
Proceedings of NAACL-HLT 2019, pages 3137–3147
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

3137

Complexity-Weighted Loss and Diverse Reranking
for Sentence Simplification

Reno Kriz∗, João Sedoc∗, Marianna Apidianaki4,
Carolina Zheng∗, Gaurav Kumar∗, Eleni Miltsakaki†,

and Chris Callison-Burch∗
∗ Computer and Information Science Department, University of Pennsylvania
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Abstract

Sentence simplification is the task of rewriting
texts so they are easier to understand. Recent
research has applied sequence-to-sequence
(Seq2Seq) models to this task, focusing largely
on training-time improvements via reinforce-
ment learning and memory augmentation. One
of the main problems with applying generic
Seq2Seq models for simplification is that these
models tend to copy directly from the origi-
nal sentence, resulting in outputs that are rel-
atively long and complex. We aim to alle-
viate this issue through the use of two main
techniques. First, we incorporate content word
complexities, as predicted with a leveled word
complexity model, into our loss function dur-
ing training. Second, we generate a large set of
diverse candidate simplifications at test time,
and rerank these to promote fluency, adequacy,
and simplicity. Here, we measure simplicity
through a novel sentence complexity model.
These extensions allow our models to per-
form competitively with state-of-the-art sys-
tems while generating simpler sentences. We
report standard automatic and human evalua-
tion metrics.1

1 Introduction

Automatic text simplification aims to reduce the
complexity of texts and preserve their meaning,
making their content more accessible to a broader
audience (Saggion, 2017). This process can ben-
efit people with reading disabilities, foreign lan-
guage learners and young children, and can assist
non-experts exploring a new field. Text simplifica-
tion has gained wide interest in recent years due to
its relevance for NLP tasks. Simplifying text dur-
ing preprocessing can improve the performance of
syntactic parsers (Chandrasekar et al., 1996) and

1Our code is available in our fork of Sockeye (Hieber
et al., 2017) at https://github.com/rekriz11/sockeye-recipes.

Figure 1: Example comparison of a simplification gen-
erated by a standard Seq2Seq model vs. our model.

semantic role labelers (Vickrey and Koller, 2008;
Woodsend and Lapata, 2014), and can improve the
grammaticality (fluency) and meaning preserva-
tion (adequacy) of translation output (Štajner and
Popovic, 2016).

Most text simplification work has approached
the task as a monolingual machine translation
problem (Woodsend and Lapata, 2011; Narayan
and Gardent, 2014). Once viewed as such, a
natural approach is to use sequence-to-sequence
(Seq2Seq) models, which have shown state-of-
the-art performance on a variety of NLP tasks, in-
cluding machine translation (Vaswani et al., 2017)
and dialogue systems (Vinyals and Le, 2015).

One of the main limitations in applying stan-
dard Seq2Seq models to simplification is that these
models tend to copy directly from the original
complex sentence too often, as this is the most
common operation in simplification. Several re-
cent efforts have attempted to alleviate this prob-
lem using reinforcement learning (Zhang and Lap-
ata, 2017) and memory augmentation (Zhao et al.,
2018), but these systems often still produce out-
puts that are longer than the reference sentences.
To avoid this problem, we propose to extend
the generic Seq2Seq framework at both training
and inference time by encouraging the model to
choose simpler content words, and by effectively
choosing an output based on a large set of can-
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didate simplifications. The main contributions of
this paper can be summarized as follows:

• We propose a custom loss function to replace
standard cross entropy probabilities during
training, which takes into account the com-
plexity of content words.

• We include a similarity penalty at inference
time to generate more diverse simplifications,
and we further cluster similar sentences to-
gether to remove highly similar candidates.

• We develop methods to rerank candidate sim-
plifications to promote fluency, adequacy,
and simplicity, helping the model choose the
best option from a diverse set of sentences.

An analysis of each individual components re-
veals that of the three contributions, reranking
simplifications at post-decoding stage brings about
the largest benefit for the simplification system.
We compare our model to several state-of-the-art
systems in both an automatic and human evalu-
ation settings, and show that the generated simple
sentences are shorter and simpler, while remaining
competitive with respect to fluency and adequacy.
We also include a detailed error analysis to explain
where the model currently falls short and provide
suggestions for addressing these issues.

