inclusion of misspellings
into corpora and vocabularies in existing method-
ologies might not provide satisfactory results. The
sparsity of misspellings would most likely prevent

∗ This work was carried out when the author was work-
ing as an employee at Facebook London.

their embeddings from demonstrating any inter-
esting properties. Trying to balance the represen-
tation of misspellings with the representation of
correctly spelled variants in training data by arti-
ficially introducing misspelled variants for every
word in the corpus would on the other hand cause
up to an exponential growth in the size of the train-
ing data, making training of the models infeasible.

To address this deficiency, we propose Mis-
spelling Oblivious (word) Embeddings (MOE), a
new model combining FastText (Bojanowski et al.,
2017) with a supervised task which embeds mis-
spellings close to their correct variants. We carry
out experiments on well established tasks and on
their variants adapted to the misspellings prob-
lem. We also propose new methods of evaluating
embeddings specifically designed to capture their
quality on misspelled words. We train MOE em-
beddings on a new dataset we are releasing pub-
licly. Finally, we experimentally show the advan-
tages of this approach on both intrinsic and extrin-
sic NLP tasks using public test sets. Summarizing,
we propose the following contributions:

• a novel problem and a non-trivial solution to
building word embeddings resistant to mis-
spellings;
• a novel evaluation method specifically suit-

able for evaluating the effectiveness of MOE;
• a dataset of misspellings 1 to train MOE.

The reminder of this paper is structured as fol-
lows. Section 2 gives an overview of the word em-
beddings literature. In Section 3.1 we introduce
Word2Vec and FastText models. We introduce the
MOE model in Section 3.2. Section 4 contains the
descriptions of datasets we trained on and section
5 contains the description of experiments we con-
ducted and their results. In Section 6 we present
our conclusions and plans for further research.

1https://bitbucket.org/bedizel/moe

https://bitbucket.org/bedizel/moe
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2 Related Work

One of the first works to introduce the concept
of a distributed representation for symbolic data
was (Hinton, 1986). Later, the Information Re-
trieval community proposed techniques of embed-
ding words into a vector space. Latent Seman-
tic Indexing (Deerwester et al., 1990) was one of
the most influential works in this area. (Bengio
et al., 2003) introduced the first neural language
model which jointly learned word embeddings.
Although such a language model was outperform-
ing the baselines, it was not practical because of
long training time requirements. (Collobert and
Weston, 2008) proposed new neural architectures
for word embeddings and showed that pre-trained
word embeddings can be very valuable for some
downstream NLP tasks. Word2Vec (Mikolov
et al., 2013b,a) got very popular both because of its
effectiveness and its ability to train models on very
large text corpora efficiently. (Levy and Gold-
berg, 2014) showed that Word2Vec’s skip-gram
with negative sampling model (SGNS) is implic-
itly equivalent to word co-occurrence matrix fac-
torization. Besides neural approaches, (Penning-
ton et al., 2014) proposed an SVD based archi-
tecture which gained a lot of attention because it
allowed to effectively consider the popularity of
each word in the model definition.

FastText (Bojanowski et al., 2017) is a popu-
lar, recent proposal in the area of word embed-
dings. FastText introduces subword-level features
to the Word2Vec framework which enables build-
ing embeddings for OOV words (see details in
Section 3.1). An alternative approach, also ca-
pable of yielding representations for OOV words,
is MIMIK (Pinter et al., 2017). MIMICK learns
a function from input words to embeddings by
minimizing the distance between embeddings pro-
duced by a char-based approach and the pre-
trained embeddings. As opposed to MOE, MIM-
ICK does not support misspellings explicitly and it
requires a set of pre-trained embeddings as input.
We consider MIMICK to be a viable alternative to
FastText which deserves future work exploring its
performance on misspelled text.

3 Misspelling Oblivious Embeddings

3.1 The FastText Model

Our current work can be viewed as a generaliza-
tion of FastText, which, in turn, extends the the

skip-gram with negative sampling (SGNS) archi-
tecture, proposed as a part of the Word2Vec frame-
work. In this section we will briefly discuss major
additions to SGNS introduded by FastText.

