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Abstract

Open Information Extraction (OpenlE), the
problem of harvesting triples from natural lan-
guage text whose predicate relations are not
aligned to any pre-defined ontology, has been a
popular subject of research for the last decade.
However, this research has largely ignored
the vast quantity of facts available in semi-
structured webpages. In this paper, we define
the problem of OpenlE from semi-structured
websites to extract such facts, and present an
approach for solving it. We also introduce a
labeled evaluation dataset to motivate research
in this area. Given a semi-structured website
and a set of seed facts for some relations exist-
ing on its pages, we employ a semi-supervised
label propagation technique to automatically
create training data for the relations present
on the site. We then use this training data to
learn a classifier for relation extraction. Ex-
perimental results of this method on our new
benchmark dataset obtained a precision of over
70%. A larger scale extraction experiment on
31 websites in the movie vertical resulted in
the extraction of over 2 million triples.

1 Introduction

Knowledge extraction is the problem of extracting
(subject, predicate, object) triples from unstruc-
tured or semi-structured data, where the subject
and object are entities and the predicate indicates
the relationship between them. In conventional in-
formation extraction (which we call “ClosedIE”),
a closed set of potential predicates and their se-
mantics are pre-defined in an ontology. Open In-
formation Extraction (OpenlE) is an alternative
approach that has no pre-defined ontology and in-
stead represents the predicate with a string ex-
tracted from the source data. These extractions can
capture a much vaster array of semantic relation-
ships than ClosedIE and have been used to support
many downstream use-cases, including question-
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answering, ontology discovery, embedding gener-
ation, fact checking, and summarization (Mausam,
2016). Previous OpenlE work has concentrated on
raw text, with the aim to extract “open” triples
from natural language sentences (Niklaus et al.,
2018), with another line of work focused on ex-
tracting from webtables (Cafarella et al., 2008).
Semi-structured websites (e.g. IMDDb) contain
many pages displaying information in stand-alone
fields in relatively consistent locations on each
page, with entities and the relationship between
them indicated via formatting features such as
section headers and lists of key-value pairs. Fig-
ure 1 shows an example page and the triples it
conveys. Semi-structured websites have recently
been shown to be a rich target for IE; the Knowl-
edge Vault large-scale web extraction experiment,
which extracted from semi-structured websites,
natural language text, webtables, and Semantic
Web annotations, found that semi-structured web-
sites contributed 75% of total extracted facts and
94% of high-confidence extractions (Dong et al.,
2014); the Ceres system showed that one can au-
tomatically extract from semi-structured sites with
a precision over 90% using distant supervision
(Lockard et al., 2018). These works, however, all
build on the tradition of semi-structured ClosedIE
techniques (Kushmerick et al., 1997; Soderland,
1999; Gulhane et al., 2011; Furche et al., 2014).
Interestingly, we are not aware of any work that
applies OpenlE on semi-structured sources, de-
spite the great potential to identify new relation-
ships and new knowledge triples. We investigated
8 movie websites from the Structured Web Data
Extraction (SWDE) corpus (Hao et al., 2011) and
found that the IMDDb ontology can cover only 7%
of semantically unique predicates on these sites.
The major challenges that distinguish natural
language text and semi-structured data are the ba-
sic unit and the inherent structure of the data. In
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natural language text, each sentence is a unit; it
typically consists of a subject, a verb, and an ob-
ject, which corresponds naturally to the subject,
predicate, and object of a knowledge triple. Simi-
larly, in webtables, each table is a unit; its rows,
columns, and cells also naturally correspond to
subjects, predicates, and objects in triples.

In the semi-structured setting, the basic unit
is the webpage, which may contain hundreds or
thousands of entity mentions. There is no fixed
layout between the subject entity, object entity,
and their relation, which may be far apart on the
webpage. For example, Figure 1 contains object
strings that are below, to the left, and to the right
of their corresponding predicates; even trickier, for
object string “Uma Thurman”, the correct predi-
cate string “Cast” is much farther away than the in-
correct one “Crew”. Despite the challenges, semi-
structured pages do provide inherent visual struc-
ture to help distinguish the subject of a page, and
(predicate, object) pairs for the subject. In this pa-
per we answer the following question: Given semi-
structured webpages in a website, how can we tell
which field contains the subject, and which fields
contain the (predicate, object) pairs for the subject
through any visual or DOM-structured clue?