2 Related Work

Text simplification has often been addressed as
a monolingual translation process, which gener-
ates a simplified version of a complex text. Zhu
et al. (2010) employ a tree-based translation model
and consider sentence splitting, deletion, reorder-
ing, and substitution. Coster and Kauchak (2011)
use a Phrase-Based Machine Translation (PBMT)
system with support for deleting phrases, while
Wubben et al. (2012) extend a PBMT system with
a reranking heuristic (PBMT-R). Woodsend and
Lapata (2011) propose a model based on a quasi-
synchronous grammar, a formalism able to capture
structural mismatches and complex rewrite opera-
tions. Narayan and Gardent (2014) combine a sen-
tence splitting and deletion model with PBMT-R.
This model has been shown to perform compet-
itively with neural models on automatic metrics,
though it is outperformed using human judgments
(Zhang and Lapata, 2017).

In recent work, Seq2Seq models are widely
used for sequence transduction tasks such as ma-
chine translation (Sutskever et al., 2014; Luong

et al., 2015), conversation agents (Vinyals and Le,
2015), summarization (Nallapati et al., 2016), etc.
Initial Seq2Seq models consisted of a Recurrent
Neural Network (RNN) that encodes the source
sentence x to a hidden vector of a fixed dimen-
sion, followed by another RNN that uses this hid-
den representation to generate the target sentence
y. The two RNNs are then trained jointly to max-
imize the conditional probability of the target sen-
tence given the source sentence, i.e. P (y|x). Other
works have since extended this framework to in-
clude attention mechanisms (Luong et al., 2015)
and transformer networks (Vaswani et al., 2017).2

Nisioi et al. (2017) was the first major application
of Seq2Seq models to text simplification, applying
a standard encoder-decoder approach with atten-
tion and beam search. Vu et al. (2018) extended
this framework to incorporate memory augmenta-
tion, which simultaneously performs lexical and
syntactic simplification, allowing them to outper-
form standard Seq2Seq models.

There are two main Seq2Seq models we will
compare to in this work, along with the statistical
model from Narayan and Gardent (2014). Zhang
and Lapata (2017) proposed DRESS (Deep RE-
inforcement Sentence Simplification), a Seq2Seq
model that uses a reinforcement learning frame-
work at training time to reward the model for pro-
ducing sentences that score high on fluency, ad-
equacy, and simplicity. This work showed state-
of-the-art results on human evaluation. How-
ever, the sentences generated by this model are in
general longer than the reference simplifications.
Zhao et al. (2018) proposed DMASS (Deep Mem-
ory Augmented Sentence Simplification), a multi-
layer, multi-head attention transformer architec-
ture which also integrates simplification rules.
This work has been shown to get state-of-the-art
results in an automatic evaluation, training on the
WikiLarge dataset introduced by Zhang and Lap-
ata (2017). Zhao et al. (2018), however, does not
perform a human evaluation, and restricting evalu-
ation to automatic metrics is generally insufficient
for comparing simplification models. Our model,
in comparison, is able to generate shorter and sim-
pler sentences according to Flesch-Kincaid grade
level (Kincaid et al., 1975) and human judgments,
and provide a comprehensive analysis using hu-
man evaluation and a qualitative error analysis.

2For a detailed description of Seq2Seq models, please see
(Sutskever et al., 2014).
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3 Seq2Seq Approach

3.1 Complexity-Weighted Loss Function
Standard Seq2Seq models use cross entropy as the
loss function at training time. This only takes into
account how similar our generated tokens are to
those in the reference simple sentence, and not the
complexity of said tokens. Therefore, we first de-
velop a model to predict word complexities, and
incorporate these into a custom loss function.