Let V be a vocabulary of words and T =
w1, w2, . . . , w|T | be a text corpus, represented
as a sequence of words from V . We define
the context of a word wi ∈ V as Ci =
{wi−l, . . . , wi−1, wi+1, . . . , wi+l} for some l set
as a hyperparameter. In the SGNS model, a word
wi is represented by a single embedding vector vi

equivalent to the input vector of a simple feed-
forward neural network, trained by optimizing the
following loss function:

LW2V :=

|T |∑
i=1

∑
wc∈Ci

[`(s(wi, wc))+∑
wn∈Ni,c

`(−s(wi, wn))]

(1)

where ` denotes the logistic loss function `(x) =
log(1 + e−x) and Ni,c is a set of negative samples
drawn for the current wordwi and its contextwc ∈
Ci. s is the scoring function, which for SGNS is
defined as the the dot product vT

i uc, where uc is
an output vector associated with the word wc and
vi is an input vector associated with the word wi.
Therefore, s (wi, wc) = vT

i uc.
In FastText, we additionally embed subwords

(also referred to as character n-grams) and use
them to construct the final representation of
wi. Formally, given hyperparameters m and M
denoting a minimum and a maximum length of an
n-gram respectively, the FastText model embeds
all possible character n-grams of the word such
that m ≤ n ≤ M . E.g. given m = 3, M = 5 and
the word banana, the set of n-grams we consider is
ban, ana, nan, bana, anan, nana, banan, anana.
Now, let Gwi denote the set of all n-grams of a
word wi ∈ V plus the word itself (e.g. Gbanana
is the set defined in the example above plus the
word banana itself). Given Gwi , FastText scoring
function for a word wi and a context wc is defined
as follows:

sFT (wi, wc) :=
∑

vg ,g∈Gwi

vg
Tuc (2)

Therefore, the representation of wi is expressed
through the sum of the representations of each of
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the n-grams derived from wi plus the representa-
tion of wi itself. FastText optimizes the loss func-
tion in Eq.1, but uses the scoring function sFT de-
fined in Eq.2. An extensive experimentation has
shown that FastText improves over the original
Word2Vec skip-gram model. The loss function of
FastText will be referred to as LFT throughout the
rest of this work.

3.2 The MOE Model
As was shown empirically in the FastText paper,
the n-grams which impact the final representa-
tion of a word the most in FastText correspond
to morphemes. Based on this observation, we hy-
pothesize that although FastText can capture mor-
phological aspects of text, it may not be partic-
ularly resistant to misspellings which can occur
also withing the dominant morphemes. In this
section, we present the architecture of our model
- MOE or Misspelling Oblivious (word) Embed-
dings. MOE holds the fundamental properties of
FastText and Word2Vec while giving explicit im-
portance to misspelled words.

Loss Function. The loss function of MOE is
a weighted sum of two loss functions: LFT and
LSC . LFT is the loss function of FastText which
captures semantic relationships between words.
LSC or the spell correction loss aims to map em-
beddings of misspelled words close to the embed-
dings of their correctly spelled variants in the vec-
tor space. We define LSC as follows:

LSC :=
∑

(wm,we)∈M

[`(ŝ(wm, we)) +∑
wn∈Nm,e

`(−ŝ(wm, wn))]
(3)

where M is a set of pairs of words (wm, we) such
that we ∈ V is the expected (correctly spelled)
word and wm is its misspelling. Nm,e is a set
of random negative samples from V \ {wm, we}.
LSC makes use of the logistic function `(x) =
log(1 + e−x) introduced in Section 3.1. The scor-
ing function ŝ is defined as follows:

