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Abstract

Training data for text classification is often
limited in practice, especially for applications
with many output classes or involving many
related classification problems. This means
classifiers must generalize from limited evi-
dence, but the manner and extent of general-
ization is task dependent. Current practice pri-
marily relies on pre-trained word embeddings
to map words unseen in training to similar
seen ones. Unfortunately, this squishes many
components of meaning into highly restricted
capacity. Our alternative begins with sparse
pre-trained representations derived from unla-
beled parsed corpora; based on the available
training data, we select features that offers the
relevant generalizations. This produces task-
specific semantic vectors; here, we show that a
feed-forward network over these vectors is es-
pecially effective in low-data scenarios, com-
pared to existing state-of-the-art methods. By
further pairing this network with a convolu-
tional neural network, we keep this edge in low
data scenarios and remain competitive when
using full training sets.

1 Introduction

Modern neural networks are highly effective for
text classification, with convolutional neural net-
works (CNNs) as the de facto standard for clas-
sifiers that represent both hierarchical and order-
ing information implicitly in a deep network (Kim,
2014). Deep models pre-trained on language
model objectives and fine-tuned to available train-
ing data have recently smashed benchmark scores
on a wide range of text classification problems
(Peters et al., 2018; Howard and Ruder, 2018; De-
vlin et al., 2018).

Despite the strong performance of these ap-
proaches for large text classification datasets, chal-
lenges still arise with small datasets with few, pos-
sibly imbalanced, training examples per class. La-

bels can be obtained cheaply from crowd workers
for some languages, but there are a nearly unlim-
ited number of bespoke, challenging text classifi-
cation problems that crop up in practical settings
(Yu et al., 2018). Obtaining representative labeled
examples for classification problems with many
labels, like taxonomies, is especially challenging.

Text classification is a broad but useful term and
covers classification based on topic, on sentiment,
and even social status. As Systemic Functional
Linguists such as Halliday (1985) point out, lan-
guage carries many kinds of meanings. For exam-
ple, words such as ambrosial and delish inform us
not just of the domain of the text (food) and sen-
timent, but perhaps also of the age of the speaker.
Text classification problems differ on the dimen-
sions they distinguish along and thus in the words
that help in identifying the class.

As Sachan et al. (2018) show, classifiers mostly
focus on sub-lexicons; they memorize patterns in-
stead of extending more general knowledge about
language to a particular task. When there is low
lexical overlap between training and test data, ac-
curacy drops as much as 23.7%. When training
data is limited, most meaning-carrying terms are
never seen in training, and the sub-lexicons cor-
respondingly poorer. Classifiers must generalize
from available training data, possibly exploiting
external knowledge, including representations de-
rived from raw texts. For small training sizes, this
requires moving beyond sub-lexicons.

Existing strategies for low data scenarios in-
clude treating labels as informative (Song and
Roth, 2014; Chang et al., 2008) and using label-
specific lexicons (Eisenstein, 2017), but neither is
competitive when labeled data is plentiful. In-
stead, we seek classifiers that adapt to both low
and high data scenarios.

People exploit parallelism among examples for
generalization (Hofstadter, 2001; Hofstadter and
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1.1 Kampuchea says rice crop in 1986 increased . . . 2.1 Gamma ray Bursters. What are they?
1.2 U.S. sugar policy may self-destruct . . . 2.2 Life on Mars
1.3 EC denies maize exports reserved for the U.S.. . . 2.3 Single launch space stations
1.4 U.S. corn, sorghum payments 50-50 cash/certs. . . 2.4 Astronauts—what does weighlessness feel like?
1.5 Canada corn decision unjustified. . . 2.5 Satellite around Pluto mission?

Table 1: Left: examples from the Reuters Grains class, showing semantic type cohesion (kinds of crops). Right:
post headers from the sci.space newsgroup in 20 Newsgroups, showing topical cohesion (astronomical terms).
Bolded terms are to draw the reader’s attention to parallels among examples.

Sander, 2013). Consider Table 1, which displays
five examples from a single class for two tasks.
Bolded terms for each task are clearly related, and
to a person, suggest abstractions that help relate
other terms to the task. This helps with disam-
biguation: that the word Pluto is the planet and not
Disney’s character is inferred not just by within-
example evidence (e.g. mission) but also by cross-
example presence of Mars and astronauts.

