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Abstract

Spoken language translation applications for
speech suffer due to conversational speech
phenomena, particularly the presence of dis-
fluencies. With the rise of end-to-end speech
translation models, processing steps such as
disfluency removal that were previously an in-
termediate step between speech recognition
and machine translation need to be incorpo-
rated into model architectures. We use a
sequence-to-sequence model to translate from
noisy, disfluent speech to fluent text with dis-
fluencies removed using the recently collected
‘copy-edited’ references for the Fisher Spanish-
English dataset. We are able to directly gener-
ate fluent translations and introduce consider-
ations about how to evaluate success on this
task. This work provides a baseline for a new
task, the translation of conversational speech
with joint removal of disfluencies.

1 Introduction & Related Work

Spoken language translation (SLT) applications
suffer due to conversational speech phenomena,
particularly the presence of disfluencies. In con-
versational speech, speakers often use disfluencies
such as filler words, repetitions, false starts, and
corrections which do not naturally occur in text and
may not be desired in translation outputs. Disflu-
ency recognition and removal has previously been
performed as an intermediate step between speech
recognition (ASR) and machine translation (MT),
to make disfluent ASR output better-matched to
typically clean machine translation training data
(Cho et al., 2013, 2014; Wang et al., 2010; Honal
and Schultz, 2005; Zayats et al., 2016). With the
rise of end-to-end sequence-to-sequence speech
translation systems (Weiss et al., 2017; Bansal et al.,
2018), disfluency removal can no longer be handled
as an intermediate step between ASR and MT but
needs to be incorporated into the model or handled
as a post-processing step.

Generating fluent translations from disfluent
speech may be desired for simultaneous SLT appli-
cations where removing disfluencies will improve
the application’s clarity and usability. To train end-
to-end speech translation requires parallel speech
and text translations. This introduces data con-
siderations not previously relevant with chained
ASR+MT models, as different datasets could be
used to train ASR and MT components. Where
aligned speech and translations exist, data is typi-
cally clean speech—clean text, as in news or TED
talks, or disfluent speech—disfluent translations, as
in Fisher or meeting data, where disfluencies were
faithfully included in the references for complete-
ness. While some corpora with labeled disfluen-
cies exist (Cho et al., 2014; Burger et al., 2002),
only subsets have been translated and/or released.
Salesky et al. (2018) introduced a set of fluent refer-
ences' for Fisher Spanish-English, enabling a new
task: end-to-end training and evaluation against
fluent references.

Previous work on disfluency removal has treated
it as a sequence labeling task using word or span-
level labels. However, in some cases, simply re-
moving disfluencies from an utterance can create
ill-formed output. Further, corpora can have dif-
ferent translation and annotation schemes: for ex-
ample for Fisher Spanish-English, translated using
Mechanical Turk, Salesky et al. (2018) found 268
unique filler words due to spelling and casing. Dis-
fluencies can also be context-specific, such as false
starts or corrections where a phrase may be ‘disflu-
ent’ due to its surroundings. To remove disfluencies
as a post-processing step would require a separate
model trained with appropriate data and disfluency
labels, and may lead to ill-formed output. By trans-
lating directly to fluent target data instead, we aim
to handle these concerns implicitly. We present
the first results translating directly from disfluent
source speech to fluent target text.

'Data available at: https:/github.com/isl-mt/fluent-fisher
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2 Data

For our experiments, we use Fisher Spanish speech
(Graff et al.) and with two sets of English transla-
tions (Salesky et al., 2018; Post et al., 2013). The
speech dataset comprises telephone conversations
between mostly native Spanish speakers recorded
in realistic noise conditions. The original English
translations were collected through crowdsourcing,
as described in Post et al. (2013). Four references
were collected for each of the development and test
sets, and one for training. The training data con-
sists of 819 conversations yielding ~160 hours of
speech and 150k utterances; the development and
test sets are ~4k utterances each. We use only the
first of the two development sets (dev, not dev?2).
This data is conversational and disfluent. The
original translations faithfully maintain and trans-
late phenomena in the Spanish transcripts such as
filler words and hesitations, discourse markers (you
know, well, mm), repetitions, corrections and false
starts, among others. Salesky et al. (2018) intro-
duced a new set of fluent reference translations
collected on Mechanical Turk. They collected two
references for each of the development and test
sets, and one for the training set. Rather than la-
beling the disfluencies in the original target data,
Turkers were asked to rewrite the utterance in a
‘copy-edited’ manner without disfluent phenom-
ena. In some cases, simply removing disfluencies
would created ill-formed structure in the resulting
utterance. This scheme instead creates a sentence-
level edit allowing for reordering and insertions as
necessary to create fluent content, akin instead to
monolingual translation or paraphrasing. Examples
of source transcripts and original translations with
the fluent counterparts are shown below in Table 1.

