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Abstract
Question Answering (QA) naturally reduces
to an entailment problem, namely, verifying
whether some text entails the answer to a ques-
tion. However, for multi-hop QA tasks, which
require reasoning with multiple sentences, it
remains unclear how best to utilize entailment
models pre-trained on large scale datasets such
as SNLI, which are based on sentence pairs.

We introduce Multee, a general architecture
that can effectively use entailment models for
multi-hop QA tasks. Multee uses (i) a local
module that helps locate important sentences,
thereby avoiding distracting information, and
(ii) a global module that aggregates informa-
tion by effectively incorporating importance
weights. Importantly, we show that both mod-
ules can use entailment functions pre-trained
on a large scale NLI datasets. We evaluate per-
formance on MultiRC and OpenBookQA, two
multihop QA datasets. When using an entail-
ment function pre-trained on NLI datasets,
Multee outperforms QA models trained only
on the target QA datasets and the OpenAI
transformer models.

1 Introduction

How can we effectively use textual entailment
models for question answering? Previous attempts
at this have resulted in limited success (Harabagiu
and Hickl, 2006; Sacaleanu et al., 2008; Clark
et al., 2012). With recent large scale entailment
datasets (Bowman et al., 2015; Williams et al.,
2018; Khot et al., 2018) pushing entailment mod-
els to high accuracies (Chen et al., 2017; Parikh
et al., 2016; Wang et al., 2017), we re-visit this
challenge and propose a novel method for re-
purposing neural entailment models for QA.

A key difficulty in using entailment models
for QA turns out to be the mismatch between
the inputs to the two tasks: large-scale entail-
ment datasets are typically framed at a sentence

Figure 1: An example illustrating the challenges in us-
ing sentence-level entailment model for multi-sentence
reasoning needed for QA, and the high-level approach
used in Multee.

level, whereas question answering requires verify-
ing whether multiple sentences, taken together as
a premise, entail a hypothesis.

There are two straightforward ways to address
this mismatch: (1) aggregate independent entail-
ment decisions over each premise sentence, or (2)
make a single entailment decision after concate-
nating all premise sentences. Neither approach is
fully satisfactory. To understand why, consider
the set of premises in Figure 1, which entail the
hypothesis Hc. Specifically, the combined infor-
mation in P1 and P3 entails Hc, which corre-
sponds to the correct answer Cambridge. On one
hand, aggregating independent decisions will fail
because no individual premise entails HC . On
the other hand, simply concatenating premises to
form a single paragraph will fail because distract-
ing information in P2 and P4 can muddle use-
ful information in P1 and P3. An effective ap-
proach, therefore, must recognize relevant sen-
tences (i.e., avoid distracting ones) and compose
their sentence-level information.

Our solution to this challenge is based on the
observation that a sentence-level entailment func-
tion can be re-purposed for both recognizing rel-
evant sentences, and for computing sentence-level
representations. Both tasks require comparing in-
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formation in a pair of texts, but the objectives
of the comparison are different. This means we
can take an entailment function that is trained for
basic entailment (i.e., comparing information in
texts), and adapt it to work for both recognizing
relevance and computing representations. Thus,
this architecture allows us to incorporate advances
in entailment architectures and to leverage pre-
trained models obtained using large scale entail-
ment datasets.

To this end, we propose a general architecture
that uses a (pre-trained) entailment function fe for
multi-sentence QA. Given a hypothesis statement
Hqa representing a candidate answer, and the set
of premise sentences {Pi}, our proposed archi-
tecture uses the same function fe for two compo-
nents: (a) a sentence relevance module that scores
each Pi based on its potential relevance to Hqa,
with the goal of weeding out distractors; and (b) a
relevance-weighted aggregator that combines en-
tailment information from multiple Pi.

Thus, we build effective entailment aware rep-
resentations of larger contexts (i.e., multiple sen-
tences) from those of small contexts (i.e., individ-
ual sentences). The main strength of our approach
is that, unlike standard attention mechanisms, the
aggregator module uses the attention scores from
the relevance module at multiple levels of abstrac-
tions (e.g., multiple layers of a neural network)
within fe, using join operations that compose rep-
resentations at each level. We refer to this multi-
level aggregation of textual entailment representa-
tions as Multee (pronounced multi).

