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Abstract

The uncertainty measurement of classifiers’
predictions is especially important in applica-
tions such as medical diagnoses that need to
ensure limited human resources can focus on
the most uncertain predictions returned by ma-
chine learning models. However, few existing
uncertainty models attempt to improve over-
all prediction accuracy where human resources
are involved in the text classification task. In
this paper, we propose a novel neural-network-
based model that applies a new dropout-
entropy method for uncertainty measurement.
We also design a metric learning method
on feature representations, which can boost
the performance of dropout-based uncertainty
methods with smaller prediction variance in
accurate prediction trials. Extensive experi-
ments on real-world data sets demonstrate that
our method can achieve a considerable im-
provement in overall prediction accuracy com-
pared to existing approaches. In particular,
our model improved the accuracy from 0.78
to 0.92 when 30% of the most uncertain pre-
dictions were handed over to human experts in
“20NewsGroup” data.

1 Introduction

Machine learning algorithms are gradually taking
over from the human operators in tasks such as
machine translation (Bahdanau et al., 2014), opti-
cal character recognition (Mithe et al., 2013), and
face recognition (Parkhi et al., 2015). However,
some real-world applications require higher accu-
racy than the results achieved by state-of-the-art
algorithms, which makes it difficult to directly ap-
ply these algorithms in certain scenarios. For ex-
ample, a medical diagnosis system (van der West-
huizen and Lasenby, 2017) is expected to have a
very high accuracy to support correct decision-
making for medical practitioners. Although do-
main experts can achieve a high performance in

these challenging tasks, it is not always feasible
to rely on limited and expensive human input for
large-scale data sets. Therefore, if we have a
model with 70% prediction accuracy, it is intu-
itive to ask what percentage of the data should be
handed to domain experts to achieve an overall ac-
curacy rate above 90%? To maximize the value
of limited human resources while achieving de-
sirable results, modeling uncertainty accurately is
extremely important to ensure that domain experts
can focus on the most uncertain results returned by
machine learning models.

Most existing uncertainty models are based
on Bayesian models, which are not only time-
consuming but also unable to handle large-scale
data sets. Deep Neural networks (DNNs) have
attracted increasing attention in recent years and
have been reported to achieve state-of-the-art per-
formance in various machine learning tasks (Yang
et al., 2016; Iyyer et al., 2014). However, un-
like probabilistic models, DNNs are still at the
early development stage in regards to providing
the model uncertainty in their predictions. For
those seeking to address the prediction uncertainty
in DNNs, it is common to suffer from the follow-
ing issues on the text classification task. Firstly,
few researchers have sought to improve overall
prediction performance when only limited human
resources are available. Different from existing
methods which focus on the value of uncertainty,
this problem needs to get domain experts involved
in emphasis on the order of the uncertain predic-
tions. For example, the importance of distance be-
tween feature representations is neglected by the
majority of existing models, but actually this is
crucial for improving the order of uncertain pre-
dictions, especially during the pre-training of em-
bedding vectors. Moreover, the methods proposed
for continuous feature space cannot be applied to
discrete text data. For example, adversarial train-
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ing is used in some uncertainty models (Goodfel-
low et al., 2014; Lakshminarayanan et al., 2017;
Mandelbaum and Weinshall, 2017). However, due
to its dependence on gradient-based methods to
generate adversarial examples, the method is not
applicable to discrete text data.

In order to simultaneously address all these
problems in existing methods, the work presented
in this paper adopts a DNN-based approach that
incorporates a novel dropout-entropy uncertainty
measurement method along with metric learning
in the feature representation to handle the uncer-
tainty problem in the document classification task.
The study’s main contributions can be summarized
as follows:

• A novel DNN-based text classification model
is proposed to achieve higher model accuracy
with limited human input. In this new ap-
proach, a reliable uncertainty model learns to
identify the accurate predictions with smaller
estimated uncertainty.

• Metric learning in feature representation is
designed to boost the performance of the
dropout-based uncertainty methods in the
text classification task. Specifically, the
shortened intra-class distance and enlarged
inter-class distance can reduce the prediction
variance and increase the confidence for the
accurate predictions.

• A new dropout-entropy method based on the
Bayesian approximation property of Dropout
in DNNs is presented. Specifically, we mea-
sure the model uncertainty in terms of the in-
formation entropy of multiple dropout-based
evaluations combined with the de-noising
mask operations.