ŝ(wm, we) =
∑

vg ,g∈Ĝwm

vg
Tve (4)

where Ĝwm := Gwm \ {wm}. Therefore, the scor-
ing function is defined as the dot product between
the sum of input vectors of the subwords of wm

and the input vector of we. Formally, the term
`(ŝ(wm, we)) enforces predictability of we given
wm. Intuitively, optimizing LSC pushes the repre-
sentation of a misspelling wm closer to the repre-
sentation of the expected word we. It is also worth
mentioning that embeddings for wm and we share
the same parameters set. The complete loss func-
tion of MOE, LMOE , is defined as follows:

LMOE := (1− α)LFT + α
|T |
|M |

LSC (5)

Optimizing the loss functions LFT and LSC

concurrently is not a straightforward task. This
is because two different loss functions iterate over
two different datasets: the text corpus T , and the
misspellings dataset M . The optimization process
should be agnostic to the sizes of T and M in or-
der to prevent results from being severely affected
by those sizes. Therefore, we scale LSC with the
coefficient |T |/|M |. This way the importance of a
single Stochastic Gradient Descent (SGD) update
for LFT becomes equivalent to a single SGD up-
date for LSC . Moreover, α is the hyperparameter
which sets the importance of the spell correction
loss LSC with respect to LFT thus making MOE
a generalization of FastText.

4 Data

As mentioned in Section 3.2, MOE jointly opti-
mizes two loss functions, each of which iterates
over a separate dataset - a corpus of text for the
FastText loss LFT and a set of pairs (misspelling,
correction) for the spell correction loss LSC . In
this section, we will briefly discuss how we obtain
each of these datasets.

4.1 English text corpus
We use an English Wikipedia dump2 as the text
corpus T to optimize LFT . The baseline FastText
model is also trained on this dataset. Matt Ma-
honey’s perl script3 is used for pre-processing the
raw Wikipedia dump. After pre-processing, the
training corpus consists of |T |= 4, 341, 233, 424
words. When generating the vocabulary V based
on the corpus, we apply a frequency threshold of 5.
After deduplication and thresholding, the size of
the vocabulary for our corpus is |V |= 2, 746, 061
words. We also apply progressive subsampling of

2dumps.wikimedia.org
3http://mattmahoney.net/dc/textdata

dumps.wikimedia.org
http://mattmahoney.net/dc/textdata
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frequent words in order to not assign too much im-
portance to highly frequent words.

4.2 Misspelled data generation

The misspellings dataset M consists of a set of
pairs (wm, we), where we ∈ V represents a (pre-
sumably correctly spelled) word from the vocab-
ulary and wm is a misspelling of we. Given the
size of V , we opt for generating misspellings in an
automated fashion, using an in-house misspellings
generation script. The script is based on a simple
error model, which captures the probability of typ-
ing a character pm when a character pe is expected
(note that it’s possible to have pm == pe), given a
context of previously typed characters. The script
is capable of generating misspellings of targeted
edit distance for an input word wi. In the reminder
of this section, we’ll discuss details of the script
implementation.

Error model. In order to create the error model,
we first mine query logs of a popular search en-
gine4 and identify cases where a query was manu-
ally corrected by a searcher. We then pivot on the
modified character and for each such modification
we save a triplet (c, pm, pe), where pm is the pivot
character before modification, pe is the the target
character after modification and c represents up
to 3 characters preceding the pivot in the original
query. E.g. given a query hello worjd corrected
to hello world, we would generate four triplets:
[(wor, j, l), (or, j, l), (r, j, l), (ε, j, l))], where ε
represents an empty word. Similarly, we create
triplets by pivoting on characters which have not
been modified. After processing all available logs,
we count each unique triplet. For each unique pair
(c, pm) of a context and a pivot, we then create a
target list consisting of all possible targets pe, each
associated with its probability calculated based on
counts. We then sort each target list in the order of
decreasing probability.

Injecting misspellings. Let’s consider a word
wi ∈ V that we want to misspell. For each char-
acter p ∈ wi, we take it’s longest possible con-
text c (up to 3 characters) and we look up the tar-
get list corresponding to (c, p). We then proceed
along the target list, summing up the probabili-
ties of subsequent targets until the sum is greater
or equal to a randomly selected target probability
tp ∈ [0.0, 1.0]. We then choose the corresponding

4https://www.facebook.com

target t as a replacement for p (note that in the ma-
jority of the cases t == p). We repeat this process
for every word from V .