3.1.1 Word Complexity Prediction
Extending the complex word identification model
of Kriz et al. (2018), we train a linear regression
model using length, number of syllables, and word
frequency; we also include Word2Vec embeddings
(Mikolov et al., 2013). To collect data for this
task, we consider the Newsela corpus, a collection
of 1,840 news articles written by professional edi-
tors at 5 reading levels (Xu et al., 2015).3 We ex-
tract word counts in each of the five levels; in this
dataset, we denote 4 as the original complex doc-
ument, 3 as the least simplified re-write, and 0 as
the most simplified re-write. We propose using Al-
gorithm 1 to obtain the complexity label for each
word w, where lw represents the level given to the
word, and cwi represents the number of times that
word occurs in level i.

Algorithm 1 Word Complexity Data Collection
1: procedure DATA COLLECTION

2: lw ← 4
3: for i ∈ {3, 0} do
4: if cwi ≥ 0.7 ∗ cwi+1 then
5: if cwi ≥ 0.4 ∗ cw4 then
6: lw ← i

return lw

Here, we initially label the word with the most
complex level, 4. If at least 70% of the instances
of this word is preserved in level 3, we reassign
the label as level 3; if the label was changed, we
then do this again for progressively simpler levels.

As examples, Algorithm 1 labels “pray”, “sign”,
and “ends” with complexity level 0, and “prolifer-
ation”, “consensus”, and “emboldened” with com-
plexity level 4. We split the data extracted from
Algorithm 1 into Train, Validation and Test sets
(90%, 5% and 5%, respectively, and use them for

3Newsela is an education company that provides reading
materials for students in elementary through high school. The
Newsela corpus can be requested at https://newsela.com/data/

Model Correlation MSE
Frequency Baseline -0.031 1.90

Length Baseline 0.344 1.51
LinReg 0.659 0.92

Table 1: Pearson Correlation and Overall Mean
Squared Error (MSE) of the word-level complexity pre-
diction model (LinReg). Comparison to length-based
and frequency-based baselines.

training and evaluating the complexity prediction
model. 4

We report the Mean Squared Error (MSE) and
Pearson correlation on our test set in Table 1.5

We compare our model to two baselines, which
predict complexity using log Google n-grams fre-
quency (Brants and Franz, 2006) and word length,
respectively. For these baselines, we calculate
the minimum and maximum values for words in
the training set, and then normalize the values for
words in the test set.

3.1.2 Loss Function
We propose a metric that modifies cross entropy
loss to upweight simple words while downweight-
ing more complex words. More formally, the
probabilities of our simplified loss function can be
generated by the process described in Algorithm 2.
Since our word complexities are originally from 0
to 4, with 4 being the most complex, we need to re-
verse this ordering and add one, so that more com-
plex words and non-content words are not given
zero probability. In this algorithm, we denote the
original probability vector as CE, our vocabulary
as V, the predicted word complexity of a word v
as scorev, the resulting weight for a word as wv,
and our resulting weights as SCE, which we then
normalize and convert back to logits.

Here, α is a parameter we can tune during ex-
perimentation. Note that we only upweight simple
content words, not stopwords or entities.

3.2 Diverse Candidate Simplifications

To increase the diversity of our candidate simpli-
fications, we apply a beam search scoring modi-
fication proposed in Li et al. (2016). In standard

4Note that we also tried continuous rather than discrete
labels for words by averaging frequencies, but found that this
increased the noise in the data. For example, “the” and “dog”
were incorrectly labeled as level 2 instead of 0, since these
words are seen frequently across all levels.

5We report MSE results by level in the appendix.
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Algorithm 2 Simplified Loss Function
1: procedure SIMPLIFIED LOSS

2: CE← softmax(logitsCE)
3: for v ∈ V do
4: scorev ←WordComplexity(v)
5: if v is a content word then
6: wv ← (4− sv) + 1
7: else
8: wv ← 1

9: wv ←
(

wv∑
v∈V wv

)α
for v ∈ V

10: SCE← CE · w
return SCE

beam search with a beam width of b, given the b
hypotheses at time t−1, the next set of hypotheses
is generated by first selecting the top b candidate
expansions from each hypothesis. These b× b hy-
potheses are then ranked by the joint probabilities
of their sequence of output tokens, and the top b
according to this ranking are chosen.