Our implementation of Multee uses
ESIM (Chen et al., 2017), a recent sentence-level
entailment model, pre-trained on SNLI and
MultiNLI datasets. We demonstrate its effective-
ness on two challenging multi-sentence reasoning
datasets: MultiRC (Khashabi et al., 2018) and
OpenBookQA (Mihaylov et al., 2018). Multee
using ELMo contextual embeddings (Peters et al.,
2018) matches state-of-the-art results achieved
with large transfomer-based models (Radford
et al., 2018) that were trained on a sequence of
large scale tasks (Sun et al., 2019). Ablation
studies demonstrate that both relevance scoring
and multi-level aggregation are valuable, and
that pre-training on large entailment corpora is
particularly helpful for OpenBookQA.

This work makes three main contributions: (i)
A novel approach to use pre-trained entailment

models for question answering. (ii) A model that
incorporates local (sentence level) entailment de-
cisions with global (document level) entailment
decisions to effectively aggregate information for
multi-hop QA task. (iii) An empirical evaluation
that shows entailment based QA can achieve state-
of-the-art performance on two challenging multi-
hop QA datasets, OpenBookQA and MultiRC.

2 Question Answering using Entailment

Non-extractive question answering can be seen
as a textual entailment problem, where we ver-
ify whether a hypothesis constructed out of a
question and a candidate answer is entailed by
the knowledge—a collection of sentences1 in the
source text. The probability of an answer A, given
a question Q, can be modeled as the probability of
a set of premises {Pi} entailing a hypothesis state-
ment Hqa constructed from Q and A:

Pr[A | Q, {Pi}]
∆
= Pr[{Pi} � Hqa] (1)

Here we use � to denote textual entailment.
Given QA training data, we can then learn a
model that approximates the entailment probabil-
ity Pr[{Pi} � Hqa].

Can one build an effective QA model ge using
an existing entailment model fe that has been pre-
trained on a large-scale entailment dataset? Fig-
ure 2 illustrates two straightforward ways of doing
so, using fe as a black-box function:

Figure 2: Black Box Applications of Textual Entail-
ment Model for QA: Max and Concat models

(i) Aggregate Local Decisions (Max): Use fe to
check how much each sentence Pi entails Hqa on
its own, and aggregate these local entailment deci-
sions, for instance, using a max operation.

ge({Pi}, Hqa) = max
i
fe(Pi, Hqa) (2)

1This collection can be a sequence in the case of passage
comprehension or a list of sentences, potentially from varied
sources, in the case of QA over multiple documents.
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(ii) Concatenate Premises (Concat): Combine
the premise sentences in a sequence to form a sin-
gle large passage P , and use fe to check whether
this passage as a whole entails the hypothesisHqa,
making a single entailment decision:

ge({Pi}, Hqa) = fe(P,Hqa) (3)

Our experiments reveal, however, that neither
approach is an effective means of using pre-trained
entailment models for QA (see Table 1). For the
example in Figure 1, Max model would not be
able to consider information from P1 and P3 to-
gether. Instead, it will pickup Silicon Valley as the
answer since P2 is close to Hs, “Facebook was
launched in Silicon Valley”. Similarly, Concat
would also be muddled by distracting information
in P2, which will weaken its confidence in answer
Cambridge. Therefore, without careful guidance,
simple aggregation can easily add distracting in-
formation into the premise representation, causing
entailment to fail. This motivates the need for new,
effective mechanisms for global reasoning over a
collection of premises.

3 Our Approach: Multee

We propose a new entailment based QA model,
Multee, with two components: (i) a sentence

relevance model, which learns to focus on the
relevant sentences, and (ii) a multi-layer aggre-
gator, which uses an entailment model to ob-
tain multiple layers of question-relevant represen-
tations for the premises and then composes them
using the sentence-level scores from the relevance
model. Finding relevant sentences is a form of lo-
cal entailment between each premise and the an-
swer hypothesis, whereas aggregating question-
relevant representations is a form of global entail-
ment between all premises and the answer hypoth-
esis. This means, we can effectively re-purpose
the same pre-trained entailment function fe for
both components. Figure 3 shows an architecture
that uses multiple copies of fe to achieve this.