This paper makes three contributions. Our first
contribution is to formally define a new problem
of OpenlE from semi-structured websites (Sec-
tion 2). We created a benchmark! for this problem
by enhancing the SWDE corpus (Hao et al., 2011);
our benchmark contains a high accuracy and cov-
erage set of ground truth extractions for 21 web-
sites spanning three domains, comprising 855,748
labels across 27,641 pages (Section 4).

Our second contribution is OpenCeres, a solu-
tion for OpenlE on semi-structured websites (Sec-
tion 3). Our solution is novel in three aspects. First,
whereas ClosedIE techniques on semi-structured
data focus on extracting objects for given pred-
icates, we also identify predicate strings on the
website that represent the relations. Second, while
ClosedIE techniques can only learn extraction
patterns for predicates where there exists seed
knowledge, we identify unseen predicates by ap-
plying semi-supervised label propagation. Third,
whereas most existing extraction techniques on
semi-structured sites leverage only DOM patterns
as evidence, we use visual aspects of the webpage

'nttps://homes.cs.washington.edu/
~lockardc/expanded_swde.html

, “Psychological Drama”)
Reunion Films”)

("Tape”, “Cast”, “Ethan Hawke”)
("Tape”, “Cast”, “Robert Sean
Leonard”)

("Tape”, “Cast”, “Uma Thurman”)
Robert Sean Leonard

.U’"a Thurman [ (“Tape”, ”Director”, “Richard Linklater”) ]
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Richard Linklater

Director

Maryse Alberti Cinematographer

Figure 1: A cropped portion of the detail page from
allmovie.com for the film 7ape with some triples indi-
cated. Solid green and dashed yellow arrows indicate
predicate strings and objects respectively.

for distant supervision and label propagation.

Our final contribution is a comprehensive eval-
uation on our new benchmark dataset and online
websites (Section 5). Our proposed method ob-
tained an F1 of 0.68, significantly higher than
baseline systems, while extracting 7 times as many
predicates as were present in the original ontology.
In addition, we evaluate on a set of 31 movie web-
sites, yielding 1.17 million extractions at a preci-
sion of 0.70. Our results inspire new directions for
improvement as discussed in Section 7, and serve
as a good baseline for future work.

2 Overview

2.1 Problem Definition

We propose the problem of OpenlE from semi-
structured websites. A semi-structured website W
consists of a set of detail pages that each contains
information about a particular entity, the fopic en-
tity of the page. This information is typically pop-
ulated from an underlying database into an HTML
template to create the detail pages. The goal of
semi-structured OpenlE is to recover all (sub-
Jject, predicate, object) triples represented in these
templatized fields, including the extraction of the
string that semantically represents each predicate.
Relation objects are sometimes present without
an explicit predicate string defining the relation-
ship; since OpenlE requires extraction of a pred-
icate string, we only consider the case where a
meaningful predicate string exists on the page.

Definition 2.1 (Semi-Structured OpenlE) Let
W be a semi-structured website, with each page

3048



w; containing facts about a topic entity t;. Semi-
Structured OpenlE extracts a set of triples from
W such that the subject, predicate, and object of
each triple is a string value on a page in W, with
the subject representing t; and the predicate string
semantically representing the relation between
the subject and object as asserted by the webpage.

Following the tradition of relation extraction,
which considers only binary relationships, we do
not consider extraction of compound value types
(CVTs) (Freebase, 2018), which express multi-
way relationships. In this work, we narrow our fo-
cus to Semi-structured OpenlE from a given do-
main, since we will rely on pre-existing knowl-
edge about that domain to provide us with seed
annotations. We leave the extension to the general
semi-structured OpenlE problem for future work.

2.2 From ClosedIE to OpenlE

We first summarize the Ceres techniques proposed
in (Lockard et al., 2018), which is the state-of-
the-art for ClosedIE from semi-structured web-
sites. Ceres learns a model capable of generaliz-
ing across variations in a website from training la-
bels automatically generated by the distant super-
vision technique. The automatic annotation con-
tains two steps. First, fopic annotation annotates
the topic name on the page. Second, relation an-
notation annotates each object field, where the re-
lation is guessed as a relationship in the seed ontol-
ogy that is valid between the topic and the object.

OpenlE needs to go beyond existing relations in
the ontology, identifying relations not existing in
seed knowledge. As such, it raises two challenges
for the relation annotation step. First, in addition
to annotating the objects, we also need to be able
to identify the predicate fields in order to extract
predicate strings. Second, in addition to annotating
the predicates already in the seed knowledge, we
also need to identify new predicates on a webpage.