• Extensive experiments on real-world data
sets demonstrate that the effectiveness of our
proposed approach consistently outperforms
existing methods. In particular, the macro-F1
score can be increased from 0.78 to 0.92 by
assigning 25% of the labeling work to human
experts in a 20-class text classification task.

The rest of this paper is organized as follows.
Section 2 reviews related work, and Section 3
provides a detailed description of our proposed
model. The experiments on multiple real-world
data sets are presented in Section 4. The paper

concludes with a summary of the research in Sec-
tion 5.

2 Related Work

The work related to this paper falls into two sub
topics, described as follows.

2.1 Model Uncertainty

Existing uncertainty models are usually based on
Bayesian models, which is Traditional Bayesian
models such as Gaussian Process (GP), can mea-
sure uncertainty of model. However, as a non-
parametric model, the time complexity of GP is
increased by the size of data, which makes it in-
tractable in many real world applications.

Conformal Prediction (CP) was proposed as a
new approach to obtain confidence values (Vovk
et al., 1999). Unlike the traditional underlying al-
gorithm, conformal predictors provide each of the
predictions with a measure of confidence. Also,
a measure of “credibility serves as an indicator of
how suitable the training data are used for the clas-
sification task (Shafer and Vovk, 2008). Differ-
ent from Bayesian-based methods, CP approaches
obtain probabilistically valid results, which are
merely based on the independent and identically
distributed assumption. The drawback of CP
methods is their computational inefficiency, which
renders the application CP not applicable for any
model that requires long training time such as
Deep Neural Networks.

With the recently heated research on DNNs,
the associated uncertainty models have received a
great deal of attention. Bayesian Neural Networks
are a class of neural networks which are capable of
modeling uncertainty (Denker and LeCun, 1990)
(Hernández-Lobato and Adams, 2015). These
models not only generate predictions but also pro-
vide the corresponding variance (uncertainty) of
predictions. However, as the number of model
parameters increases, these models become com-
putationally more expensive (Wang and Yeung,
2016). Lee et al. proposed a computationally ef-
ficient uncertainty method that treats Deep Neu-
ral Networks as Gaussian Processes (Lee et al.,
2017). Due to its kernel-based design, however,
it is not straightforward to apply this to the deep
network structures for text classification. Gal and
Ghahramani used dropout in DNNs as an approx-
imate Bayesian inference in deep Gaussian pro-
cesses (Gal and Ghahramani, 2016) to mitigate the
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problem of representing uncertainty in deep learn-
ing without sacrificing the computational com-
plexity. Dropout-based methods have also been
extended to various tasks such as computer vi-
sion (Kendall and Gal, 2017), autonomous vehicle
safety (McAllister et al., 2017) and medical de-
cision making (van der Westhuizen and Lasenby,
2017).

However, few of these methods are specifically
designed for text classification and lack of consid-
erations on improving the overall accuracy in the
scenario that domain experts can be involved in the
process.

2.2 Metric Learning

Metric learning (Xing et al., 2003; Weinberger
et al., 2006) algorithms design distance metrics
that capture the relationships among data repre-
sentations. This approach has been widely used
in various machine learning applications, includ-
ing image segmentation (Gong et al., 2013), face
recognition (Guillaumin et al., 2009), document
retrieval (Xu et al., 2012), and collaborative filter-
ing (Hsieh et al., 2017). Weinberger et al. pro-
posed a large margin nearest neighbor (LMNN)
method (Weinberger et al., 2006) in learning a
metric to minimize the number of class impostors
based on pull and push losses. However, as yet
there have been no report of work focusing specifi-
cally on mitigating prediction uncertainties. Man-
delbaum and Weinshall (Mandelbaum and Wein-
shall, 2017) measured model uncertainty by the
distance when comparing to the feature represen-
tations in training data, but this makes the uncer-
tainty measurement inefficient because it requires
an iteration over the entire training data set. To
the best of our knowledge, we are the first to apply
metric learning to mitigate model uncertainty in
the text classification task. We also demonstrate
that metric learning can be applied to dropout-
based approaches to improve their prediction un-
certainty.

3 Model

In this section, we propose a DNN-based approach
to predict document categories with high confi-
dence for the accurate predictions and high un-
certainty for the inaccurate predictions. The over-
all architecture of the proposed model is presented
in Section 3.1. The technical details for the met-
ric loss and model uncertainty predictions are de-

Figure 1: Overall Architecture of Proposed Model

scribed in Sections 3.2 and 3.3, respectively.