3.1 Sentence Relevance Model
The goal of this module is to identify sentences
in the paragraph that are important for the given
hypothesis. As shown in Figure 1, this helps the
global module aggregate relevant content while re-
ducing the chances of picking up distracting infor-
mation. A sentence is considered important if it
contains information that is relevant to answering

the question. In other words, the importance of a
sentence can be modeled as its entailment proba-
bility, i.e., how well the sentence by itself supports
the answer hypothesis. We can use a pre-trained
entailment model to obtain this. The importance
αi of a sentence Pi can be modeled as:

αi = fe(Pi, Hqa) (4)

This can be further improved by modeling the
sentence with its surrounding context. This is
especially useful for passage-level QA, where
the neighboring sentences provide useful context.
Given a premise sentence Pi, the entailment func-
tion fe computes a single hypothesis-aware repre-
sentation xi containing information in the premise
that is relevant to entailing the answer hypothesis
Hqa. This is essentially the output of last layer
of neural function fe before projecting it to logits.
We denote this part of fe that outputs last vector
representation as fev and full fe that gives entail-
ment probability as fep .

We use these hypothesis-aware xi vectors for
each sentence as inputs to a BiLSTM producing a
contextual representation ci for each premise sen-
tence Pi, which is then fed to a feedforward layer
that predicts the sentence-level importance as:

αi = softmax(W T ci + b) (5)

The components for generating xi are part of
the original entailment function fe and can be pre-
trained on the entailment dataset. The BiLSTM to
compute ci and the parameters W and b for com-
puting αi are not part of the original entailment
function and thus can only be trained on the target
QA task. We perform this additional contextual-
ization only when sentences form contiguous text.
Additionally, for datasets such as MultiRC, where
the relevant sentences have been marked, we intro-
duce a loss term based on the true relevance label
and predicted weights, αi.

3.2 Multi-level Aggregation
The goal of this module is to aggregate repre-
sentations from important sentences in order to
make a global entailment decision. There are two
key questions to answer: (1) how to combine the
sentence-level information into a paragraph-level
representation and (2) how to use the sentence rel-
evance weights {αi}.

Most entailment models include many layers
that transform the input premise and the hypothe-
sis. A typical neural entailment stack includes en-
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Figure 3: Multee overview: Multee includes two main components, a relevance module, and a multi-layer
aggregator module. Both modules use pre-trained entailment functions (fep and fev ). fep is the full entailment
model that gives entailment probability, and fev is part of it excluding last projection to logits and softmax. The
multi-level aggregator uses multiple copies of entailment function fev , one for each sub-aggregator performing a
join at a different layer. Right part of figure zooms in on one such sub-aggregator joining at layer `.

coding layers that independently generate contex-
tual representations of the premise and the hypoth-
esis, followed by some cross-attention layer that
yields relationships between the premise and hy-
pothesis words, and additional layers that use this
cross-attention to generate premise attended rep-
resentations of the hypothesis and vice versa. The
final layers are classification layers which deter-
mine entailment based on the representations from
the previous layer. Each layer thus generates inter-
mediate representation that captures different type
of entailment related information. This presents us
with a choice of multiple points for aggregation.

Figure 3 illustrates our approach for aggregating
sentence-level representations into a single para-
graph level representation. For each premise Pi

in the passage, we first process the pair (Pi, Hqa)
through the entailment stack (fev ) resulting in a
set of intermediate representations {X̃i

`} for each
layer `. We can choose a particular layer ` to
be the aggregation layer. We then compute a
weighted combination of the sentence-level out-
puts at this layer {X̃i

`} to produce a passage-level
representation Ỹ `. The weights for the sentences
are obtained from the Sentence Relevance model.
We refer to this as a join operation as shown in
the Figure 3. Layers of the entailment function
fev that are below the join operate at a sentence-
level, while layers above the join now operate over
paragraph-wise representations. The final layer
(i.e. the top most layer) of fev thus gives us a vec-
tor representation of the entire passage. This type
of join can be applied at multiple layers result-
ing in paragraph vectors that correspond to mul-
tiple levels of aggregation. We concatenate these

paragraph vectors and pass them through a feed-
forward network projecting them down to logits,
that can be used to compute the final passage wide
entailment probabilities.