Figure 2 shows the infrastructure of our OpenlE
solution, OpenCeres. We propose a relation anno-
tation method that is suitable for OpenlE (shown
in the shaded blocks), and inherit other compo-
nents from Ceres (Lockard et al., 2018). Our key
intuition to solve this problem is that different
predicates often share some visual features, such
as being aligned vertically or horizontally, sharing
the same font, size or color, and so on. Thus, if we
can identify at least one (predicate, object) pair on
the page, we can look for other similarly formatted

Semi-structured website W

Knowledgtl: base (KB)

Distantly supervised
annotation of topic entity
and objects of KB
predicates

| Training Data Creation |

Identify candidate
(predicate, object) pairs

’ Identify predicate strings for KB predicates ‘

l

Label propagation of (predicate, object) pairs
creates training data for KB and open predicates

L l,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,_‘

Supervised learning

DOM node
classifier

Figure 2: An overview of our proposed semi-structured
OpenlE model learning process. Shaded areas indicate
contributions of our process.

pairs of nodes and assume that they also represent
(predicate, object) pairs. Accordingly, we propose
a three-stage process that combines distant super-
vision and semi-supervised learning.

1. Predicate-object candidate generation: We
first generate potential candidate (predicate,
object) pairs, as described in Section 3.1. The
search for these candidate pairs is quasilinear
in the number of DOM nodes, thereby avoid-
ing examination of every pair of DOM nodes.

2. Distant supervision: We then use a seed
knowledge base (KB) to identify instances
of (predicate, object) pairs appearing in the
seed, where the predicate exists in a pre-
defined ontology, as described in Section
3.2. For example, for the page in Figure
1, we would hope to identify (“Director”,
“Richard Linklater”) assuming that fact was
in our KB.

3. Semi-supervised label propagation: We per-
form a semi-supervised label propagation
step to identify pairs of nodes that are for-
matted similarly to the known (predicate, ob-
Jject) pairs as described in Section 3.3; these
new (predicate, object) pairs give us train-
ing labels for new predicates. For example, in
Figure 1, we should identify the pair (“Cin-
ematographer”, “Maryse Alberti”) since it
is formatted similarly to our seed pair, even
though the concept of cinematographer does
not exist in our seed ontology.

3 Approach

We now describe the three key steps we use to gen-
erate training labels.
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3.1 Candidate pair generation

Recall that for ClosedIE we only need to annotate
objects; for OpenlE we need to additionally iden-
tify the predicates, which will then allow us to find
other predicates not found in the seed KB. Our first
step is thus to find all potential (predicate, object)
pairs on a webpage for further annotation.

Determining which nodes should be checked as
potential predicates for a given object is not triv-
ial. On the one hand, there may be hundreds of
nodes on the page, so considering all potential
pairs of nodes would be computationally expen-
sive. On the other hand, consider that a webpage
about a movie may contain a long list of actors
under the section header “Cast’’; in Euclidean dis-
tance, the actor at the bottom of the list may be
quite far away from the “Cast” string at the top of
the list, so only searching nearby nodes may miss
the predicate node.

To identify potential predicate nodes, we use
our intuition that predicate strings should be more
common across a website than their related ob-
ject strings. Consider ( “Language”, “English”) as
an example. Even though the object string “En-
glish” might be quite common on a site, it should
be less frequent than its corresponding predicate
string “Language”. According to the site-wide fre-
quency rankings, we consider a (predicate, object)
pair a candidate pair only if the predicate appears
more frequently than the object?.

Following this intuition, we start by computing
the frequency of each string found across all pages
in the website, and create a ranked list. Second,
for each DOM node, we create candidate pairs
consisting of the node as object and the k-nearest
higher ranking nodes as predicate . Third, to iden-
tify potential predicates that may be farther away
but still represent a section header for the region
of the page containing the object, we recursively
travel up the DOM tree, and at each level we find
the k-highest ranked candidate predicates paired
with any candidate object in that DOM subtree.
We create additional candidate pairs pairing those
candidate predicates with all candidate objects in
that subtree. Thus in total each candidate object is
paired with up to dk candidate predicates, where d
is the depth of the DOM.

For example, consider the object strings in the

2We consider strings consisting of numeric values only as
potential objects and not predicates, regardless of their fre-
quency.