In order to respect real distributions of words
in the text corpus T , we set the number of
misspellings generated for each word wi ∈ V
to be equal to the square root of the number
of appearances of wi in T . The total size of
misspellings dataset generated in this fashion is
|M |= 20, 068, 964 pairs. We make the dataset
of misspellings publicly available at https://
bitbucket.org/bedizel/moe.

5 Experiments

In this section, we describe the experimental set up
used for training our models and the experiments
we conducted.

5.1 Experimental setup

We use FastText5 as a baseline for comparison
since it can generate embeddings for OOV words
which makes it potentially suitable for dealing
with misspellings. We train the baseline model
using the default hyperparameters provided by
the authors. We consider character n-grams of
lengths between m = 3 and M = 6, and we
use 5 negative samples for each positive sample.
Training MOE requires optimizing two loss
functions LFT and LSC jointly. For optimizing
LFT , we use the same parameters as in the
baseline. Additionally, to optimize LSC , we
experiment with 5 negative samples per positive
sample. We sweep over a range of values for
the coefficient combining the two losses: α ∈
{0.01, 0.05, 0.1, 0.5, 0.25, 0.5, 0.75, 0.95, 0.99}.
Both FastText and MOE are trained using
Stochastic Gradient Descent with a linearly
decaying learning rate for 5 epochs to learn
vectors with 300 dimensions. We evaluate the
performance of MOE on the following tasks:
(intrinsic) Word Similarity, Word Analogy and
Neighborhood Validity; (extrinsic) POS Tagging
of English sentences.

We report the overlap between the misspellings
seen at training time and misspellings present in
tests in Table 1.

5.2 Intrisic Evaluation

We evaluate MOE on two classic intrinsic tasks,
namely Word Similarity and Word Analogy and

5https://fasttext.cc/

https://www.facebook.com
https://bitbucket.org/bedizel/moe
https://bitbucket.org/bedizel/moe
https://fasttext.cc/
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Test set % of unseen
WS353 r = 0.125 25.05
WS353 r = 0.250 57.06
WS353 r = 0.375 64.37

RareWord r = 0.125 44.67
RareWord r = 0.250 70.18
RareWord r = 0.375 78.84

Word Analogies 50.71
Neighborhood Similarity 69.1

Table 1: Percentages of test misspellings unobserved
at training time per test set. The r parameter indicates
variants of respective word similarity test sets.

on a novel intrinsic task evaluating the distance be-
tween vector embeddings of misspellings and their
correctly spelled variants.

Word Similarity. In the word similarity task, we
evaluate how well embeddings generated by MOE
can capture the semantic similarity between two
words. For this purpose, we use two datasets:
(i) WS353 (Finkelstein et al., 2001), and (ii) Rare
Words (RW) (Luong et al., 2013). Both datasets
contain pairs of words wa, and wb annotated with
a real value in the range [0, 10] representing the de-
gree of similarity between wa and wb as perceived
by human judges.

In order to evaluate how resilient our method is
to spelling errors, for each pair of words (wa, wb)
in the dataset, we provide a respective pair of mis-
spellings (ma,mb). The misspellings are mined
from search query logs of a real-world online
search service. When desired misspellings are
not available in the logs, we synthetically gener-
ate them using the same script we used to gen-
erate the set M (see Section 4 for details). We
create 3 misspelled variants of both WS353 and
RW datasets. In each variant we limit the ra-
tio between the edit distance (Levenshtein, 1966)
of the word and the misspelling de(wi,mi) and
the length of the word by a constant r, where
r ∈ {0.125, 0.250, 0.375}, with r = 0 represent-
ing the original dataset. More precisely for each r
we look for a misspelling which satisfies the fol-
lowing condition de(wi,mi) = br ∗ len(wi)c. Ef-
fectively, if a word is too short to satisfy the condi-
tion, we preserve the original word (thenwi =mi).
Histograms in Figure 1 show the actual distribu-
tion of edit distances and lengths of words. As ex-
pected, edit distance increases steeply with the in-
crease of r value. Edit distances are higher for the
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Figure 1: Distribution of edit distances de(wi,mi) and
lenghts of words len(wi) for WS353 variants (Top) and
RW variants (Bottom).