3.1 Model Overview

In order to measure the uncertainty of the predic-
tions for document classification task, we propose
a neural-network-based model augmented with
dropout-entropy uncertainty measurement and in-
corporating metric learning in its feature represen-
tation. The overall structure of the proposed model
is shown in Figure 1. Our proposed model has four
layers: 1) Input Layer. The input layer is rep-
resented by the word embeddings of each words
in the document. By default, all word vectors are
initialized by Glove (Pennington et al., 2014) pre-
trained word vectors in Wikipedia with an embed-
ding dimension of 200. 2) Sequence Modeling
Layer. The sequence modeling layer extracts the
feature representations from word vectors. This
is usually implemented by Convolutional Neural
Networks (CNN) or Recurrent Neural Networks
(RNN). In this paper, we focus on a CNN imple-
mentation with max pooling that utilizes 3 ker-
nels with filter sizes of 3, 4 and 5, respectively.
After that, a max pooling operation is applied on
the output of sequence model. 3) Dropout layer.
The convolutional layers usually contain a rela-
tively small number of parameters compared to the
fully connected layers. It is therefore reasonable
to assume that CNN layers suffer less from over-
fitting, so Dropout is not usually used after CNN
layers as it achieves only a trivial performance
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Figure 2: Feature representations with no metric learning (left) and metric learning (right).

improvement (Srivastava et al., 2014). However,
since there is only one fully-connected layer in our
model, we opted to add one Dropout layer after
the CNN layer, not only to prevent overfitting, but
also to measure prediction uncertainty (Gal and
Ghahramani, 2016). The Dropout operation will
be randomly applied to the activations during the
training and uncertainty measurement phrases, but
will not be applied to the evaluation phrase. 4)
Output layers. The output is connected by a fully
connected layer and the softmax. The loss func-
tion of our model is the combination of the cross
entropy loss of the prediction and the metric loss
of the feature representation. We regard the output
of the Dropout layer as the representation of the
document and deposit it into a metric loss func-
tion. The purpose here is to penalize large dis-
tance feature representations in the same class and
small distance feature representations among dif-
ferent classes. The details of the metric loss func-
tion will be described in Section 3.2.

3.2 Metric Learning on Text Features

For uncertainty learning in text feature space, our
purpose is to ensure the Euclidean distance be-
tween intra-class instances is much smaller than
the inter-class instances. To achieve this, we use
metric learning to train the desirable embeddings.
Specifically, let ri and rj be the feature repre-
sentations of instances i and j, respectively, then
the Euclidean distance between them is defined as
D(ri, rj) = 1

d‖ri − rj‖22, where d is the dimen-
sion of the feature representation.

Suppose the data instances in the training data
contain n classes and these are categorized into

n subsets {Sk}nk=1, where Sk denotes the set of
data instances belong to class k. Then the intra-
class loss penalizes the large Euclidean distance
between the feature representations in the same
class, which can be formalized as Equation (1).

Lintra(k) =
2

|Sk|2 − |Sk|
∑

i,j∈Sk,i<j

D(ri, rj)

(1)
where |Sk| represents the number of elements

in set Sk. The loss is the sum of all the feature
distances between each possible pair in the same
class set. Then, the loss is normalized by the num-
ber of unique pairs belonging to each class set.

The inter-class loss ensures large feature dis-
tances between different classes, which is formally
defined as Equation (2).

Linter(p, q) =
1

|Sp| · |Sq|
∑

i∈Sp,j∈Sq

[
m−D(ri, rj)

]
+

(2)
where m is a metric margin constant to dis-

tinguish between the intra- and inter-classes and
[z]+ = max(0, z) denotes the standard hinge loss.
If the feature distance between instances from dif-
ferent classes is larger than m, the loss is zero.
Otherwise, we use the value of m minus the dis-
tance as its penalty loss, with a largerm represent-
ing a larger inter-class distance. This parameter
usually varies when we use different word embed-
ding methods. In our experiment, we found that
a small m is normally needed when the word em-
bedding is initialized by a pre-trained word vector
method such as Glove (Pennington et al., 2014);
a larger m is required if word vectors are initial-
ized randomly. The overall metric loss function is
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defined in Equation (3). This combines the intra-
class loss and inter-class loss for all the classes.