Cast section of Figure 1, with a k£ value of 1.
Since “Cast” appears on every page, an initial can-
didate pair would be created for (“Cast”, “Ethan
Hawke”). If Hawke is mentioned more frequently
across the site than the other actors, he would be
paired as the potential predicate for their strings
since they are closer to his name than “Cast”,
such as (“Ethan Hawke”, “Robert Sean Leonard™).
However, since Hawke and Leonard are in the
same <div>, the recursive process would add the
candidate pair (“Cast”, “Robert Sean Leonard”)
since “Cast” would be the most highly ranked
string associated with any object in that section.

3.2 Seed labels

In the second stage, given a webpage, the subject
and objects we have identified on the page, and
the candidate (predicate, object) pairs, we are now
ready for distant supervision annotation to gener-
ate seed labels that are (predicate, object) pairs for
the subject appearing in the seed knowledge.

We start with the Ceres object identification to
generate a list of nodes containing object strings
corresponding to KB predicates, and look up
(predicate, object) pairs in the candidate list that
contain the object node. We use lexical clues to
we filter a candidate (predicate, object) pair if the
predicate name is not semantically similar to the
predicate in the ontology. There are multiple ways
of doing this. One way is to compare the cosine
similarity of word embeddings (such as FastText
(Bojanowski et al., 2017)) representing the pred-
icate string and the ontology predicate name and
filter using a threshold. Another way is to manu-
ally compile a few terms for each predicate in our
ontology, and filter a predicate if it does not con-
tain any of the terms as a substring. Empirically
we found using a manually compiled list, which
takes about a minute per predicate, gives higher
precision than using embeddings, though it limits
us to the particular language of those terms. Af-
ter the filtering step, we can fairly safely choose
the (predicate, object) pair where the predicate is
closest to the object in Euclidean distance.

3.3 Semi-supervised Label Propagation

In the third stage, given a set of (predicate, object)
pairs on a webpage generated in the first stage, we
aim at following visual clues to find other (pred-
icate, object) pairs on the same page. These new
candidate pairs serve as training labels for predi-
cates that may not occur in the seed knowledge.
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We apply semi-supervised learning, which typ-
ically resorts to a similarity graph where similar
instances are connected by edges in the graph, and
propagates existing labels to neighbor nodes. Our
intuition is that (predicate, object) pairs should
share similar formatting; we capture this intuition
as we construct the graph.

Graph construction: Each vertex in the similar-
ity graph represents a candidate pair, an edge con-
necting two vertices indicates that the two candi-
date pairs are similar, and the edge weight gives
the level of similarity. We compute similarity be-
tween candidate pairs by visual clues?, creating an
edge between them if they have similar predicate
formatting and simliar object formatting. Format-
ting similarity requires having the same font, font
size, font weight, and text alignment, and being ei-
ther vertically or horizontally aligned.

We then weight the edges by adding up similar-
ities of the horizontal, vertical, and DOM relation-
ship between predicate and object. Similarity of
DOM relationship is 1 for exact match and O other-
wise. Similarity of horizontal relationship is com-
puted by measuring the distance between the pred-
icate and the object in a (pred, obj) pair, and then
taking the ratio of minimum distance and maxi-
mum distance*. We compute similarity of vertical
relationship in a similar way, giving:

where ¢ and j are candidate pairs, r4 calculates the
DOM path, r, calculates the horizontal distance
between candidate predicate and candidate object,
and r, calculates the vertical distance.

A sample graph for the webpage in Figure 1 is
shown in Figure 3. The pair (“Director”, “Richard
Linklater”) is connected to the pair (“Cinematog-
rapher”, “Maryse Alberti”) with a weight of 3,
since they have identical values for all three re-
lationships, while (“Sub-Genres:”, “Psychological

3To harvest these features, we render the page using the
headless Chrome browser and access element attributes with
Selenium (https://www.seleniumhg.org/).

*In practice, there are multiple ways to calculate horizon-
tal distance: Left side to left side, left side to right side, right
to right, and right to left. The same holds for vertical distance.
We calculate each possible ratio and use the one that gives the
highest weight. In the case that the ratio is negative (e.g. one
pair had predicate to the left of the object while the other pair
had it to the right), we set it to 0.