Cross-example analysis also reveals the amount
of generalization warranted. For a word associated
with a label, word embeddings give us neighbors,
which often are associated with that label. What
they do not tell us is the extent this associated-
with-same-label phenomenon holds; that depends
on the granularity of the classes. Cross-example
analysis is required to determine how neighbors
at various distances are distributed among labels
in the training data. This should allow us to in-
clude barley and peaches as evidence for a class
like Agriculture but only barley for Grains.

Most existing systems ignore cross-example
parallelism and thus miss out on a strong classi-
fication signal. We introduce a flexible method
for controlled generalization that selects syntacto-
semantic features from sparse representations con-
structed by Category Builder (Mahabal et al.,
2018). Starting with sparse representations of
words and their contexts, a tuning algorithm se-
lects features with the relevant kinds and appro-
priate amounts of generalization, making use of
parallelism among examples. This produces task-
specific dense embeddings for new texts that can
be easily incorporated into classifiers.

Our simplest model, CBC (Category Builder
Classifier), is a feed-forward network that uses
only CB embeddings to represent a document. For
small amounts of training data, this simple model
dramatically outperforms both CNNs and BERT
(Devlin et al., 2018). When more data is available,
both CNNs and BERT exploit their greater capac-
ity and broad pre-training to beat CBC. We thus
create CBCNN, a simple combination of CBC and

dataset k train/test/dev size range
20NG 20 15076/1885/1885 513/810
reuters 8 6888/862/864 128/3128
spam 2 3344/1115/1115 436/2908
attack 2 10000/2000/2000 1126/8874

Table 2: Data sizes, and the disparity between the
smallest and the largest class in training data. The k
column indicates the number of classes in the task.

the CNN that concatenates their pre-prediction
layers and adds an additional layer. By training
this model with a scheduled block dropout (Zhang
et al., 2018) that gradually introduces the CBC
sub-network, we obtain the benefits of CBC in low
data scenarios while obtaining parity with CNNs
when plentiful data is available. BERT still dom-
inates when all data is available, suggesting that
further combinations or ensembles are likely to
improve matters further.

2 Evaluation Strategy

Our primary goal is to study classifier performance
with limited data. To that end, we obtain learning
curves on four standard text classification datasets
(Table 2) based on evaluating predictions on the
full test sets. At each sample size, we produce
multiple samples and run several text classification
methods multiple times, measuring the following:

• Macro-F1 score. Macro-F1 measures sup-
port for all classes better than accuracy, espe-
cially with imbalanced class distributions.

• Recall for the rarest class. Many measures
like F1 and accuracy often mask performance
on infrequent but high impact classes, such as
detecting toxicity (Waseem and Hovy, 2016))

• Degenerate solutions. Complex classifiers
with millions of parameters sometimes pro-
duce degenerate classifiers when provided
very few training examples; as a result, they
can skip some output classes entirely.
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The datasets we chose for evaluation, while all
multi-class, form a diverse set in terms of the num-
ber of classes and kinds of cohesion among exam-
ples in a single class. The former clearly affects
training data needs, while the latter informs ap-
propriate generalization.

• 20 Newsgroups 20Newsgroups (20NG) con-
tains documents from 20 different news-
groups with about 1000 messages from each.
We randomly split the documents into an 80-
10-10 train-dev-test split. The classes are
evenly balanced.

• Reuters R8. The Reuters21578 dataset con-
tains Reuters Newswire articles. Following
several authors (Pinto and Rosso, 2007; Zhao
et al., 2018, for example), we use only the
eight most frequent labels. We begin with
a given 80/10/10 split. Given that we fo-
cused on single-label classification, we re-
moved items associated with two or more
of the top eight labels (about 3% of exam-
ples). Classes are highly imbalanced. Of
the 6888 training examples, 3128 are labeled
earn, while only 228 examples are of class
interest and only 128 are ship.

• Wiki Comments Personal Attack. The
Wikipedia Detox project collected over
100k discussion comments from English
Wikipedia and annotated them for presence
of personal attack (Wulczyn et al., 2017). We
randomly select 10k, 2k, and 2k items as
train/dev/test. 11% are attacks.