3.2.1 Join Operations

Given a set of sentence-wise outputs from the
lower layer {X̃i} and the corresponding sentence-
relevance weights {αi}, the join operation com-
bines them into a single passage-level representa-
tion Ỹ , which can be directly consumed by the
layer above it in the stack. The specifics of the
join operation depends on the shape of the out-
puts from the lower layer, and the shape of the in-
puts expected by the layer after the join. Here we
show four possible join operations, one for each
layer. The ones defined for Score Layer and Em-
bedding Layer can be reduced to black-box base-
lines, while we use the other two in Multee.
Score Layer: The score layer outputs the entail-
ment probabilities {si} for each premise to hy-
pothesis independently, which need to be joined
to one entailment score. One way to do this is to
simply take a weighted maximum of the individual
entailment probabilities. So we have X̃i = si ∀i
and Ỹ = maxi

(
αisi

)
. This reduces to black-box

Max model (Equation 2) when using {αi} = 1.
Embedding Layer: The embedding layer outputs
a sequence of embedded vectors of [P̄i]

2 one se-
quence for each premise Pi and another sequence
of embedded vectors [H̄qa] for the answer hypoth-
esis Hqa. A join operation in this case scales
each embedded vector in a premise by its rele-
vance weight and concatenates them together to

2We use [.] to denote a sequence and .̄ to denote a vector
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form [P̄ ]. H̄qa is passed through unchanged.

X̃i = ([P̄i], [H̄qa]) ∀i
[P̄ ] = [α1[P̄1];α2[P̄2]; . . . ;αn[P̄n]]

Ỹ =
(
[P̄ ], [H̄qa]

)
For non-contextual word embeddings, this re-

duces to Concat Premises (Eq. 3) when {αi} = 1.
Final Layer (FL): The final layer in the entail-
ment stack usually outputs a single vector h̄ which
is then used in a linear layer and softmax to pro-
duce label probabilities. The join operation here is
a weighted sum of the premise-level vectors. So
we have X̃i = h̄i ∀i and Ỹ =

∑
i αih̄i.

This is similar to a standard attention mecha-
nism, where attended representation is computed
by summing the scaled representations. However,
such scaled addition is not possible when the out-
puts from lower layers are not of the same shapes,
as in the following case.
Cross Attention Layer (CA): Cross-attention is a
standard component of many entailment and read-
ing comprehension models. This layer produces
three outputs: (i) For each premise Pi, we get a
hypothesis to premise cross attention matrix Mhpi

with shape (h × pi), where h is the number of hy-
pothesis tokens, and pi is the number of tokens
in premise Pi; (ii) for each premise Pi, we get a
sequence of vectors [P̄i] that corresponds to the
token sequence of the premise Pi; and (iii) for
the hypothesis, we get a single sequence of vec-
tors [H̄qa] that corresponds to its token sequence.
Mhpi attention matrix was generated by cross at-
tention from [H̄qa] to [P̄i].

The join operation in this layer produces a cross
attention matrix that spans the entire passage, i.e.,
has shape (h × p), where p is the total num-
ber of tokens across all premises. The opera-
tion first scales the cross-attention matrices by the
sentence-relevance weights {αi} in order to “tone
down” the influence of distracting/irrelevant sen-
tences, and then re-normalizes the final matrix:

X̃i = (Mhpi , [P̄i], [H̄qa]) ∀i
Mhp =

[
αiM

hp1 ; . . . ; αiM
hpn
]

Mhp
ij =

Mhp
ij∑

kM
hp
ik

[P̄ ] =
[
[P̄1]; [P̄2]; ...; [P̄n]

]
Ỹ = (Mhp, P̄ , H̄qa)

where Mhp
ij is ith row and jth column of Mhp.

Multee’s multi-layer aggregator module uses
join operations at two levels: Cross Attention
Layer (CA) and Final Layer (FL). The two cor-
responding aggregators share parameters up till
the lower of the two join layers (CA in this
case), where they both operate at the sentence
level. Above this layer, one aggregator switches
to operating at the paragraph level, where it has
its own, unshared parameters. In general, if
Multee were to aggregate at layers `i1, `i2, . . . , `ik,
then the aggregators with joins at layers ` and
`′ respectively could share parameters at layers
1, . . . ,min{`, `′}.