Lmetric =
n∑

k=1

{
Lintra(k) + λ

∑
i 6=k

Linter(k, i)
}
(3)

where λ is a pre-defined parameter to weight the
importance of the intra- and inter-class losses. We
set λ to 0.1 by default.

Figure 2 illustrates an example of a three-class
feature representation in two dimensions. The left-
hand figure shows the feature distribution trained
with no metric learning. Obviously, the feature
distance of the intra-class is large, sometimes even
exceeding those of the inter-class distance near the
decision boundary. However, the features trained
by metric learning, shown in the right-hand fig-
ure, exhibit clear gaps between the inter-class pre-
dictions. This means the predictions with dropout
are less likely to result in an inaccurate prediction
and even reduce the variance of dropout prediction
trials. The example shown in Figure 2 has eight
dropout predictions, three of which are classified
to an inaccurate class when no metric learning is
applied compared to only one inaccurate predic-
tion with metric learning.

3.3 Uncertainty Measurement
Bayesian models such as the Gaussian process
(Rasmussen, 2004) provide a powerful tool to
identify low-confidence regions of input space.
Recently, Dropout (Srivastava et al., 2014), which
is used in deep neural networks, has been shown
to serve as a Bayesian approximation to represent
the model uncertainty in deep learning (Gal and
Ghahramani, 2016). Based on this work, we pro-
pose a novel information-entropy-based dropout
method to measure the model uncertainty in com-
bination with metric learning for text classifica-
tion. Given an input data instance x∗, we as-
sume the corresponding output of our model is y∗.
The output computed by our model incorporates a
dropout mechanism in its evaluation mode, which
means the activations of intermediate layers with
Dropout are not reduced by a factor. When we re-
peat the process k times, we obtain the output vec-
tor y∗ = {y∗1, . . . , y∗k}. Note that the outputs are
not the same since the output here is generated by
applying dropout after the feature representation
layer in Figure 1.

Given the output y∗ of k trials with Dropout,

Figure 3: Example of the dropout-entropy method.

our proposed uncertainty method has the follow-
ing four steps, as shown in Figure 3: (1) Bin
count. We use bin count to calculate the frequency
of each class. For example, if the class 2 appears
24 times in the dropout output vector y∗, the bin
count for class 2 is 24. (2) Mask. We use the mask
step to avoid random noises in the frequency vec-
tor. In this step, we set the largest m elements to
have their original values and the remaining ones
to zero. The value of m is usually chosen to be
2/3 of the total class number when the total classes
are over 10; otherwise, we just skip the step. (3)
Normalization. We use the normalization step to
calculate the probabilities of each class. (4) In-
formation entropy. The information entropy is
calculated by u = −

∑c
i=1 pk(i) log pk(i), where

pk(i) represents the frequency probability of the
i-th class in a total k trials and c is the number of
classes. We use the entropy value as the uncer-
tainty score here, in which the smaller the entropy
value is, the more confident the model is in the
output. Take the case in Figure 3 as an example.
When the frequency of class 2 is 24, the entropy
is 1.204. If the output of the 50 trials all belong to
class 2, the entropy becomes 0.401, which means
that the model is less uncertain about the predic-
tive results.

4 Experiment

In this section, the performance of the proposed
model uncertainty approach is evaluated on mul-
tiple real-world document classification data sets.
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Uncertainty Ratio (Micro F1, Improved Ratio)

0% 10% 20% 30% 40%

PL-Variance 0.760 0.799(5.10%) 0.815(7.30%) 0.827(8.87%) 0.840(10.52%)
Distance 0.780 0.784(0.59%) 0.787(0.94%) 0.795(1.91%) 0.800(2.58%)
NNGP 0.637 0.659(3.44%) 0.670(5.04%) 0.678(6.44%) 0.689(8.11%)

Dropout 0.758 0.792(4.47%) 0.827(9.08%) 0.851(12.18%) 0.879(15.93%)

Dropout + Metric 0.781 0.823(5.38%) 0.863(10.53%) 0.892(14.31%) 0.921(18.05%)

DE 0.760 0.807(6.25%) 0.849(11.73%) 0.888(16.79%) 0.917(20.70%)
DE + Metric 0.781 0.835(6.93%) 0.878(12.47%) 0.918(17.62%) 0.944(20.92%)