• Spam The SMS Spam Collection v.1 has
SMS labeled messages that were collected
for mobile phone spam research (Hidalgo
et al., 2012). Each of the 5574 messages is
labeled as spam or ham.

3 Identifying Generalizing Features

In this section, we explicate the source of fea-
tures, discuss the properties relevant to generaliza-
tion by focusing on one feature in isolation, and
present the overall feature selection method. The
overview in Figure 1 displays the order of opera-
tions: identify generalizing features based on the
training data (done once), and for each document
to be classified, convert it to a vector, where each
entry corresponds to a generalizing feature.

Figure 1: Shaded Region: We use Category Builder
data (Mahabal et al., 2018) and identify generalizing
features in training data, producing a vectorizer. This is
done once. Unshaded: Given a document, the vector-
izer produces a dense vector usable in deep networks.

Feature Prototypical Supports
allergen as X pollen, dander, dust mites, soy,

perfumes, milk, smoke, mildew
liter of X water, petrol, milk, fluid, beer

serve with X rice, sauce, salad, fries, milk
flour mixture butter mixture, rubber spat-

ula, dredged, creamed, medium
speed, sifted, milk

replacer colostrum, calves, whole milk,
inulin, pasteurized, weaning

Table 3: A few features (among hundreds) evoked by
milk, with top n-grams in their support. Above dashed
line (FS) fit in tidy categories (here, allergen, fluid, and
food are rough glosses). Below dashed line (FC) are
not describable by simple labels—the evoking terms
have different parts of speech and instead display sit-
uational coherence, e.g. association with the process
of mixing flour or with animal husbandry (a replacer is
milk formula for calves).

3.1 Category Builder

Our source of generalizing features is Category
Builder (CB) (Mahabal et al., 2018), which con-
structs a sparse vector space derived from parsed
corpora (Erk, 2012). CB constructs features for
n-grams (not just unigrams) that are the union of
syntactic context features FS and co-occurrence
features FC . Consider milk: an FS feature is
gallon

prep−−−→of
pobj−−→X and FC features include goat,

cow, drink, spill, etc. Table 3 provides other exam-
ples of features evoked by milk, along with other
n-grams which evoke them. For present purposes,
we can treat CB as a matrix with n-grams as rows
and features in FC and FS as columns. The en-
tries of CB are weights that give the association
strength between an n-gram and a feature; these
weights are an asymmetric variant of pointwise-
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mutual information (Mahabal et al., 2018).

3.2 Properties of Generalizing Features
Which features generalize well depends on the
granularity of classes in a task. Useful features for
generalization strike a balance between breadth
and specificity. A feature that is evoked by many
words provides generalization potential because
the feature’s overall support is likely to be dis-
tributed across both the training data and test data.
However, this risks over-generalization, so a fea-
ture should also be sufficiently specific to be a pre-
cise indicator of a particular class.

A key aspect of choosing good features based
on a limited training set is to resolve referential
ambiguity (Quine, 1960; Wittgenstein, 1953) to
the extent supported by the observed uses of the
words. To illustrate, consider the grains class in
the Reuters Newswire dataset. The word wheat
can evoke the features at different levels of the
taxonimical hierarchy: triticum (the wheat genus),
poaceae (grass family), spermatophyta (seeded
plants), plantae (plant kingdom), and living thing.
The first among these has low breadth and is
evoked only by wheat. The second is far more use-
ful: specific and yet with a large support, including
maize and sorghum. The final feature is too broad.
In general, the most useful features for generaliza-
tion are the intermediate features, also known as
Basic Level Categories (Rosch et al., 1976).

Another important aspect of generalization
comprises the facets of meaning. For example,
the word milk has facets relating it to other liquids
(e.g., oil, kerosene), foods (cheese, pasta), white
things (ivory), animal products (honey, eggs), and
allergens (pollen, ragweed). Along these axes,
generalization can be more or less conservative;
e.g., both cheese and tears of a phoenix are animal
products, but the former is semantically closer to
milk. Looking back at Table 3, the utility of indi-
vidual features evoked by milk for tasks involving
related topics varies; e.g., does the classification
problem pertain to food or animal husbandary?