3.3 Implementation Details

Multee uses the ESIM stack as the entailment
function pre-trained on SNLI and MultiNLI for
both the relevance module and for the multi-layer
aggregator module. It uses aggregation at two-
levels, one at the cross-attention level (CA) and
one at the final layer (FL). All uses of the entail-
ment function in Multee are initialized with
the same pre-trained entailment model weights.
The embedding layer and the BiLSTM layer pro-
cess paragraph-level contexts but processing at
higher layers are done either at premise level or
paragraph-level depending on where the join op-
eration is performed.

4 Experiments

Datasets: We evaluate Multee on two datasets,
OpenBookQA (Mihaylov et al., 2018) and Mul-
tiRC (Khashabi et al., 2018), both of which
are specifically designed to test reasoning over
multiple sentences. MultiRC is paragraph-based
multiple-choice QA dataset derived from varying
topics where the questions are answerable based
on information from the paragraph. In MultiRC,
each question can have more than one correct an-
swer choice, and so it can be viewed as a bi-
nary classification task (one prediction per an-
swer choice), with 4,848 / 4,583 examples in
Dev/Test sets. OpenBookQA, on the other hand,
has multiple-choice science questions with exactly
one correct answer choice and no associated para-
graph. As a result, this dataset requires the rele-
vant facts to be retrieved from auxiliary resources
including the open book of facts released with the
paper and other sources such as WordNet (Miller,
1995) and ConceptNet (Speer and Havasi, 2012).
It contains 500 questions in the Dev and Test sets.
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OpenBookQA MultiRC

Accuracy F1a | F1m | EM
Dev Test Dev Test

Entailment Multee 56.2 54.8 69.6 | 73.0 | 22.8 70.4 | 73.8 | 24.5
Based Models Concatenate Premises 47.2 47.6 68.3 | 71.3 | 17.9 68.5 | 72.5 | 18.0
with ELMo Max of Local Decisions 47.8 45.2 66.5 | 69.3 | 16.3 66.70 | 70.4 | 19.4

Entailment Multee 54.6 55.8 68.3 | 71.7 | 16.4 69.9 | 73.6 | 19.0
Based Models Concatenate Premises 47.4 42.6 66.9 | 70.7 | 14.8 68.7 | 72.4 | 16.3
with GloVe Max of Local Decisions 44.4 47.6 66.8 | 70.3 | 16.9 67.7 | 71.1 | 18.2

Previously LR (Khashabi et al., 2018) — — 63.7 | 66.5 | 11.8 63.5 | 66.9 | 12.8
Published IR (Khashabi et al., 2018) — — 60.0 | 64.3 | 54.8 | 53.9 |
Results QM + ELMo (Mihaylov et al., 2018) 54.6 50.2 — —

ESIM + ELMo (Mihaylov et al., 2018) 53.9 48.9 — —
KER (Mihaylov et al., 2018) 55.6 51.4 — —

Large OFT (Sun et al., 2019) — 52.0 67.2 | 69.3 | 15.2 —
Transformer OFT (ensemble) (Sun et al., 2019) — 52.8∗ 67.7 | 70.3 | 16.5∗ —
Models RS (Sun et al., 2019) — 55.2∗ 69.2 | 71.5 | 22.6∗ —

RS (ensemble) (Sun et al., 2019) — 55.8∗ 70.5 | 73.1 | 21.8∗ —

Table 1: Comparison of Multee with other systems. Starred (*) results are based on contemporaneous system.
Results marked (—) are not available. RS is Reading Strategies, KER is Knowledge Enhanced Reader, OFT is
OpenAI FineTuned Transformer.