(“Genres”,

”Reunion

— @ Genres”,
\ ”Reunion
’ Films”)
2.1
(“Sub-

Genres”,
”Psycholo

(“Director”,
”Richard
Linklater”)

-

“ (“Genres”,

(“Director”,
”Maryse
Alberti”)

Drama”)
1.0 N
oo 0 ——
( Clnehma: (“Cinemat
S ographer”,

”Richard 3
inkiater”) MO} Marvse
Linklater”) Alberti”)

Figure 3: A portion of the graph corresponding to the
webpage in Figure 1. Lighter nodes indicate seed pairs
labeled by the Ceres process.

Drama”) and (“Sub-Genres”, “Reunion Films”)
have an edge weight of 2.1 since the latter’s hori-
zontal distance is ten times greater than the former.

To speed up propagation, we keep only the 10
top-weighted edges for each pair. On average, on
the dataset in Section 4, pages have 1,142 text
fields resulting in 2,813 candidate pairs connected
by 14,733 edges, far less than the 1.3 million can-
didate pairs (and corresponding increase in edges)
that would result from a naive pairwise matching.

Label propagation: We use the MultiRankWalk
label propagation algorithm (Lin and Cohen,
2010), which has been shown to be successful in
very low-data situations. This allows us to propa-
gate even when we only have a single seed label on
a page. MultiRankWalk adapts the Personalized
PageRank (PPR) algorithm for a classification set-
ting, conducting a PageRank run for each class,
with the personalization vector set to equally di-
vide the restart probability among positive labeled
examples of the class. The PageRank runs are con-
ducted over the weighted graph constructed in the
prior step. Each unlabeled vertex is assigned to
the class whose PageRank run gives it the highest
score. In our case we have two PPR runs: a posi-
tive run for labeled (predicate, object) candidates
and a negative run for unlabeled candidates.

The results of this process are then used as train-
ing data to train a supervised Ceres (Lockard et al.,
2018) extraction model.

4 Extended SWDE Benchmark

The Structured Web Data Extraction (SWDE)
dataset has served as a benchmark for semi-
structured web extraction, with webpages and
ground truth extractions from 10 websites in each
of 8 domains (Hao et al., 2011). However, the
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ground truth in SWDE only covers a subset of the
predicates found on each site, typically 3-4 predi-
cates per domain.

We extend it as follows: Of the 8 domains, we
kept 4 domains whose page topics are named en-
tities. We extended their gold set to include ex-
tractions identifying all key-value semi-structured
fields on the websites. Since not all SWDE web-
sites can still be rendered in the browser (due to
missing resources), we eliminated websites that
we were unable to successfully render in the
Chrome browser, resulting in 30 websites. We then
attempted to create ground truth via a combination
of wrapper induction based on manually-labeled
training data (with an extractor implementation
based on (Gulhane et al., 2011)), hand-crafted ex-
traction rules, and manual cleanup of remaining
errors. Eventually, we generated accurate labels
for 21 sites in 3 domains.

This new extended benchmark includes both
extracted object values as well as the predicate
string that accompanies each value on the page.
The statistics of the augmented dataset are shown
in Table 1. We enhanced SWDE in two ways.
First, SWDE on average contains 4,480 triples for
3 predicates from these 21 websites, whereas we
have an average of 41K triples for 36 predicates.
The number of predicates per website ranges from
5to 272 (Hollywood features very fine-grained re-
lationships like “Assistant Art Director”). Second,
when multiple predicate strings may apply on the
webpage, we list all of them in order of specificity.
Taking Figure 1 as an example, we include both
“Director” and “Crew” for a relation, considering
the former to be more specific. To our knowledge,
this is the first dataset that represents all key-value
pairs found in semi-structured web data.

S Experimental Evaluation

5.1 Experimental Setup

Datasets: Our primary dataset is the augmented
SWDE corpus described in Section 4. In addi-
tion, we used the set of 31° movie websites (com-
prising 433,000 webpages) found in Common-
Crawl® from Lockard et al. (2018). To generate
seed KBs for the distant supervision, we relied on
the methodology from Lockard et al. (2018), using
the IMDb database for the Movie domain, and us-

SWe removed the two sites on which Lockard et al. (2018)
reported Ceres made no annotations.
Swww.commoncrawl.org