We observe that candidate expansions from a
single parent hypothesis tend to dominate the
search space over time, even with a large beam. To
increase diversity, we apply a penalty term based
on the rank of a generated token among the b can-
didate tokens from its parent hypothesis.

If Y j
t−1 is the jth top hypothesis at time t − 1,

j ∈ [1..b], and yj,j
′

t is a candidate token generated
from Y j

t−1, where j′ ∈ [1..b] represents the rank of
this particular token among its siblings, then our
modified scoring function is as follows (here, δ is
a parameter we can tune during experimentation):

S(Y j
t−1, y

j,j′

t ) = log p(yj1, . . . , y
j
t−1, y

j,j′

t |x)− j
′ ∗ δ (1)

Extending the work of Li et al. (2016), to fur-
ther increase the distance between candidate sim-
plifications, we can cluster similar sentences af-
ter decoding. To do this, we convert each candi-
date into a document embedding using Paragraph
Vector (Le and Mikolov, 2014), cluster the vec-
tor representations using k-means, and select the
sentence nearest to the centroids. This allows us
to group similar sentences together, and only con-
sider candidates that are relatively more different.

3.3 Reranking Diverse Candidates
Generating diverse sentences is helpful only if we
are able to effectively rerank them in a way that
promotes simpler sentences while preserving flu-
ency and adequacy. To do this, we propose three

Model Correlation MSE
Length Baseline 0.503 3.72

CNN (ours) 0.650 1.13

Table 2: Pearson Correlation and Overall Mean
Squared Error (MSE) for the sentence-level complexity
prediction model (CNN), compared to a length-based
baseline.

ranking metrics for each sentence i:

• Fluency (fi): We calculate the perplexity
based on a 5-gram language model trained on
English Gigaword v.5 (Parker et al., 2011) us-
ing KenLM (Heafield, 2011).

• Adequacy (ai): We generate Paragraph Vec-
tor representations (Le and Mikolov, 2014)
for the input sentence and each candidate and
calculate the cosine similarity.

• Simplicity (si): We develop a sentence com-
plexity prediction model to predict the overall
complexity of each sentence we generate.

To calculate sentence complexity, we modify
a Convolutional Neural Network (CNN) for sen-
tence classification (Kim, 2014) to make contin-
uous predictions. We use aligned sentences from
the Newsela corpus (Xu et al., 2015) as training
data, labeling each with the complexity level from
which it came.6 As with the word complexity pre-
diction model, we report MSE and Pearson corre-
lation on a held-out test set in Table 2.7

We normalize each individual score between 0
and 1, and calculate a final score as follows:

scorei = βffi + βaai + βssi (2)

We tune these weights (β) on our validation data
during experimentation to find the most appropri-
ate combinations of reranking metrics. Examples
of improvements resulting from the including each
of our contributions are shown in Table 3.

4 Experiments

4.1 Data
We train our models on the Newsela Corpus. In
previous work, models were mainly trained on
the parallel Wikipedia corpus (PWKP) consist-
ing of paired sentences from English Wikipedia

6We respect the train/test splits described in Section 4.1.
7We report MSE results by level in the appendix.
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and Simple Wikipedia (Zhu et al., 2010), or the
extended WikiLarge corpus (Zhang and Lapata,
2017). We choose to instead use Newsela, because
it was found that 50% of the sentences in Sim-
ple Wikipedia are either not simpler or not aligned
correctly, while Newsela has higher-quality sim-
plifications (Xu et al., 2015).

As in Zhang and Lapata (2017), we exclude sen-
tence pairs corresponding to levels 4-3, 3-2, 2-
1, and 1-0, where the simple and complex sen-
tences are just one level apart, as these are too
close in complexity. After this filtering, we are left
with 94,208 training, 1,129 validation, and 1,077
test sentence pairs; these splits are the same as
Zhang and Lapata (2017). We preprocess our data
by tokenizing and replacing named entities using
CoreNLP (Manning et al., 2014).