RW dataset since in average the length of words in
RW is higher than on average length of words in
WS353. Also, we observe that for r = 0.125, a
significant portion of the words is not changed.

We conduct experiments for different values of
the hyperparameter α which sets the trade-off be-
tween LFT and LSC , i.e. the importance assigned
to semantic loss and misspelling loss. In the exper-
iments, results corresponding to α = 0 represents
our baseline, FastText, since for α = 0 the loss
LMOE is equal to LFT .

We measure the Spearman’s rank correlation
(Spearman, 1904) between the distance of an input
pair of words and the human judgment score both
for the original and the misspelled pair. Figure 2
demonstrates the results of the word similarity task
on the WS353 dataset. We observe that MOE is
improving over FastText for WS353 variants with
r = 0.25, and r = 0.375, and degrading perfor-
mance when r = 0, and r = 0.125, where the
majority of the words is not changed (see Figure 1
for the edit distance distribution). As we expected,
larger values of α, corresponding to more attention
given to misspellings during training, result in im-
provements for highly misspelled datasets.

For the RW dataset (Figure 2), we observe that
for all the values of r, MOE improves over the
FastText baseline when we set α = 0.05. More
specifically, when r ∈ {0, 0.125} and when α <≈
0.1, the proposed method improves over the base-
line. When the amount of misspellings is higher,
i.e., r ∈ {0.25, 0.375}, MOE improves the results
over the baseline for all of the α values. These re-
sults suggest that FastText may be a good baseline
for dealing with low edit distance misspellings,
however our model is better at capturing semantic
relationships on higher edit distance misspellings.
This is in line with our hypothesis presented in
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Figure 2: Experimental results for word similarity task for WS353 (Left) and RW (Right). α = 0 values represent
our baseline, FastText.
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Figure 3: Experimental results for word analogy task, Semantic (Left) and Syntactic (Right). α = 0 values
represent our baseline, FastText.

Section 3.2.

Word Analogy. In addition to the word sim-
ilarity, we also test the performance of MOE
on the popular word analogy task introduced by
(Mikolov et al., 2013a). This task attempts to mea-
sure how good the embeddings model is at pre-
serving relationships between words. A single test
sample from the word analogy dataset consists of
four words A,B,C,D, forming two pairs - A,B
and C,D, remaining in analogous relationships
("A is toB likeC is toD"). There are two types of
relationships: (i) syntactic, related to the structure
of words; and (ii) semantic, related to their mean-
ings. banana, bananas, cat, cats is an example of a
syntactic test sample. In both pairs the fact that the
second word is a plural version of the first consti-
tutes a relationship between them. Athens, Greece,
Berlin, Germany is an example of a semantic test
sample. The relationship which is being tested in
this case is that between the capital of a country
and the country itself.

In addition to analyzing the canonical variant of
the word analogies test, we also introduce a mod-

ification which is suitable specifically to the mis-
spellings use-case. Given a line A,B,C,D from
the original analogies dataset, we misspell the first
pair of words, obtaining a lineA′, B′, C,D, where
A′ is a misspelling of A and B′ is a misspelling of
B. We want to test if the misspelled pair A′, B′

preserves the relationship of the pair C,D. When
generating misspellings we use a procedure simi-
lar to the one used for word similarities. We create
one variant of the misspelled dataset, constraining
the edit distance to r = 0.25.