Domain Site # Predicates # Labels
Movie AllMovie 65 104,303
Movie AMCTV 20 85,916
Movie Hollywood 272 77,047
Movie iHeartMovies 9 21,253
Movie IMDb 36 152,880
Movie Metacritic 18 43,450
Movie RottenTomatoes 12 65,524
Movie Yahoo 12 28,354
University ~ CollegeProwler 26 40,707
University =~ ECampusTours 17 18,448
University ~ Embark 67 46,431
University ~ MatchCollege 68 107,763
University =~ USNews 22 21,269
NBAPlayer ESPN 22 6,757
NBAPIlayer FanHouse 16 6,656
NBAPlayer FoxSports 15 6,157
NBAPIlayer MSNca 12 5,208
NBAPlayer SI 12 6,082
NBAPlayer Slam 13 5,453
NBAPlayer USAToday 5 2,178
NBAPlayer Yahoo 9 3,912

Table 1: Statistics of the augmented SWDE dataset.

ing the original SWDE ground truth for websites
CollegeBoard and ESPN to create a KB for the
University and NBAPlayer domains respectively.
Implementations: We compared OpenCeres with
two baselines. The three algorithms apply the
same method to extract topic subjects but differ in
how they extract (predicate, object) pairs.

1. WEIR: Proposed by Bronzi et al. (2013), the
Web Extraction and Integration of Redun-
dant data (WEIR) approach takes as input
a set of websites in the same subject do-
main and makes use of overlap in observed
entities across sites to learn extraction rules
for predicates. The system is unsupervised,
though it does require a dictionary of po-
tential page topic entities for the domain to
align pages between sites. WEIR also con-
tains a method for automatically identifying
predicate strings for the extraction rules it
learned by finding strings that frequently oc-
cur nearby extracted objects in the HTML
templates of sites in the domain.

2. Colon Baseline: Semi-structured pages fre-
quently represent a (predicate, object) pair
via a set of adjacent DOM nodes, with the
predicate string ending in a colon and the
object string either to its right or below it.
This baseline starts with the (predicate, ob-
Jject) candidate pairs generated in Section 3.1,

3052



identifies those where the predicate field ends
with a colon, and extracts them as a predicate
along with their closest candidate object ei-
ther to their right or below.

3. OpenCeres: This implements our system ex-
actly as described in Section 3, using the gen-
erated training data to train a Ceres extractor.

In addition, to understand the uper bound of
OpenCeres, we implemented two versions using
ground truth data for training seeds:

4. OpenCeres-Gold: This implements our sys-
tem, but skips the label propagation step and
replaces noisy seed labels (Section 3.2) with
samples from ground truth triples. We sam-
pled 25% of triples for each predicate, so this
method is essentially ClosedIE Ceres with
incomplete but clean training labels, giving
an upper bound on the system’s performance
when no errors are introduced during training
data generation and label propagation.

5. OpenCeres-GoldProp: This implements
OpenCeres-Gold, but adds the label propa-
gation step described in Section 3.3. Rather
than sampling 25% of ground truth triples
from all predicates, we instead sample p%
of ground truth predicates for a site (with
p varying from 10 to 100) and then sample
25% of the corresponding triples for each
page. The process is run five times for each
setting of p and the results are averaged.

Evaluation: Evaluation is tricky for semi-
structured OpenlE because a page may contain
multiple valid predicates for a relation. Recall that
the SWDE benchmark data we generated (Sec-
tion 4) lists all predicate strings that are valid,
ranked in their order of specificity. We thus define
two scores for an extracted triple.

* A strict score that requires an exact match be-
tween the extracted predicate and the most-
specific predicate string in the ground truth.

* A lenient score that counts an extraction as
correct if the extracted predicate matches any
of the predicate strings in the ground truth.

For the SWDE dataset, where we have com-
plete ground truth, we compute precision, recall,
and F1. For the CommonCrawl dataset, where no
ground truth exists, we sampled 500 extractions at
each confidence threshold (giving a 4% margin of
error) and manually scored them; since we cannot
calculate true recall, we report precision and yield.

Movie NBA University

System

P R P R P R

WEIR (Bronzi et al., 2013) 0.23 0.17 0.08 0.17 0.13 0.18

Colon Baseline 0.63 021 051 033 046 031
OpenCeres 0.77 0.68 0.74 048 0.65 0.29
OpenCeres-Gold 099 074 098 080 0.99 0.60

Table 2: Extraction precision and recall (lenient) on
SWDE domains. OpenCeres on average improves over
baseline by 36% on precision and by 88% on recall.