3.3 Focus on a single feature
A single generalizing feature is associated with
many n-grams, each of which evokes it (with dif-
ferent strengths). Table 4 displays n-grams that
evoke the feature co-occurrence with Saturn V, as
discovered by unsupervised analysis of a large cor-
pus of web pages. The table further displays the
interaction of this unsupervised feature with super-

Training Testing
n-gram wt C C C C

apollo 8.93 1 1 5 1
launch pad 8.52 0 0 1 0

rocket 7.32 3 1 8 0
rockets 7.27 2 0 4 1
liftoff 6.92 1 0 1 0

space shuttle 6.27 0 0 4 0
space station 6.19 0 0 4 3

payload 4.23 0 0 5 0
shuttle 2.57 2 0 15 3

kennedy 2.30 1 0 1 4
capacity 1.95 0 1 0 4

Table 4: Some evoking n-grams associated with the
CB feature co-occurrence with Saturn V and pivoting
on the class sci.space. Counts for n-grams in train-
ing (sample size 320) and test data are shown, within
sci.space (C) and outside (C). Bolded n-grams are
not seen in training but occur in test, providing gen-
eralization. The dashed line represents a threshold;
higher scoring n-grams are more cohesive, and thresh-
olding can make a feature cleaner by decreasing seman-
tic drift.

vised data, specifically, with the label sci.space in
20NG, when using a size 320 training sample that
contain only 18 sci.space documents. Counts for
some evoking terms are shown within and outside
this class, for both training and test data.

Notation. We introduce some notation and ex-
plicate with Table 4. We have a labelled collec-
tion of training documents T . Tl is the training
examples with label l. The positive support set
Ψl(f, t) is the set of n-grams in Tl evoking feature
f with weight greater than t, here, {apollo, rocket,
. . . , shuttle} for t=2.3. The positive support size
Λl(f, 2.3)=|Ψl(f, 2.3)|=5 and the positive sup-
port weight λl(f, 2.3) is the sum of counts of sup-
ports of f in l with weight greater than 2.3, here
1+3+2+1+2=9. Analogously the negative sup-
port weight λl(f, 2.3) is the sum of counts from
outside Tl; here, 1+1=2 since {apollo, rocket}
were seen outside sci.space once each.

What makes this feature (words that have co-
occurred with Saturn V) well suited for sci.space
is that many evoking words here are associated
with the label sci.space. What confirms the bene-
fit is the limited amount of negative support. Cru-
cially, the bolded terms do not occur in the training
data, but do occur in the test data. (We stress that
we include these counts here only for this exam-
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ple; our methods do not access the test data for
feature selection in our experiments.)

That said, we must limit potential noise from
such features, so we seek thresholded features
〈f, t〉, as suggested by the dashed line in Table
4. Items below this line are prevented from evok-
ing f . We choose the highest threshold such that
dropped negative support exceeds dropped posi-
tive support. This is determined simply by go-
ing through all the supports of a feature, sorted by
ascending weight, and checking the positive and
negative support of all features with smaller ver-
sus greater weight given the class. The weight of
the feature at this cusp is used as the threshold of
the feature for this particular class. This 〈f, t〉 pair
then forms one element of the CB-vector used as
a feature for classification.

Given the labeled subsets of T and this feature
thresholding algorithm, we produce a vectorizer
that embeds documents. The values of a docu-
ment’s embedding are not directly associated with
any class. Such association happens during train-
ing. Although sci.space accounts for just 6% of
the documents, 75% of documents that contain an
n-gram evoking the Saturn V feature are in that
class. A classifier trained with such an embed-
ding should learn to associate this feature with
that class, and an unseen document containing
the unseen-in-training term space shuttle stands a
good chance to be classified as sci.space.

The feature displayed in Table 4 is useful for the
20NG problem because it contains a class related
to space travel. This feature has no utility in spam
classification or in sentiment classification, since,
for those problems, seeing rocket in one class does
not make it more likely that a document contain-
ing space station belongs to that same class. This
example illustrates why a generalization strategy
must incorporate both what we can learn from un-
supervised data as well as (limited) labeled train-
ing data.