Uncertainty Ratio (Macro F1, Improved Ratio)

0% 10% 20% 30% 40%

PL-Variance 0.751 0.789(5.05%) 0.806(7.24%) 0.818(8.87%) 0.830(10.49%)
Distance 0.773 0.777(0.48%) 0.779(0.81%) 0.786(1.76%) 0.789(2.15%)
NNGP 0.624 0.647(3.56%) 0.657(5.27%) 0.665(6.54%) 0.675(8.13%)

Dropout 0.749 0.781(4.22%) 0.813(8.46%) 0.833(11.10%) 0.860(14.74%)

Dropout + Metric 0.773 0.816(5.47%) 0.853(10.33%) 0.878(13.59%) 0.906(17.14%)

DE 0.752 0.796(5.96%) 0.835(11.05%) 0.872(16.04%) 0.900(19.70%)
DE + Metric 0.774 0.826(6.70%) 0.866(11.97%) 0.904(16.87%) 0.929(20.02%)

Table 1: Uncertainty Scores for the 20 NewsGroup Dataset (20 Categories)

After an introduction of the experiment settings
in Section 4.1, we compare the performance
achieved by the proposed method against those
of existing state-of-the-art methods, along with an
analysis of the parameter settings and metric learn-
ing in Section 4.2. Due to space limitation, the
detailed experiment results on different sequence
models can be accessed in the full version here1.
The source code can be downloaded here2.

4.1 Experimental Setup

In our experiments, all word vectors are initial-
ized by pre-trained Glove (Pennington et al., 2014)
word vectors, by default. The word embedding
vectors are pre-trained in Wikipedia 2014 with a
word vector dimension of 200. We trained all the
DNN-based models with a batch size of 32 sam-
ples with a momentum of 0.9 and an initial learn-
ing rate of 0.001 using the Adam (Kingma and Ba,
2014) optimization algorithm.

4.1.1 Datasets and Labels
We conducted experiments on three publicly avail-
able datasets: 1) 20 Newsgroups3 (Lang, 1995):

1https://xuczhang.github.io/papers/
naacl19_uncertainty_full.pdf

2https://github.com/xuczhang/
UncertainDC

3http://qwone.com/˜jason/20Newsgroups/

The data set is a collection of 20,000 docu-
ments, partitioned evenly across 20 different news
groups; 2) IMDb Reviews (Maas et al., 2011):
The data set contains 50,000 popular movie re-
views with binary positive or negative labels from
the IMDb website; and 3) Amazon Reviews
(McAuley and Leskovec, 2013): The dataset is a
collection of reviews from Amazon spanning the
time period from May 1996 to July 2013. We used
review data from the Sports and outdoors category,
with 272,630 data samples and rating labels from
1 to 5.

For all three data sets, we randomly selected
70% of the data samples as the training set, 10%
as the validation set and 20% as the test set.

4.1.2 Evaluation Metrics
In order to answer the question ”What percentage
of data should be transferred to domain experts to
achieve an overall accuracy rate above 90%?”, we
measure the classification performance in terms of
various uncertainty ratios. Specifically, assuming
the entire testing set S has size n and an uncer-
tainty ratio r, we can remove the most uncertain
samples Sr from S based on the uncertainty ra-
tio r, where the size of the uncertainty set Sr is
r ·n. We assume the uncertain samples Sr handed
to domain experts achieve 100% accuracy. If the
uncertainty ratio r equals to 0, the model performs

https://xuczhang.github.io/papers/naacl19_uncertainty_full.pdf
https://xuczhang.github.io/papers/naacl19_uncertainty_full.pdf
https://github.com/xuczhang/UncertainDC
https://github.com/xuczhang/UncertainDC
http://qwone.com/~jason/20Newsgroups/
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Uncertainty Ratio (Accuracy, Improved Ratio)

0% 10% 20% 30% 40%

PL-Variance 0.878 0.911(3.69%) 0.937(6.70%) 0.955(8.71%) 0.970(10.42%)
Distance 0.884 0.893(0.95%) 0.892(0.91%) 0.893(1.04%) 0.895(1.24%)
Dropout 0.880 0.912(3.72%) 0.936(6.43%) 0.957(8.75%) 0.969(10.20%)

Dropout + Metric 0.884 0.917(3.73%) 0.944(6.78%) 0.961(8.70%) 0.973(10.11%)