Preprocessing: For each question and answer
choice, we create an answer hypothesis statement
using a modified version of the script used in Sc-
iTail (Khot et al., 2018) construction. We wrote a
handful of rules to better convert the question and
answer to a hypothesis. We also mark the span of
answer in the hypothesis with special begin and
end tokens, @@@answer and answer@@@ re-
spectively3. For MultiRC, we also apply an off-
the-shelf coreference resolution model4 and re-
place the mentions when they resolve to pronouns
occurring in a different sentence5. For Open-
BookQA, we use the exact same retrieval as re-
leased by the authors of OpenBookQA6 and use
the OpenBook and WordNet as the knowledge
source with top 5 sentences retrieved per query.
Training Multee: For OpenBookQA we use
cross entropy loss for labels corresponding to 4 an-
swer choices. For MultiRC, we use binary cross
entropy loss for each answer-choice separately
since in MultiRC each question can have more
than one correct answer choice. The entailment

3Answer span marking gave substantial gains for all en-
tailment based models including the baselines.

4https://github.com/huggingface/neuralcoref
5It is hard to learn co-reference, as these target datasets

are too small to learn this in an end-to-end fashion.
6https://github.com/allenai/OpenBookQA

components are pre-trained on sentence-level en-
tailment tasks and then fine-tuned as part of end-
to-end QA training. The MultiRC dataset includes
sentence-level relevance labels. We supervise the
Sentence Relevance module with a binary cross
entropy loss for predicting these relevance labels
when available. We used PyTorch (Paszke et al.,
2017) and AllenNLP to implement our models and
ran them on Beaker7. For pre-training we use
the same hyper-parameters of ESIM(Chen et al.,
2017) as available in implementation of AllenNLP
(Gardner et al., 2017) and fine-tune the model pa-
rameters. We do not perform any hyper-parameter
tuning for any of our models. We fine-tune all lay-
ers in ESIM except for the embedding layer.
Models Compared: We experiment with Glove
(Pennington et al., 2014) and ELMo (Peters et al.,
2018) embeddings for Multee and compare
with following three types of systems:
(A) Baselines using entailment as a black-box
We use the pre-trained entailment model as a
black-box in two ways: concatenate premises
(Concat) and aggregate sentence level decisions
with a max operation (Max). Both models were
also pre-trained on SNLI and MultiNLI datasets
and fine-tuned on the target QA datasets with same

7https://beaker.org/

https://beaker.org/
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pre-processing.
(B) Previously published results: For MultiRC,
there are two published baselines: IR (Information
Retrieval) and LR (Logistic Regression). These
simple models turn out to be strong baselines on
this relatively smaller sized dataset. For Open-
BookQA, we report published baselines from
(Mihaylov et al., 2018): Question Match with
ELMo (QM + ELMo), Question to Answer ESIM
with ELMo (ESIM + ELMo) and their best result
with the Knowledge Enhanced Reader (KER).
(C) Large Transformer based models: We com-
pare with OpenAI-Transformer (OFT), pre-trained
on large-scale language modeling task and fine-
tuned on respective datasets. A contemporaneous
work,8 which published these transformer results,
also fine-tuned this transformer further on a large
scale reading comprehension dataset, RACE (Lai
et al., 2017), before fine-tuning on the target QA
datasets with their method, Reading Strategies.

4.1 Results

Table 1 summarizes the performance of all mod-
els. Multee outperforms the black-box entail-
ment baselines (Concat and Max) that were pre-
trained on the same data, previously published
baselines, OpenAI transformer models. We note
that the 95% confidence intervals around baseline
accuracy for OpenBookQA and MultiRC are 4.3%
and 1.3%, respectively.

On OpenBookQA test set, Multee with
GloVe outperforms ensemble version of OpenAI
transformer by 3.0 points in accuracy. It also out-
performs single model version of Reading Strate-
gies system and is comparable to their ensemble
version. On MultiRC dev set, Multee with
ELMo outperforms ensemble version of OpenAI
transformer by 1.9 points in F1a, 2.7 in F1m and
6.3 in EM. It also outperforms single model ver-
sion of Reading Strategies system and is compa-
rable to their ensemble version. Recall that the
Reading Strategies results are reported with an ad-
ditional fine-tuning on another larger QA dataset,
RACE (Lai et al., 2017) aside from the target QA
datasets we use here.

While ELMo contextual embeddings helped in
MultiRC, it did not help OpenBookQA. We be-
lieve this is in part due to the mismatch between
our ELMo training setup where all sentences are
treated as a single sequence, which, while true in

8Published on arXiv on Oct 31, 2018 (Sun et al., 2019).