Experimental results for the canonical version
of the word analogy task, presented in Figure 3,
show that MOE performs worse than FastText on
the semantic analogy task. On the other hand,
MOE performs better than the baseline on the
syntactic analogies task. The results for the mis-
spelled variant of the task show that, the over-
all performance of both the baseline and MOE is
worse than on the canonical variant. For low val-
ues of α ∈ {0.01, 0.05}, MOE outperforms the
baseline on the semantic task, achieving an over
67% better score than FastText for α = 0.01.
MOE outperforms the baseline on the syntactic
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task for all tested values of α, improving by over
80% for α = 0.75. For α = 0.01, which achieved
the best semantic result, the improvement on the
syntactic task is over 33%.

The trends that we observe both in the canoni-
cal and the misspelled variant of the word analo-
gies task seem to validate our choice of the loss
function for the MOE model. It is clear that
the FastText component of the loss is indispens-
able to learn the semantic relationships between
words. In fact, it is the only component of the
loss function which attempts to learn these rela-
tionships. Therefore, decreasing it’s importance
(by increasing the value of α) is reflected by a de-
cay in the semantic analogies score. The spell-
correction component of the loss function, on the
other hand, leverages the relationship between cor-
rectly spelled words and their misspellings. As
a side effect, it also adds additional subword in-
formation into the model. This explains our good
performance on the syntactic analogies task. As
our results on the misspelled variant of the task
show, we improve over the baseline in understand-
ing analogies on the misspelled words, which was
one of the design principles for MOE.

Neighborhood Validity. One of the explicit ob-
jectives of MOE is to embed misspellings close to
their correct variants in the vector space. In or-
der to validate this hypothesis, we check where
in the neighborhood of a misspelling the correct
word is situated. Formally, for a pair (wm, we) of
a misspelling and its correction, we pick k nearest
neighbors of the misspelling wm in the embedding
space using cosine similarity as a distance metric.
We then evaluate the position of the correct word
we within the neighborhood of wm using two met-
rics:

• We use MRR (Voorhees et al., 1999) to score
the neighborhood of the embeddings of mis-
spellings (we assign a score of 0 if the correct
word is not present).
• We also compute the neighborhood coverage

defined as the percentage of misspellings for
which the neighborhood contains the correct
version.

The test set contains 5, 910 pairs (wm, we) sam-
pled from a collection of data coming from a real-
world online service6. Figure 4 shows experimen-

6www.facebook.com

tal results for Neighbor Validity task. We remind
that α = 0 denotes the FastText baseline.

The test results confirm our hypothesis. We ob-
serve that MRR increases when more importance
is given to the LSC component of the loss for any
size of the neighborhood k ∈ {5, 10, 50, 100}. A
similar trend can be observed for the neighbor-
hood coverage task. We conclude that, on average,
we’re more likely to surface the correction using
MOE than with FastText. What is more, when-
ever we are able to surface the correct version of
a misspelled word, its position in the ranking is
higher for MOE than for the FastText baseline.

5.3 Extrinsic Evaluation

POS Tagging. Finally, we evaluate MOE on a
Part-of-Speech (POS) tagging task7. To assess
the impact of misspellings we artificially inject
misspellings in the dataset. We train MOE on
three different dataset variants: a non-misspelled
dataset, to verify that MOE does not jeopardize
the performance on correct words; a dataset where
10% of words contain a misspelling, to simulate a
realistic environment where some of the words are
misspelled; and finally on a dataset where 100% of
words contain misspellings, to simulate a highly
distorted environment. We use a state-of-the-art
POS tagger (Ma and Hovy, 2016) consisting of a
Conditional Random Fields (CRF) model where
embeddings of the words in a sentence constitute
observations and the tags to assign constitute the
latent variables. This model adds a dependency
on both layers of a Bi-LSTM component to the
tag variables in the CRF. We evaluate the F1 score
of the system for the three dataset variants we de-
scribe above. We test two different representations
as input to the CRF: FastText (our baseline), and
MOE embeddings. Our results are reported in Ta-
ble 2.