DE 0.878 0.911(3.70%) 0.937(6.71%) 0.956(8.83%) 0.969(10.33%)
DE + Metric 0.883 0.918(3.91%) 0.944(6.87%) 0.961(8.78%) 0.973(10.20%)

Uncertainty Ratio (F1 Score, Improved Ratio)

0% 10% 20% 30% 40%

PL-Variance 0.880 0.913(3.68%) 0.939(6.67%) 0.956(8.65%) 0.971(10.34%)
Distance 0.885 0.894(1.07%) 0.898(1.42%) 0.901(1.84%) 0.904(2.13%)
Dropout 0.881 0.914(3.70%) 0.938(6.41%) 0.958(8.67%) 0.971(10.13%)

Dropout + Metric 0.885 0.917(3.70%) 0.944(6.74%) 0.961(8.67%) 0.974(10.06%)

DE 0.880 0.913(3.67%) 0.939(6.67%) 0.957(8.77%) 0.970(10.25%)
DE + Metric 0.884 0.918(3.88%) 0.944(6.83%) 0.961(8.73%) 0.974(10.14%)

Table 2: Uncertainty Scores for the IMDb Dataset (2 Categories)

Uncertainty Ratio (Accuracy, Improved Ratio)

0% 10% 20% 30% 40%

PL-Variance 0.700 0.738(5.43%) 0.764(9.14%) 0.784(1.20%) 0.801(14.4%)
Distance 0.697 0.699(0.29%) 0.702(0.72%) 0.704(1.00%) 0.705(1.15%)
Dropout 0.700 0.735(5.00%) 0.764(9.14%) 0.800(14.29%) 0.831(18.71%)

Dropout + Metric 0.710 0.746(5.07%) 0.779(9.72%) 0.815(14.79%) 0.847(19.30%)

DE 0.700 0.739(5.57%) 0.773(10.43%) 0.806(15.14%) 0.836(19.43%)
DE + Metric 0.724 0.764(5.52%) 0.800(10.50%) 0.834(15.19%) 0.866(19.61%)

Table 3: Uncertainty Scores for the Amazon Dataset (5 Categories)

without uncertainty measurement concerns.
For the binary classification task, we use the ac-

curacy and F1-score to measure the classification
performance based on the testing set S \ Sr for
different uncertainty ratios r. Similarly, for multi-
class tasks, we use the micro-F1 and macro-F1
scores utilizing the same settings as for the binary
classification.

4.1.3 Comparison Methods
The following methods are included in the per-
formance comparison: 1) Penultimate Layer Vari-
ance (PL-Variance). Activations before the soft-
max layer in a deep neural network always re-
veal the uncertainty of the prediction (Zaragoza
and d’Alche Buc, 1998). As a baseline method,
we use the variance of the output of a fully
connected layer in Figure 1 as the uncertainty
weight. 2) Deep Neural Networks as Gaussian

Processes (NNGP) (Lee et al., 2017). This ap-
proach applies a Gaussian process to perform
a Bayesian inference for deep neural networks,
with a computationally efficient pipeline being
used to compute the covariance function of the
Gaussian process. The default parameter set-
tings in the source code4 were applied in our ex-
periments. 3) Distance-based Confidence (Dis-
tance)(Mandelbaum and Weinshall, 2017). This
method assigns confidence scores based on the
data embedding compared to the training data.
We set its nearest neighbor parameter k = 10.
4) Dropout (Gal and Ghahramani, 2016). Here,
dropout training in DNNs is treated as an approx-
imation of Bayesian inference in deep Gaussian
processes. We set the sample number T as 100
in our experiments. 5) Dropout + Metric. In

4https://github.com/brain-research/nngp
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Uncertainty Ratio (Micro F1, Improved Ratio)

0% 10% 20% 30% 40%

Random DE 0.659 0.702(6.47%) 0.748(13.46%) 0.792(20.14%) 0.831(26.03%)
DE + Metric 0.660 0.705(6.85%) 0.752(13.92%) 0.802(21.57%) 0.845(28.04%)

Glove DE 0.760 0.807(6.25%) 0.849(11.73%) 0.888(16.79%) 0.917(20.70%)
DE + Metric 0.781 0.835(6.93%) 0.878(12.47%) 0.918(17.62%) 0.944(20.92%)

Table 4: Embedding vs. No Pre-trained Embedding

Figure 4: Prediction performance for different metric mar-
gin settings.

order to validate the effectiveness of our metric
learning, we applied our proposed metric learn-
ing method to the Dropout method. The metric
margin m and coefficient λ were set as 0.5 and
0.1, respectively. 6) Our proposed method. We
evaluate our proposed method in two different set-
tings, Dropout-Entropy alone (DE) and Dropout-
Entropy with metric learning (DE + Metric). Here,
we set the sample number T = 100, coefficient
λ = 0.1 and the metric margin may vary from dif-
ferent data sets.