4.2 Training Details

For our experiments, we use Sockeye, an open
source Seq2Seq framework built on Apache
MXNet (Hieber et al., 2017; Chen et al., 2015). In
this model, we use LSTMs with attention for both
our encoder and decoder models with 256 hidden
units, and two hidden layers. We attempt to match
the hyperparameters described in Zhang and Lap-
ata (2017) as closely as possible; as such, we use
300-dimensional pretrained GloVe word embed-
dings (Pennington et al., 2014), and Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 0.001. We ran our models for 30 epochs.8

During training, we use our complexity-
weighted loss function, with α = 2; for our base-
line models, we use cross-entropy loss. At infer-
ence time, where appropriate, we set the beam size
b = 100, and the similarity penalty δ = 1.0. Af-
ter inference, we set the number of clusters to 20,
and we compare two separate reranking weight-
ings: one which uses fluency, adequacy, and sim-
plicity (FAS), where βf = βa = βs = 1

3 ; and
one which uses only fluency and adequacy (FA),
where βf = βa =

1
2 and βs = 0.

4.3 Baselines and Models

We compare our models to the following base-
lines:

• Hybrid performs sentence splitting and dele-
tion before simplifying with a phrase-based

8All non-default hyperparameters can be found in the Ap-
pendix.

machine translation system (Narayan and
Gardent, 2014).

• DRESS is a Seq2Seq model trained with re-
inforcement learning which integrates lexical
simplifications (Zhang and Lapata, 2017).9

• DMASS is a Seq2Seq model which inte-
grates the transformer architecture and ad-
ditional simplifying paraphrase rules (Zhao
et al., 2018).10

We also present results on several variations of
our models, to isolate the effect of each individ-
ual improvement. S2S is a standard sequence-
to-sequence model with attention and greedy
search. S2S-Loss is trained using our complexity-
weighted loss function and greedy search. S2S-
FA uses beam search, where we rerank all sen-
tences using fluency and adequacy (FA weights).
S2S-Cluster-FA clusters the sentences before
reranking using FA weights. S2S-Diverse-FA
uses diversified beam search, reranking using FA
weights. S2S-All-FAS uses all contributions,
reranking using fluency, adequacy, and simplicity
(FAS weights). Finally, S2S-All-FA integrates all
modifications we propose, and reranks using FA
weights.

5 Results

In this section, we compare the baseline models
and various configurations of our model with both
standard automatic simplification metrics and a
human evaluation. We show qualitative examples
where each of our contributions improves the gen-
erated simplification in Table 3.

5.1 Automatic Evaluation
Following previous work (Zhang and Lapata,
2017; Zhao et al., 2018), we use SARI as our
main automatic metric for evaluation (Xu et al.,
2016).11 Specifically, SARI calculates how often
a generated sentence correctly keeps, inserts, and
deletes n-grams from the complex sentence, using
the reference simple standard as the gold-standard,
where 1 ≤ n ≤ 4. Note that we do not use

9For Hybrid and DRESS, we use the generated outputs
provided in Zhang and Lapata (2017). We made a significant
effort to rerun the code for DRESS, but were unable to do so.

10For DMASS, we ran the authors’ code on our data splits
from Newsela, in collaboration with the first author to ensure
an accurate comparison.

11To calculate SARI, we use the original script provided
by (Xu et al., 2016).
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Complex Sentence Model 1 Model 1 Sentence Model 2 Model 2 Sentence
Mary travels between two

offices.
S2S

Mary is a professor at the

park.
S2S-Loss

Mary goes between

two offices.

Their fatigue changes their

voices, but they’re still on the

freedom highway.

S2S
Their condition changes

their voices, but they’re still

on the freedom highway.

S2S-FA
Their fatigue changes

their voices.

Just until recently, the education system

had banned Islamic headscarves in

schools and made schoolchildren recite

a pledge of allegiance.

S2S-FA
The education system had

banned Islamic law.

S2S-
Cluster-FA

Only until recently ,

the education system

had banned Islamic

hijab in schools.

Police used tear gas, dogs and

clubs on the unarmed

protesters.