3.4 Overall feature selection

We now describe how we use the training data T
to produce a set of features-and-threshold pairs;
each chosen feature-with-threshold 〈f, t〉 will be
one component in the CB-vectors provide to clas-
sifiers. Calculation of features for a single class is
a three step process: (i) for each feature f , choose
a threshold t (as discussed above) (ii) score the re-
sultant 〈f, t〉 (iii) filter useless or redundant 〈f, t〉.

Given a label l and a feature f , we implicitly
produce a table of supporting n-grams and their
distribution within and outside l (e.g. as in Table
4). This involves computing the precision of a fea-
ture at a given threshold value, comparing it to the
class probability and deciding whether to keep it.

Recall the positive support λl(f, t) and negative
support λf (f, t) defined previously. The preci-
sion of f at threshold t is µl(f, t) = λl(f,t)

λl(f,t)+λl(f,t)
,

(this is 9
11 in the example of Table 4, with t=2.3).

However, since we are often dealing with low
counts, we smooth the precision toward the em-
pirical class probability of l, p(l) = |Tl|

|Tl|+|Tl|
.

µ̃l(f, t) =
λl(f, t) + p(l)α

λl(f, t) + λl(f, t) + α

The score Sl(f, t) is reduction in error rate of
the smoothed precision relative to the base rate:

Sl(f, t) =
µ̃l(f, t)− p(l)

1− p(l)

We retain a thresholded feature if it is generalizing
(Λl(〈f, t〉) > 1), has better-than-chance precision
(we use Sl(〈f, t〉) > 0.01), and is not redundant
(i.e., its positive support has one or more terms not
present in positive supports of higher scoring fea-
tures).

3.5 Creating the CB-vector

Each vector dimension corresponds to some 〈f, t〉.
The evocation level of f is the sum of its evoca-
tion for the n-grams in the document d, ed(f) =∑

w∈dCB(w, f). The vector entry is ed(f)
t when

ed(f) >= t, and is clipped to 0 otherwise.

4 Models

As benchmarks, we use a standard CNN with pre-
trained embeddings (Kim, 2014) and BERT (De-
vlin et al., 2018).1 For CNN, we used 300 filters
each of sizes 2, 3, 4, 5, and 6, fed to a hidden layer
of 200 nodes after max pooling. Pretrained vectors
provided by Google were used.2 For BERT, we
used the run classifier script from GitHub
and used the BERT-large-uncased model.

We use the pre-computed vocab-to-context as-
sociation matrix provided as part of the open

1
https://github.com/google-research/bert

2
https://code.google.com/archive/p/word2vec

 https://github.com/google-research/bert
https://code.google.com/archive/p/word2vec
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source Categorial Builder repository.3 This con-
tains 194,051 co-occurrence features (FC) and
954,276 syntactic features (FS).

CBC model. The CB-vector containing the de-
rived features from the training dataset and Cate-
gory Builder can be exploited in various ways with
existing techniques. The simplest of these is to use
a feed-forward network over the CB-vector. This
model does not encode the tokens or any word or-
der information—information which is highly in-
formative in many classification tasks.

CBCNN model. Inspired by the combination
of standard features and deep networks in Wide-
and-Deep models (Cheng et al., 2016), we pair the
CBC model with a standard CNN, concatenating
their pre-prediction layers, and add an additional
layer before the softmax prediction. In early ex-
periments, this combined model performed worse
than the CNN on larger data sizes, as the network
above the CB-vector effectively stole useful signal
from the CNN. To ensure that the more complex
CNN side of the network had a chance to train, we
employed a block dropout strategy (Zhang et al.,
2018) with a schedule. During training, with some
probability, all weights in the CB-vector are set to
0.5. The probability of hiding decreases from 1 to
0 using a parameterized hyperbolic tangent func-
tion pk= 2

eCx+1
. Lower values of C lead to slower

convergence to zero. The effect is that the CBC
sub-network is introduced gradually, allowing the
CNN to train while eventually taking advantage of
the additional information.

The natural strategy of replacing with 0s (in-
stead of 0.5 as above) was tried and also works,
but less well, since the network has no way to dis-
tinguish between genuine absence of feature and
hiding. In CB-vector, non-zero values are at least
1, and thus 0.5 does not suffer from this problem.