SRC eh, eh, eh, um, yo pienso que es asi
ORG uh, uh, uh, um, i think it’s like that
FLT i think it’s like that

SRC

FLT i’'m also taking a marketing class

también tengo um eh estoy tomando una clase ..
ORG i also have um eh i’'m taking a marketing class ..

SRC porque qué va, mja ya te acuerda que ..
ORG because what is, mhm do you recall now that ..
FLT do you recall now that ..

SRC y entonces am es entonces la universidad donde
yo estoy es university of pennsylvania

ORG and so am and so the university where i am it’s
the university of pennsylvania

FLT i am at the university of pennsylvania

Table 1: Disfluency examples in Spanish source (SRC),
original (ORG) and fluent (FLT) English translations

3 Speech-to-Text Model

Initial work on the Fisher-Spanish dataset used
HMM-GMM ASR models linked with phrase-
based MT using lattices (Post et al., 2013; Kumar
et al., 2014). More recently, it was shown in Weiss
et al. (2017) and Bansal et al. (2018) that end-to-
end SLT models perform competitively on this task.
As in Bansal et al. (2018), we use a sequence-to-
sequence architecture inspired by Weiss et al. but
modified to train within available resources; specif-
ically, all models may be trained in less than 5
days on one GPU. We build an encoder-decoder
model with attention in xnmt (Neubig et al., 2018)
with 512 hidden units throughout. We use a 3-
layer BILSTM encoder. We do not use the addi-
tional convolutional layers from Weiss et al. and
Bansal et al. to reduce temporal resolution, but
rather use network-in-network (NiN) projections
from previous work in sequence-to-sequence ASR
(Zhang et al., 2017; Sperber et al., 2018) to get the
same total 4x downsampling in time. This gives
the benefit of added depth with fewer parameters.
We closely follow the LSTM/NiN encoder used in
Sperber et al. (2018) for ASR and use the same
training procedure, detailed in Appendix A.

We extract 40-dimensional mel filterbank fea-
tures with per-speaker mean and variance normal-
ization with Kaldi (Povey et al., 2011). We did not
see significant difference between 40, 40+deltas
and 80-dimensional features in initial experiments,
similar to Bansal et al. (2018), who chose 80-dim.
Weiss et al. (2017) used 240-dim features com-
prising 80-dim filterbanks stacked with deltas and
delta-deltas. We exclude utterances longer than
1500 frames to manage memory requirements.

Like Weiss et al. (2017), we translate to target
characters as opposed to words (Bansal et al., 2018).
We also use an MLP-based attention with 1 hidden
layer with 128 units and 64-dimensional target em-
beddings, though we use only 1 decoder hidden
layer as opposed to 3 or 4 in these works. We
use input feeding (Luong et al., 2015). All models
use the same preprocessing as previous work on
this dataset: lowercasing and removing punctuation
aside from apostrophes.

4 Experiments

4.1 Experimental Setup

We focus on the problem of translating directly
from noisy speech to clean references without a
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separate disfluency removal step. We first demon-
strate the efficacy of our models on the original
disfluent Fisher Spanish-English task, comparing
to the previously reported numbers on the SLT task
(Weiss et al., 2017; Bansal et al., 2018). We then
compare these results with models trained using
the collected ‘clean’ target data with disfluencies
removed. Finally, we look at the mismatched case
where we train on disfluent data and evaluate on
a cleaned test set; this is a more realistic scenario,
as clean training data is difficult to collect, and we
cannot expect to have it for each language and use
case we encounter.

We evaluate using both BLEU (Papineni et al.,
2002) and METEOR (Denkowski and Lavie, 2014)
to compare different aspects of model behavior on
our two tasks.> BLEU assesses how well predicted
translations match a set of reference translations
using modified n-gram precision, weighted by a
brevity penalty in place of recall to penalize short
hypothesis translations without full coverage. The
brevity penalty is computed as e(!~"/¢) where r
is the length of the reference and c the candidate
translation. For our task of implicitly removing
disfluencies during translation, our generated trans-
lations should contain much of the same content but
with certain tokens removed, creating shorter trans-
lations. When scoring fluent output against the orig-
inal disfluent references, then, differences in BLEU
score will come from two sources: shorter n-gram
matches, and the brevity penalty. METEOR, on the
other hand, can be considered a more ‘semantic’
evaluation metric. It uses a harmonic mean of preci-
sion and recall, with greater weight given to recall.
Further, while BLEU uses exact n-gram matches,
METEOR also takes into account stem, synonym,
and paraphrase matches. For our fluent task, we
aim to maintain semantic meaning while removing
disfluent tokens. Accordingly, when scored against
the fluent target references, we hope to see similar
METEOR scores between the disfluent models and
fluent models. Both metrics are used for a holistic
view of the problem: METEOR will indicate if
meaning is maintained, but not assess disfluency re-
moval, while BLEU changes will indicate whether
disfluencies have been removed.