We make the following observations based on
the results of our experiments. Firstly, in the two
extreme cases of the 100% misspelled test and cor-
rect training and the correct test and 100% mis-
spelled training, MOE improves the F1 by 2 and
3.5 points respectively with respect to the FastText
baseline. When the test data is 100% misspelled,
MOE always beats the baseline by up to 2.3 points
of F1. Also, in this case the loss in F1 with respect
to the case where both the training and the test are

7http://universaldependencies.org/
conll17/data.html

www.facebook.com
http://universaldependencies.org/conll17/data.html
http://universaldependencies.org/conll17/data.html
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Test Data 100% Misspelled Original
Training Data Original 100% Miss. 10% Miss. Original 100% Miss. 10% Miss.

FastText, α = 0.0 30.47 79.71 65.70 94.33 57.16 94.14
MOE, α = 0.01 29.04 80.66 67.94 94.55 59.11 94.21
MOE, α = 0.05 28.52 81.17 68.92 94.25 58.95 93.92
MOE, α = 0.1 30.94 80.97 67.30 94.45 58.88 94.29
MOE, α = 0.25 29.00 80.13 67.63 94.37 58.67 94.01
MOE, α = 0.5 29.19 80.43 66.76 94.27 57.29 93.94
MOE, α = 0.75 30.94 78.65 64.53 94.18 57.67 93.81
MOE, α = 0.95 32.40 75.28 62.29 93.09 60.21 92.52
MOE, α = 0.99 32.57 73.36 61.36 90.91 60.62 90.53

Table 2: Performance on POS tagging task for UPOS tags using CRF. The models were trained on 100 epochs
with an early stop (small difference on validation error) mechanism enabled. Considering F1 score, we evaluate
on 2 variants of test data: Original (correctly spelled) on the right hand side of the table and 100% misspelled on
the left hand side.
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Figure 4: Experimental results for the Neighborhood Validity task. α = 0 values represent our baseline, FastText.
On the left hand side we present the resulting MRR scores. On the right hand size we present the results for the
neighborhood coverage.

correct is much less then when the training data
does not contain misspellings. To be remarked is
the F1 score difference in the more realistic case
consisting of training data that is 10% misspelled.
In this case MOE attains a sensitive improvement
of 2.3% points of F1. Finally, MOE does not
reduce the effectiveness of the CRF POS Tagger
with respect to the FastText baseline when neither
the training nor the test set are misspelled. All in
all, we have shown that MOE does not affect the
effectiveness of the POS Tagger in the case of cor-
rectly misspelled words and improves sensitively
the quality of the POS tagger on misspellings.

6 Conclusion and Future Work

One of the most urgent issues of word embed-
dings is that they are often unable to deal with
malformed words which is a big limitation in the
real-world applications. In this work, we proposed
a novel model called MOE, which aims to solve

a long-standing problem: generating high quality,
semantically valid embeddings for misspellings.

In the experiments section, in the neighborhood
validity task, we show that MOE maps embed-
dings of misspellings close to embedding of the
corresponding correctly spelled word. Moreover,
we show that MOE is performing significantly
better than the FastText baseline for the word sim-
ilarity task when misspellings are involved. For
the canonical versions of the word similarity tasks,
where misspellings are not involved, we show that
MOE doesn’t worsen the quality significantly for
the WS353 dataset and improves over baseline for
the RW dataset. In the word analogy task, MOE is
able to preserve the quality of the semantic analo-
gies similar to the baseline, while improving on
the syntactic analogies. In the variant of the test
where misspellings are involved, MOE outper-
forms the baseline on both semantic and syntactic
questions. Finally, we have shown that MOE does
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not affect the effectiveness of the POS Tagger in
the case of correctly spelled words and improves
sensitively the quality of the POS tagger on mis-
spellings.

In the future, we will test different ways of train-
ing embeddings for misspellings including the ex-
tension of the same technique to multi-lingual em-
beddings. We are going to test deep architectures
to combine the n-grams in misspellings to better
capture various interdependencies of n-grams and
correct versions of words. Finally, we will assess
the robustness of both character-based (Kim et al.,
2016) and context-dependent embeddings (Devlin
et al., 2018), (Peters et al., 2018) with respect to
misspellings.
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