5 Experiments

Our primary goal is to improve generalization for
low-data scenarios, but we also want our methods
to remain competitive on full data.

5.1 Experimental setup

We compare different models across learning
curves of increasing the training set sizes. We use
training data sizes of 40, 80, . . . , 5120 as well as
the entire available training data. For each train-
ing size, we produce three independent samples

3
https://github.com/google/categorybuilder

by uniformly sampling the training data and train-
ing each model three times at each size. The fi-
nal value reported is the average of all nine runs.
All models are implemented in Tensorflow. Batch
sizes are between 5 and 64 depending on training
size. Training stops after there is no macro-F1 im-
provement on development data for 1000 steps.

For evaluation, we focus primarily on macro-
F1 and recall of the rarest class. The recall on
the rarest class is especially important for imbal-
anced classification problems. For such problems,
a model can obtain high accuracy by strongly pre-
ferring the majority class, but we seek models that
effectively identify minority class labels. (This is
especially important for active learning scenarios,
where we expect the CB-vectors to help with in
future.)

5.2 Results: low data scenarios

Figure 2 shows learning curves giving macro-F1
scores and rarest class recall for all four datasets.
When very limited training data is available, the
simple CBC model generally outperforms the
CNN and BERT, except for the Spam dataset. The
more powerful models eventually surpass CBC;
however, the CBCNN model provides consistent
strong performance at all dataset sizes by combin-
ing the generalization of CBC with the general ef-
ficacy of CNNs. Importantly, CBCNN provides
massive error reductions with low data for 20NG
and R8 (tasks with many labels).

Table 5’s left half gives results for all mod-
els when using only 320 training examples. For
20NG, CNN’s macro-F1 is just 43.9, whereas
CBC and CBCNN achieve 61.7 and 62.4—the
same as CNN performance with four times as
much data. These models outperform CNN on R8
as well, reaching 83.7 vs CNN’s 74.1, and also on
the Wiki-attack dataset, achieving 80.6 vs CNNs
74.0. BERT fails to produce a solution for the
two datasets with >2 labels, but does produce the
best result for Spam—indicating an opportunity to
more fully explore BERT’s parameter settings for
low data scenarios and to fruitfully combine CBC
with BERT.

Rarest class recall is generally much better with
less data when exploiting CB-features. For ex-
ample, with 320 training examples for R8, CNNs
reach 36.2 whereas CBCNN scores 76.2. Predic-
tion quality with few training examples (especially
getting good balance across all labels) also inter-

https://github.com/google/categorybuilder
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Figure 2: Left: F1 score by training size for 20NG, Reuters, SMS Spam, and Wiki-attack. Data is shown for
non-degenerate models, and hence CNN and BERT start at higher sizes (see Table 6). Right: Recall for the rarest
class for the same models.



3165

320 Training Examples Full Training Data
Data k CBC CNN CBCNN BERT CBC CNN CBCNN BERT

20NG 20 61.7 43.9 62.4 — 82.9 89.5 90.2 92.0
R8 8 82.3 74.2 83.6 — 89.2 93.1 93.4 94.4

Spam 2 80.3 87.1 90.8 95.7 93.7 96.1 96.3 97.8
Attack 2 80.7 74.0 79.6 70.5 83.8 86.2 84.5 88.2

Table 5: Macro-F1 scores on all data sets when using 320 training examples (left) and when using all available
training data (right). k is the number of classes. The CBCNN model provides the strongest overall performance
across all data sizes. (Note that BERT produces degenerate solutions for the>2 class problems with 320 examples.)

Model k CBC CNN CBCNN BERT
20NG 20 80 320 80 1280

R8 8 40 160 40 640
Spam 2 40 40 40 40
Attack 2 40 40 40 40

Table 6: Minimum training size at which a non-
degenerate model was produced in any of 9 runs. With
more classes, more data is needed by CNN and BERT
to produce acceptable models. k is number of classes.

acts with other strategies for dealing with limited
resources, such as active learning. For example,
Baldridge and Osborne (2008) obtained stronger
data utilization ratios with better base models and
uncertainty sampling for Reuters text classifica-
tion: better models pick better examples for an-
notation and thus require fewer new labeled data
points to achieve a given level of performance.