5.2 Results on SWDE

Overall results: Table 2 shows the precision and
recall obtained via lenient scoring. Our results
show that OpenCeres outperformed both base-
lines, achieving an average precision of 72%
across the three domains, with an average recall of
48%. Comparing with OpenCeres-Gold on Movie,
our precision is 22% lower, while recall is only
5% lower, showing that our label propagation is
fairly effective in preserving recall, but introduces
errors reducing precision. WEIR does not perform
as well as ColonBaseline, showing that our (pred-
icate, object) candidate identification technique
works well.

Our recall is a robust 68% in the Movie domain,
but is much lower in the other two domains. This
is because we failed to make any extraction in 3
of the 5 University sites and 2 of the 8 NBA sites
due to the inability to find a predicate string for the
seed predicates. In some cases no predicate string
existed, but in others the string was not in our lexi-
con. In fact, if we skip those websites where we
extract nothing, our recall increases to 58% for
NBA and 44% for University. Other recall misses
occur when a page has some semi-structured fields
that differ significantly in format from those found
in our seed ontology, so they were too dissimilar
for the label propagation to extend to them.

Details: We now deep dive to results of
OpenCeres, shown in Table 3. First, our scoring
under the “strict” rules is only slightly lower than
under “lenient” rules, because the case that mul-
tiple predicates apply is not common and we are
often able to find the most specific ones. Across
all triples, the overall lenient F1 is 0.68 and strict
F1 is 0.61. Second, at predicate-level, OpenCeres
has an average precision of 74% and recall of 39%,
showing that our method attains high precision for
the new predicates it identifies. Third, through the
label propagation technique, we are able to extract
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an average of 10.5 new predicates for every predi-
cate in our seed ontology.

A sample of 100 erroneous OpenCeres extrac-
tions shows that 33% of errors are due to the pres-
ence of CVTs on the page. For example, the movie
site Rotten Tomatoes contains a “Full Review”
predicate that contains review date, writer, publi-
cation, and text; we extracted only the date, which
arguably is not useful. Considering these extrac-
tions as correct will increase the precision to 81%.
Among the errors, 22% were due to incoherent
predicates such as “See More”, while 20% were
due to incorrect extraction of a template string as
an object of a correct predicate.

Label propagation: Figure 4 shows how the la-
bel propagation process successfully creates new
training examples from a small number of seeds.
While propagation does introduce some precison
errors, when only 10% of predicates are given to
OpenCeres-GoldProp as seeds (and only 25% of
triples sampled for each predicate), training data
recall is already nearly 50%. As the percentage
of seed predicates rises, the seeds become more
likely to capture the full variety of predicate for-
matting, and recall rises.

There are a number of reasons why the recall
upper bound demonstrated by OpenCeres-Gold
(and OpenCeres-GoldProp) is less than perfect.
First, a small number of relations in the dataset
have predicate or object strings that span multiple
text fields (particularly in the University vertical);
the implemented system can only extract a sin-
gle text field, so these will be missed. Second, the
Candidate Pair Identification algorithm has imper-
fect recall. Finally, because only 25% of ground
truth triples were used for each page of training
data, some true positive examples were sampled
as negative examples for training, thereby lower-
ing classification recall.

Parameter setting: Table 4 shows that Candidate
Pair Identification has increasing recall in captur-
ing true candidate pairs in the SWDE-Movie verti-
cal with more neighbors considered, with a trade-
off in increased runtime due to the creation of
more pairs; we used k = 5 in our experiments.

5.3 Results on CommonCrawl

We now report results of ClosedIE and OpenlE ex-
tractions on the 31 CommonCrawl websites; the
ClosedIE implementation is a subset of the Ope-
nlE system, without the shaded components in

Movie NBA Player University
Triple-level F1 0.72 (0.65)  0.58 (0.58) 0.41(0.36)
Pred-level Prec 0.55(0.52)  0.86 (0.86) 0.81(0.76)
Pred-level Rec 0.35(0.32)  0.46 (0.46) 0.37(0.35)
Pred-level F1 0.43 (0.40)  0.60 (0.60) 0.51(0.48)
New:Existing-pred ratio 44:1 43:1 23.0:1

Table 3: Detailed results of OpenCeres using lenient
scoring, with strict scoring results shown in parenthe-
ses.
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Figure 4: Precision and recall of the training data auto-

matically created for the Movie domain by OpenCeres-
GoldProp, after label propagation from seed data cre-
ated by first sampling varying percents of the ground
truth predicates for a site and then sampling a constant
25% of ground truth objects for each predicate.