S2S-FA
Police used tear gas and

dogs on the unarmed

protesters.

S2S-
Diverse-FA

They used tear gas and

dogs.

Table 3: Example sentences where each component of our model improved the output sentence, compared to a
model that does not use that component.

Model SARI Oracle
Hybrid 33.27 –
DRESS 36.00 –
DMASS 34.35 –
S2S 36.32 –
S2S-Loss 36.03 –
S2S-FA 36.47 54.01
S2S-Cluster-FA 37.22 50.36
S2S-Diverse-FA 35.36 52.65
S2S-All-FAS 36.30 50.40
S2S-All-FA 37.11 50.40

Table 4: Comparison of our models to baselines and
state-of-the-art models using SARI. We also include
oracle SARI scores (Oracle), given a perfect reranker.
S2S-All-FA is significantly better than the DMASS and
Hybrid baselines using a student t-test (p < 0.05).

BLEU (Papineni et al., 2002) for evaluation; even
though it correlates better with fluency than SARI,
Sulem et al. (2018) recently showed that BLEU
often negatively correlates with simplicity on the
task of sentence splitting. We also calculate ora-
cle SARI, where appropriate, to show the score we
could achieve if we had a perfect reranking model.
Our results are reported in Table 4.

Our best models outperform previous state-of-
the-art systems, as measured by SARI. Table 4
also shows that, when used separately, rerank-
ing and clustering result in improvements on this
metric. Our loss and diverse beam search meth-
ods have more ambiguous effects, especially when
combined with the former two; note however that
including diversity before clustering does slightly

Model Len FKGL TER Ins Edit
Complex 23.1 11.14 0 0 –
Hybrid 12.4 7.82 0.49 0.01 –
DRESS 14.4 7.60 0.44 0.07 –
DMASS 15.1 7.40 0.59 0.28 –
S2S 16.1 7.91 0.41 0.23 –
S2S-Loss 16.4 8.11 0.40 0.31 –
S2S-FA 7.6 6.42 0.73 0.01 7.28
S2S-Cluster-FA 9.1 6.49 0.68 0.05 7.55
S2S-Diverse-FA 7.5 5.97 0.78 0.07 8.22
S2S-All-FAS 9.1 5.37 0.68 0.05 7.56
S2S-All-FA 10.8 6.42 0.61 0.07 7.56
Reference 12.8 6.90 0.67 0.42 –

Table 5: Average sentence length, FKGL, TER score
compared to input, and number of insertions. We also
calculate average edit distance (Edit) between candi-
date sentences for applicable models.

improve the oracle SARI score.
We calculate several descriptive statistics on the

generated sentences and report the results in Table
5. We observe that our models produce sentences
that are much shorter and lower reading level,
according to Flesch-Kincaid grade level (FKGL)
(Kincaid et al., 1975), while making more changes
to the original sentence, according to Translation
Error Rate (TER) (Snover et al., 2006). In addi-
tion, we see that the customized loss function in-
creases the number of insertions made, while both
the diversified beam search and clustering tech-
niques individually increase the distance between
sentence candidates.

5.2 Human Evaluation

While SARI has been shown to correlate with hu-
man judgments on simplicity, it only weakly cor-
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Model Fluency Adequacy Simplicity All
Hybrid 2.79* 2.76 2.88* 2.81*
DRESS 3.50 3.11* 3.03 3.21*
DMASS 2.59* 2.15* 2.50* 2.41*
S2S-All-FAS 3.35 2.50* 3.11 2.99
S2S-All-FA 3.38 2.66 3.08 3.04
Reference 3.82* 3.23* 3.29* 3.45*

Table 6: Average ratings of crowdsourced human judgments on fluency, adequacy and complexity. Ratings
significantly different from S2S-All-FA are marked with * (p < 0.05); statistical significance tests were calculated
using a student t-test. We provide 95% confidence intervals for each rating in the appendix.

relates with judgments on fluency and adequacy
(Xu et al., 2016). Furthermore, SARI only consid-
ers simplifications at the word level, while we be-
lieve that a simplification metric should also take
into account sentence structure complexity. We
plan to investigate this further in future work.