4.2 Experimental Results

This subsection presents the results of the uncer-
tainty performance comparison and the analysis of
the metric learning and parameter settings.

4.2.1 Uncertainty Results
Table 1 shows the Micro-F1 and Macro-F1 scores
for ratios of uncertain predictions eliminated rang-
ing from 10 to 40% for the 20NewsGroup data
set. To demonstrate its effect, metric learning was
also applied to the baseline method Dropout, and
our proposed method DE. The improvement ra-

tio compared to the results with no uncertainty
elimination, shown in the 0% column, are pre-
sented after the F1 scores. Based on these re-
sult, we can conclude that: 1) Our proposed
method, DE+Metric, significantly improves both
the Micro- and Macro-F1 scores when a por-
tion of uncertain predictions are eliminated. For
example, the Micro-F1 improves from 0.78 to
0.92 when 30% of the uncertain predictions are
eliminated. 2) Comparing the results obtained
by DE and DE+Metric, metric learning signif-
icantly improves the results obtained for differ-
ent uncertainty ratio settings. Similar results
can be observed when comparing the Dropout
and Dropout+Metric. For example, the Micro-
F1 scores for Dropout+Metric are around 5% bet-
ter than the Dropout method alone, boosting them
from 0.851 to 0.892, with a 30% uncertainty ratio.
3) The DE method outperforms all the other meth-
ods when metric learning is not applied. Specif-
ically, DE is around 4% better than the Dropout
method in terms of the Micro-F1 score.

The results for IMDb and Amazon data sets are
presented in Table 2 and Table 3. When com-
paring our proposed model’s performance across
three data sets, we found that the greater improve-
ments are achieved on multi- instead of binary-
class classification data sets. One possible ex-
planation is that a comparatively large portion
of multi-class features are close to the decision
boundary in the feature space. Through the met-
ric learning strategy of minimizing intra-class dis-
tance while maxmizing the inter-class instances,
the feature distance between the inter-class predic-
tions is enlarged and the quality of embeddings is
greatly enhanced.

4.2.2 Analysis of Metric Learning

The impact of metric learning on feature repre-
sentation is analyzed in this section. Figure 5
shows the 300-dimension feature representations
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(a) No Metric Learning (b) Metric Margin m = 10

Figure 5: Feature visualization of 20 NewsGroup testing data set in two dimensions by t-SNE algorithm.

for the 20 NewsGroup testing data set, with Figure
5(a) presenting the features trained without metric
learning and Figure 5(b) those trained by metric
learning with a margin parameter m=10. We used
the t-SNE algorithm (Maaten and Hinton, 2008) to
visualize the high dimensional features in the form
of two dimensional images. From the results, we
can clearly see that the distances between the inter-
classes are significantly enlarged compared to the
features trained without metric learning shown
in Figure 5(a). This enlarged inter-class spac-
ing means that dropout-based uncertainty meth-
ods have smaller prediction variances in case their
dropout prediction trials are accurate.

4.2.3 Parameter Analysis

The impact of the metric margin and word embed-
dings are discussed in this section.

Metric Margin. Figure 4 shows the impact of
metric margin parameters, ranging from 0 to 800
on the 20 NewsGroup data set with a 20% uncer-
tainty ratio. From the results, we can conclude
that: (1) The prediction performance is not sen-
sitive to the point at which the metric margin pa-
rameter is set as long as its value is not extremely
large. (2) Compared to the model trained with no
metric learning, our methods consistently achieve
better performance when the metric margin is set
no larger than 10. When the metric margin is too
large, however, the prediction cross-entropy loss
is hard to minimize and thus dampens the overall
prediction performance. (3) The results of Macro-
F1 are similar to Micro-F1 with relatively small
scores.