Figure 2. Of these 31 websites, we successfully
extracted from 22 sites using OpenlE, and failed
to extract from 9 sites because of our inability
to match their predicate strings to our lexicon for
seed predicates (4 sites were in foreign languages
while our lexicon is in English, on 3 sites the pages
had no predicate strings labeling the seed object,
and 2 sites used terms outside our lexicon).
Figure 5 shows the precision-yield curve of our
ClosedIE and OpenlE extractions as we vary the
confidence threshold. At a 0.5 confidence thresh-
old, we extracted 2.3M triples at a precision of
0.58, where 1.17M (51%) have new predicates.
A higher threshold of 0.8 yielded 1.17M extrac-
tions at a precision of 0.70, with 50% of extrac-
tions representing new predicates. The high per-
centage of extractions with new predicates shows
the big promise of our method in enriching exist-
ing knowledge bases not only with new entities
and new facts, but also with new relationships.

6 Related Work

In unstructured text, OpenlE was originally pro-
posed by Banko et al. (2007), an approach ex-
tended by ReVerb (Fader et al., 2011) and Ollie
(Mausam et al., 2012), which relied on syntactic
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k  #candidates recall

1,863 0.92
3,044 0.95
11 4,104 0.98

Table 4: Average number of candidate pairs produced
by considering k-nearest higher ranking text fields for
each candidate object on the SWDE-Movie dataset,
along with recall over true pairs.
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Figure 5: Extraction precision vs. number of extrac-
tions on the CommonCrawl dataset at various confi-
dence thresholds; ClosedIE is the implementation of
the Ceres system. OpenCeres-All shows all extractions
from OpenCeres, while OpenCeres-New shows only
the OpenCeres extractions with new predicates.

constraints to identify relation patterns. Our ap-
proach is influenced by Wu and Weld (2010), who
aligned Wikipedia infobox contents to article text
to automatically create training data for an extrac-
tor. Recent work on neural extraction models (Cui
et al., 2018) has explored entirely supervised mod-
els learned from a modified version of the QA-
SRL dataset (Stanovsky et al., 2018).

The line of research that has most closely ex-
amined the prospect of OpenlE-style extractions
using webpage structure is the work on Webtables
(Cafarella et al., 2008; Dalvi et al., 2012; Balakr-
ishnan et al., 2015; Cafarella et al., 2018). This
work specifically examines the identification of
subjects, predicate, and object strings but is lim-
ited to fields in rows and columns created using
HTML <table> tags. Extractions from webta-
bles have recently been harnessed as a source of
facts for question-answering systems (Pasupat and
Liang, 2015; Krishnamurthy et al., 2017).

In extraction from semi-structured websites,
the traditional approach is wrapper induction, in
which a rule learning algorithm is applied to a set
of labeled training examples (Kushmerick et al.,
1997). Work in this line of research has achieved
high accuracy from only a few labeled exam-
ples, but requires manually-annotated examples

for each website (Gulhane et al., 2011). To remove
this bottleneck, researchers have explored alterna-
tive ways to automatically create labeled data and
learn models from such potentially noisy labels
(Dalvi et al., 2011; Gentile et al., 2015; Furche
et al., 2014; Lockard et al., 2018). However, these
approaches cannot find triples for predicates that
are not in the seed ontology.

The Roadrunner project (Crescenzi et al., 2001)
does attempt to identify the objects of all relations
represented on a site, but does not extract predicate
strings. However, the WEIR project (Bronzi et al.,
2013) extended this framework with a heuristic
to harvest predicate strings based on words found
in DOM nodes that form part of the path of the
learned XPath extraction rule. This is the first
work that could truly be considered an OpenlE
approach to semi-structured extraction. However,
as we show in our experiments, the constraints of
their heuristic limit the recall of this approach.

7 Conclusions

We presented a new problem of Open Information
Extraction from semi-structured websites, and are
releasing a new set of over 855,000 ground truth
extractions for 21 websites available in the SWDE
corpus. We also proposed an algorithm for Ope-
nlE that employs semi-supervised label propaga-
tion to discover new predicates based on a set of
seed predicates in a known ontology. This method
attained a 68% F1 score in OpenlE extractions on
our benchmark. In addition, a large-scale evalua-
tion on 31 CommonCrawl movie websites yielded
extractions of over two million triples.

In the future, we would like to improve extrac-
tion by training a model to extract (predicate, ob-
Jject) pairs directly without having to train on par-
ticular predicates. Such a model could potentially
be based on visual clues common across websites,
so a single model could be applied to many sites.
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