Due to the current perceived limitations of au-
tomatic metrics, we also choose to elicit human
judgments on 200 randomly selected sentences to
determine the relative overall quality of our sim-
plifications. For our first evaluation, we ask native
English speakers on Amazon Mechanical Turk to
evaluate the fluency, adequacy, and simplicity of
sentences generated by our systems and the base-
lines, similar to Zhang and Lapata (2017). Each
annotator rated these aspects on a 5-point Likert
Scale. These results are found in Table 6.12

As we can see, our best models substantially
outperform the Hybrid and DMASS systems.
Note that DMASS performs the worst, potentially
because the transformer model is a more complex
model that requires more training data to work
properly. Comparing to DRESS, our models gen-
erate simpler sentences, but DRESS better pre-
serves the meaning of the original sentence.

To further investigate why this is the case, we
know from Table 5 that sentences generated by our
model are overall shorter than other models, which
also corresponds to higher TER scores. Napoles
et al. (2011) notes that on sentence compression,
longer sentences are perceived by human annota-
tors to preserve more meaning than shorter sen-
tences, controlling for quality. Thus, the drop
in human-judged adequacy may be related to our
sentences’ relatively short lengths.

To test that this observation also holds true for
simplicity, we took the candidates generated by

12We present the instructions for all of our human evalua-
tions in the appendix.

Figure 2: Effect of length on human judgments.

our best model, and after reranking them as be-
fore, we selected three sets of sentences:

• MATCH-Dress0: Highest ranked sentence
with length closest to that of DRESS
(DRESS-Len); average length is 14.10.

• MATCH-Dress+2: Highest ranked sentence
with length closest to (DRESS-Len + 2);
average length is 15.32.

• MATCH-Dress-2: Highest ranked sentence
with length closest to (DRESS-Len - 2);
average length is 12.61.

The average fluency, adequacy, and simplicity
from human judgments on these new sentences are
shown in Figure 2, along with those ranked highest
by our best model (Original). As expected, mean-
ing preservation does substantially increase as we
increase the average sentence length, while sim-
plicity decreases. Interestingly, fluency also de-
creases as sentence length increases; this is likely
due to our higher-ranked sentences having greater
fluency, as defined by language model perplexity.
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6 Error Analysis

To gain insight in what aspects of the simplifi-
cation process are challenging to our model, we
present the most recurring types of errors from
our test set.

6.1 Examples of Error Types
1. Long and complex sentences with multiple

clauses

(a) Complex: Turkey has long enshrined the secular
ideals of founding father Mustafa Kemal Ataturk,
particularly in an education system that until re-
cently banned Islamic headscarves in schools and
made schoolchildren begin the day reciting an
oath of allegiance to Ataturk’s legacy.
Reference: Schools in Turkey had banned head-
scarves.
Simple: They made schoolchildren to Ataturk’s
history.

(b) Complex: And Wal-Mart, which imports more
fruits and vegetables from Mexico than any other
U.S. company, announced its effort to force im-
provements up and down its supply chain.
Reference: Experts said Wal-Mart is an impor-
tant company.
Simple: Wal-Mart used more fruits and vegeta-
bles from the company.

2. Need for anaphora resolution
(a) Complex: He is the creative director of Rethink

Leisure & Entertainment , which is working on
several projects in China and elsewhere in Asia .
Reference: He is with Rethink Leisure & Enter-
tainment.
Simple: He is working on several projects in
China.

(b) Complex: Teachers there say Richie reads like a
high school student.
Reference: He reads like a high school student.
Simple: Richie says he is a high school student.

3. Simplifying the wrong part of the sentence
(a) Complex: Parks deliberately maintained her im-

age as shy and proper, said Adrienne Cannon, an
expert on African-American history.
Reference: Adrienne Cannon studies African-
American history.
Simple: She is an expert on African-American
history.

(b) Complex: His father owned the home when the
lava flowed slowly to the coast.
Reference: His father still owned the home.
Simple: The river cut slowly to the coast.