Importantly, the CBC and CBCNN models take
far less data to produce non-degenerate models
(defined as a model which produces all output
classes as predictions). CNN and BERT have a
large number of parameters, and using these pow-
erful tools with small training sets produces un-
stable results. Table 6 gives the minimum training
set sizes at which each model produces at least one
non-degenerate model. While it might be possible
to ameliorate the instability of CNN and BERT
with a wider parameter search and other strate-
gies, nothing special needs to be done for CBC.
It is likely that an approach which adaptively se-
lects CBC or CBCNN and BERT would obtain the
strongest result across all training set sizes.

For each dataset, among the 100 best features
chosen (for training size 640), the breakdown of
domain features (FC) versus type features (FS) is
revealing. As expected, domain features are more
important in a topical task such as 20NG (71%
are FC features), while the opposite is true for
Spam (19%) and a toxicity dataset like Wiki At-

tack (23%). Reuters shows a fairly even balance
between the two types of features (41%): it is use-
ful for R8 to be topically coherent and also to hone
in on fairly narrow groups of words that collec-
tively cover a Basic Level Category.

5.3 Results: full data scenarios

Table 5 provides macro-F1 scores for all models
when given all available training data. The CBC
model performs well, but its (intentional) igno-
rance of the actual tokens in a document takes
a toll when more labeled documents are avail-
able. The CNN benchmark, which exploits both
word order and the tokens themselves, is a strong
performer. The CBCNN model effectively keeps
pace with the CNN—improving on 20NG and
R8, though slipping on Wiki-Attack. BERT sim-
ply crushes all other models when there is suffi-
cient training data, showing the impact of struc-
tured pre-training and consistent with performance
across a wide range of tasks in Devlin et al. (2018).

6 Conclusion

We demonstrate an effective method for exploit-
ing syntactically derived features from large ex-
ternal corpora and selecting the most useful of
those given a small labeled text classification cor-
pus. We show how to do this with the map pro-
vided by Category Builder n-grams to features, but
other sources of well generalizing features have
been exploited for text classification. These in-
clude topic models (Blei et al., 2003), ontologies
such as WordNet (Bloehdorn and Hotho, 2004)
and Wikipedia Category structure (Gabrilovich
and Markovitch, 2009). It may be possible to use
these other sources exactly as we use CB. Some of
these sources have been manually curated, which
makes them high quality but limits the size and
facets. We have not yet explored their use be-
cause CB features seem to cover many of these
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sources’ strengths—for example, FC features are
like topics, and FS features like nodes in ontolo-
gies. Nonetheless, a combination may add value.

Our focus is on data scarce scenarios. However,
it would be ideal to derive utility at both the small
and large labeled data sizes. This will likely re-
quire models that can generalize with contextual
features while also exploiting implicit hierarchical
organization and order of the texts, e.g. as done by
CNNs and BERT. The CBCNN model is one ef-
fective way to do this and we expect there could be
similar benefits from combining CBC with BERT.
Furthermore, approaches like AutoML (Zoph and
Le, 2017) would likely be effective for exploring
the design space of network architectures for rep-
resenting and exploiting the information inherent
in both signals.

Finally, although we focus on multi-class prob-
lems here—each example belongs to a single
class—the general approach of selecting features
should work for multi-label problems. Our confi-
dence in this (unevaluated) claim stems from the
observation that we select features one class at a
time, treating that class and its complement as a
binary classification problem.
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A Appendix

Changes to the Category Builder Matrix
Category Builder uses two matrices: one mapping
items to features (MV→F ), the other mapping fea-
tures to items (MF→V ). Two are needed since the
relationship is asymmetric: the feature X is a star
sign is more strongly associated with the term can-
cer than vice versa, and the two matrices are thus
not exact transposes of each other, although they
almost are. For this current work, we just use one
matrix, MV→F . For syntactic features FS , we di-
rectly use the Category Builder rows. For FC fea-
tures, however, Category Builder replaced the cor-
responding submatrix in MV→F with an identity
matrix as described in (Mahabal et al., 2018). We
obtain that part of the matrix by copying the cor-
responding rows from (MF→V)T .

This new matrix will be made available as part
of the Category Builder project.
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