OpenBookQA MultiRC

Accuracy F1a | F1m

7αi 50.6 67.3 | 70.3
3αi 55.8 67.4 | 71.0

3αi + supervise — 68.3 | 71.7

Table 2: Relevance Model Ablation of Multee.
7αi: without relevance weights, 3αi: with relevance
weights respectively, 3αi + supervise: with supervised
relevance weights. Test results on OpenBookQA and
Dev results on MultiRC.

Aggregator
OpenBookQA MultiRC

Accuracy F1a | F1m

Cross Attention (CA) 45.8 67.2 | 71.1
Final Layer (FL) 51.0 68.3 | 71.5

CA +FL 55.8 68.3 | 71.7

Table 3: Aggregator Level Ablation of Multee. On
MultiRC, Multee uses relevance supervision but not
on OpenBookQA because of unavailibility. Test results
on OpenBookQA and Dev results on MultiRC.

MultiRC, is not the case in OpenBookQA.
In general, gains from Multee are more

prominent in OpenBookQA than in MultiRC. We
hypothesize that a key contributor to this differ-
ence is distraction being a lesser challenge in Mul-
tiRC, where premise sentences come from a single
paragraph whose other sentences are often irrele-
vant and rarely distract towards incorrect answers.
OpenBookQA has a noisier set of sentences, since
an equal number of sentences is retrieved for the
correct and each incorrect answer choice.

4.2 Ablations

Relevance Model Ablation. Table 2 shows the
utility of the relevance module. We use the same
setting as the full model (aggregation at Cross At-
tention (CA) and the Final Layer (FL)). As shown
in the table, using the relevance module weights
(3αi) leads to improved accuracy on both datasets
(substantially so in OpenBookQA) as compared to
ignoring the module, i.e., setting all weights to 1
(7αi). In MultiRC, we show that the additional
supervision for the relevance module leads to even
further improvements in score.
Multi-Level Aggregator Ablation. Multee
performs aggregation at two levels: Cross Atten-
tion Layer (CA) and Final Layer (FL). We denote
this by CA+FL. To show that multi-level aggrega-
tion is better than individual aggregations, we train
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OpenBookQA MultiRC
Accuracy F1a | F1m

Snli + MultiNli 55.8 69.9 | 73.6
Snli 50.4 69.3 | 73.3

Scratch 42.2 68.3 | 72.6

Table 4: Effect (on test data) of pre-training the entail-
ment model used in Multee.

models with aggregation at only FL and at only
CA. Table 3 shows that multi-layer aggregation is
better than CA or FL alone on both the datasets.

4.3 Effect of Pre-training
One of the benefits of using entailment based com-
ponents in a QA model is that we can pre-train
them on large scale entailment datasets and fine-
tune them as part of the QA model. Table 4 shows
that such pre-training is valuable. The model
trained from scratch is substantially worse in the
case of OpenBookQA, highlighting the benefits of
our entailment-based QA model.

Multee benefits come from two sources: (i)
Re-purposing of entailment function for multi-
sentence question answering, and (ii) transferring
from a large-scale entailment task. In the case
of OpenBookQA, both are helpful. For MultiRC,
only the first is a significant contributor. Table 5
shows that re-purposing was a bigger factor for
MultiRC, since Max and Concat models do not
work well when trained from scratch.

OpenBookQa MultiRc
Accuracy F1a | F1m

Max
Snli + MultiNli 47.6 66.8 | 70.3

Scratch 32.4 42.8 | 44.0

Concat
Snli + MultiNli 42.6 66.9 | 70.7

Scratch 35.8 51.3 | 50.4

Table 5: Pre-training ablations of black-box entailment
baselines for OpenBookQA (test) and MultiRC (dev).