4. Poor substitution due to word embeddings
proximity

(a) Complex: Just until recently, the education sys-
tem had banned Islamic headscarves in schools
and made schoolchildren begin the day reciting a
pledge of allegiance to Ataturk’s legacy.

Reference: Schools in Turkey had banned head-
scarves.
Simple: Just until recently, the education officials
had banned Islamic flags.

(b) Complex: In Beijing kite circles, Fei is widely
known as the elder statesman.
Reference: In Beijing, Fei is widely known as an
expert.
Simple: In Beijing, Fei is considered a doctor.

5. Training confusion due to misalignments in
training corpus

(a) Complex: He heard the applause.
Reference: The winning word was “magician.”
Simple: But he heard the song.

(b) Complex: More than 300,000 students across the
country signed up to participate.
Reference: Rogers Middle School took part in
the program.
Simple: There were more than 300,000 students.

6. Acceptable simplifications that were not
available in the training

(a) Complex: He later tried to buy his freedom.
Reference: Henson tried to buy his freedom later.
Simple: The man tried to buy his freedom.

(b) Complex: Middle school was a rough couple of
years for Talmus’ daughter, Lili Smith.
Reference: She had a hard time in middle school.
Simple: School was a rough couple of years.

6.2 Error Discussion

Attempting to rewrite very long and complex sen-
tences resulted to consistent errors, as shown in 1a
and 1b. This observation in combination with the
examples of mis-alignments in the training corpus
(5a and 5b) indicate that we either need to improve
the alignments such the model can capture that
the simplification process involves in many cases
splitting a sentence and then simplifying or train to
learn when to split first and then attempt rewriting.

The next two types of errors show failure in cap-
turing discourse level meaning: a) errors due to
failed pronoun resolution, shown in 2a and 2b, and
b) errors due to the most important part of the sen-
tence being left out, shown in 3b and 3b. In these
cases, the sentences were not bad, but the informa-
tion was assigned to the wrong referent, or impor-
tant meaning was left out. In 4a and 4b, the substi-
tution is clearly semantically related to the target,
but changes the meaning. Finally, there were ex-
amples of acceptable simplifications, as in 6a and
6b, that were classified as errors because they were
not in the gold data. We provide additional exam-
ples for each error category in the appendix.
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To improve the performance of future models,
we see several options. We can improve the origi-
nal alignments within the Newsela corpus, partic-
ularly in the case where sentences are split. Prior
to simplification, we can use additional context
around the sentences to perform anaphora resolu-
tion; at this point, we can also learn when to per-
form sentence splitting; this has been done in the
Hybrid model (Narayan and Gardent, 2014), but
has not yet been incorporated into neural models.
Finally, we can use syntactic information to ensure
the main clause of a sentence is not removed.

7 Conclusion

In this paper, we present a novel Seq2Seq frame-
work for sentence simplification. We contribute
three major improvements over generic Seq2Seq
models: a complexity-weighted loss function to
encourage the model to choose simpler words; a
similarity penalty during inference and clustering
post-inference, to generate candidate simplifica-
tions with significant differences; and a rerank-
ing system to select the simplification that pro-
motes both fluency and adequacy. Our model
outperforms previous state-of-the-art systems us-
ing SARI, the standard metric for simplification.
More importantly, while other previous models
generate relatively long sentences, our model is
able to generate shorter and simpler sentences,
while remaining competitive regarding human-
evaluated fluency and adequacy. Finally, we pro-
vide a qualitative analysis of where our different
contributions improve performance, the effect of
length on human-evaluated meaning preservation,
and the current shortcomings of our model as in-
sights for future research.

Generating diverse outputs from Seq2Seq mod-
els could be used in a variety of NLP tasks, such as
chatbots (Shao et al., 2017), image captioning (Vi-
jayakumar et al., 2018), and story generation (Fan
et al., 2018). In addition, the proposed techniques
can also be extremely helpful in leveled and per-
sonalized text simplification, where the goal is to
generate different sentences based on who is re-
questing the simplification.
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