Impact of Word Embedding. We also analyzed
the impact of our proposed methods on different
word embedding initialization methods, including
random and pre-trained Glove word vectors in 200
dimensions. Table 4 shows the results of Micro-F1
for the different uncertainty ratios. We can observe
that: 1) The performance of Glove-based methods
are around 15% better than that of the randomly
initialized methods for different uncertainty ratios.
2) Metric learning based on a Glove initialization
generally outperforms a random initialization. For
instance, the F1 score of Glove rises by 0.29 when
the uncertainty ratio is 20%, while for a random
method it only increases by 0.04.

5 Conclusion

In this paper, a DNN-based model is proposed
to address the uncertainty mitigation problem in
the presence of human involvement in a text clas-
sification task. To achieve this, we proposed a
dropout-entropy uncertainty measurement method
with the metric learning for the feature represen-
tation. Extensive experiments on real-world data
sets confirmed that our proposed approach dramat-
ically outperforms competing methods, exhibiting
a significant improvement in accuracy when a rel-
atively small portion of the uncertainty predictions
are handed over to domain experts.
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network for factoid question answering over para-
graphs. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 633–644.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in bayesian deep learning for computer
vision? In Advances in neural information process-
ing systems, pages 5574–5584.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
In Advances in Neural Information Processing Sys-
tems, pages 6405–6416.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 331–339.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S
Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. 2017. Deep neural networks as gaussian
processes. arXiv preprint arXiv:1711.00165.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Amit Mandelbaum and Daphna Weinshall. 2017.
Distance-based confidence score for neural network
classifiers. arXiv preprint arXiv:1709.09844.

Rowan McAllister, Yarin Gal, Alex Kendall, Mark
Van Der Wilk, Amar Shah, Roberto Cipolla, and
Adrian Vivian Weller. 2017. Concrete problems for
autonomous vehicle safety: Advantages of bayesian
deep learning. International Joint Conferences on
Artificial Intelligence, Inc.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of the 7th
ACM conference on Recommender systems, pages
165–172. ACM.

Ravina Mithe, Supriya Indalkar, and Nilam Divekar.
2013. Optical character recognition. Interna-
tional journal of recent technology and engineering
(IJRTE), 2(1):72–75.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman,
et al. 2015. Deep face recognition. In BMVC, vol-
ume 1, page 6.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Carl Edward Rasmussen. 2004. Gaussian processes in
machine learning. In Advanced lectures on machine
learning, pages 63–71. Springer.

Glenn Shafer and Vladimir Vovk. 2008. A tutorial on
conformal prediction. Journal of Machine Learning
Research, 9(Mar):371–421.

http://dl.acm.org/citation.cfm?id=2986766.2986882
http://dl.acm.org/citation.cfm?id=2986766.2986882
http://dl.acm.org/citation.cfm?id=2986766.2986882
http://dl.acm.org/citation.cfm?id=3045390.3045502
http://dl.acm.org/citation.cfm?id=3045390.3045502
http://dl.acm.org/citation.cfm?id=3045390.3045502
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162


3136

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Volodya Vovk, Alexander Gammerman, and Craig
Saunders. 1999. Machine-learning applications of
algorithmic randomness.

Hao Wang and Dit-Yan Yeung. 2016. Towards
bayesian deep learning: A survey. arXiv preprint
arXiv:1604.01662.

Kilian Q Weinberger, John Blitzer, and Lawrence K
Saul. 2006. Distance metric learning for large mar-
gin nearest neighbor classification. In Advances in
neural information processing systems, pages 1473–
1480.

Jos van der Westhuizen and Joan Lasenby. 2017.
Bayesian lstms in medicine. arXiv preprint
arXiv:1706.01242.

Eric P Xing, Michael I Jordan, Stuart J Russell, and
Andrew Y Ng. 2003. Distance metric learning with
application to clustering with side-information. In
Advances in neural information processing systems,
pages 521–528.

Zhixiang (Eddie) Xu, Minmin Chen, Kilian Q. Wein-
berger, and Fei Sha. 2012. From sbow to dcot
marginalized encoders for text representation. In
Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management,
CIKM ’12, pages 1879–1884, New York, NY, USA.
ACM.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Hugo Zaragoza and Florence d’Alche Buc. 1998. Con-
fidence measures for neural network classifiers. In
Proceedings of the Seventh Int. Conf. Informa-
tion Processing and Management of Uncertainty in
Knowlegde Based Systems.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1145/2396761.2398536
https://doi.org/10.1145/2396761.2398536