5 Analysis

Relevance Loss. The sentence-level relevance
model provides a way to dig deeper into the over-
all QA model’s behavior. When sentence-level su-
pervision is available, as in the case of MultiRC,
we can analyze the impact of different auxiliary
losses for the relevance module. Table 6 shows the
QA performance with different relevance losses,
and Figure 5 shows a visualization of attention

F1a precision F1a recall

IR Sum Loss 59.5 68.5
BCE Loss 58.0 83.2

Table 6: F1a precision and recall on MultiRC Dev with
2 kinds of relevance losses. IR Sum is the sum of at-
tention probability mass on irrelevant sentences. BCE
is Binary Cross Entropy loss.

scores for a question in MultiRC. Overall, we find
that two types of behaviors emerge from different
loss functions. For instance, trying to minimize
the sum of attention probability mass on irrelevant
sentences i.e.

∑
i αi(1 − yi), called IR Sum Loss,

causes the attention scores to become ”peaky” i.e,
high for one or two sentences, and close to zero
for others. This leads to higher precision but at
significantly lower recall for the QA system, as it
now uses information from fewer but highly rele-
vant sentences. Binary cross entropy loss (BCE)
allows the model to attend to more relevant sen-
tences thereby increasing recall without too much
drop in precision.
Failure Cases. As Figure 5 shows, our model with
BCE loss tends to distribute the attention, espe-
cially to sentences close to the relevant ones. We
hypothesize that the model is learning to use the
contextualized BiLSTM representations to incor-
porate information from neighboring sentences,
which is useful for this task and for passage under-
standing in general. For example, more than 60%
of Dev questions in MultiRC have at least one ad-
jacent relevant sentence pair. Figure 4a illustrates
this behavior.

On the other hand, if the relevant sentences
are far apart, the model finds it difficult to han-
dle such long-range cross sentence dependencies
in its contextualized representations. As a result,
it ends up focusing attention on the most relevant
sentence, missing out on other relevant sentences
(Figure 4b). When these unattended but relevant
sentences contain the answer, the model fails.

6 Related Work

Entailment systems have been applied to question-
answering before but have only had limited suc-
cess (Harabagiu and Hickl, 2006; Sacaleanu et al.,
2008; Clark et al., 2012) in part because of the
small size of the early entailment datasets (Da-
gan et al., 2006, 2013). Recent large scale en-
tailment datasets such as SNLI (Bowman et al.,
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(a) Positive Example (b) Negative Example
Figure 4: Success and failure examples of Multee from MultiRC. R: annotated relevant sentences.
Green/yellow: high/low predicted relevance.

Figure 5: Sentence level attentions for various sentence
relevance losses. R: annotated relevant sentences.

2015) and MultiNLI (Williams et al., 2018) have
led to many new powerful neural entailment mod-
els that are not only more effective, but also pro-
duce better representations of sentences (Conneau
et al., 2017). Models such as Decomposable At-
tention (Parikh et al., 2016) and ESIM (Chen et al.,
2017), on the other hand, find alignments between
the hypothesis and premise words through cross-
attention. However, these improvements in entail-
ment models have not yet translated to improve-
ments in end tasks such as question answering.

SciTail (Khot et al., 2018) was created from a
science QA task to push for models with a direct
impact on QA. Entailment models trained on this
dataset show minor improvements on the Aristo
Reasoning Challenge (Clark et al., 2018; Musa
et al., 2018). However, these QA systems make
independent predictions and can not combine in-

formation from multiple supporting sentences.
Combining information from multiple sen-

tences is a key problem in language understanding.
Recent Reading comprehension datasets (Welbl
et al., 2018; Khashabi et al., 2018; Yang et al.,
2018; Mihaylov et al., 2018) explicitly evalu-
ate a system’s ability to perform such reasoning
through questions that need information from mul-
tiple sentences in a passage. Most approaches on
these tasks perform simple attention-based aggre-
gation (Mihaylov et al., 2018; Song et al., 2018;
Cao et al., 2018) and do not exploit the entailment
models trained on large scale datasets.

7 Conclusions

Using entailment for question answering has seen
limited success. Neural entailment models are
designed and trained on tasks defined over sen-
tence pairs, whereas QA often requires reasoning
over longer texts spanning multiple sentences. We
propose Multee, a novel QA model that ad-
dresses this mismatch. It uses an existing entail-
ment model to both focus on relevant sentences
and aggregate information from these sentences.
Results on two challenging QA datasets, as well as
our ablation study, indicate that entailment based
QA can achieve state-of-the-art performance and
is a promising direction for further research.
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