We provide both multi-reference and single-
reference BLEU and METEOR scores: the original

’BLEU scores are 4-gram word-level BLEU computed us-
ing multi-bleu.pl from the Moses toolkit (Koehn
et al., 2007). METEOR is computed using the script from
http://www.cs.cmu.edu/"alavie/METEOR/

Fisher target data has four reference translations
for the dev and test sets, which boosts scores con-
siderably as hypothesis n-grams can match in any
of the references. The fluent target data has two ref-
erences, so the single reference scores better enable
comparison between the two tasks.

4.2 Results & Discussion

Table 2 shows our results on the original disfluent
data with comparisons to Weiss et al. (2017) and
Bansal et al. (2018). All results are single task end-
to-end speech translation models. Weiss et al.’s
deeper model reaches a BLEU score of 47.3 on
test after 2.5 weeks of training. Our model is
more similar in depth to Bansal et al. (2018), hav-
ing both made modifications to train on one GPU
in < 5 days (see Section 3). While Bansal et al. use
words on the target side to improve convergence
time at a slight performance cost, we are able to
use characters like Weiss et al. by having a still
shallower architecture (2 fewer layers on both the
encoder and decoder), giving us approximately the
same training time per epoch they observe with
words (~2 hours). We converge to a test BLEU of
33.7, 3-4 BLEU improved over Bansal et al. on dev
and test. This demonstrates our model has reason-
able performance on the original data, providing a
strong baseline before turning to our targeted task
of directly generating fluent translations.

Weiss et al. | Bansal et al. Ours
Metric dev test |dev test |dev test
BLEU 4Ref |46.5 47.3 {29.5 29.4 |32.4 33.7
BLEU 1Ref - - - - 119.0 19.6
METEOR 4Ref|36.5 - [282 - |30.0 309
METEOR 1Ref| — - - - 125.1 26.1

Table 2: Single task end-to-end speech translation us-
ing original disfluent references to train and evaluate.
Comparing multi-reference scores using all four refer-
ences (4Ref) vs average single reference score (1Ref).

Table 3 compares performance of speech trans-
lation models trained with the fluent target trans-
lations to models trained with the original disflu-
ent translations, as scored on the fluent references.
Comparing the disfluent and fluent models, we see
that METEOR scores are almost the same while
BLEU scores are lower with the disfluent model.
This is as we would hope: with our fluent model,
we want to generate translations that are seman-
tically the same but with disfluencies removed.
Therefore similar METEOR scores with similar
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recall (52) on the fluent references are encouraging.
For BLEU, however, the disfluencies generated by
the disfluent model break up n-grams in the fluent
references, thereby lowering scores.

compare to a pipeline approach here. However, to
contextualize these results, we compare disfluency
removal as a post-processing step after end-to-end
speech translation with the original disfluent par-

dev test dev test
Model Metric |1Ref 2Ref|1Ref 2Ref Model 1Ref 2Ref | 1Ref 2Ref
Disfluent| BLEU |13.0 16.2|13.5 17.0 Postproc. Filter 13.6 165|135 16.8
Fluent BLEU |14.6 18.1|14.6 18.1 Postproc. MonoMT | 144 17.8 | 144 18.0
Disfluent METEOR | 22.2 23.9|23.1 24.8
Fluent METEOR | 22.3 24.0|23.1 24.9 Table 4: End-to-end disfluent model with different post-

Table 3: End-to-end model performance evaluated with
new fluent references. Comparing average single ref-
erence scores (1Ref) vs multi-reference scores using
both generated references (2Ref).

Comparing single-reference scores with Table
2, we see that they are distinctly lower. This is to
be expected with the shorter fluent references; a
difference of a single token carries greater weight.
Translating directly to the fluent references is a
more challenging task. As shown in Table 1, the
original English translations and Spanish speech
are very one-to-one while the edited translations
introduce deletions and reorderings. In learning
to generate fluent translations, the model needs to
learn to handle these more inconsistent behaviors.

Figure 1 shows a visual comparison between
outputs generated by the two models. Using the
fluent target data to train constrains the model out-
put vocabulary, so filler words such as ‘um’, ‘ah’,
‘mhm’ are not generated. We also see significant
reductions in repetitions of both words and phrases
from the model trained with fluent reference trans-
lations. Further, we also see instances where the
fluent model generates a shorter paraphrase of a
disfluent phrase, as in the 2nd example.

Segment comparison: Deletion Insertion Shift

and that you see it well but you are not sure that

Disfluent: you're there

you don't see it but you are sure that they are

Fluent: there

Disfluent: and well that even if they don't see

Fluent: although you don't see
Disfluent: yes yes

Fluent: yes

Figure 1: Comparison of example outputs generated
by disfluent and fluent models, created with CharCut
(Lardilleux and Lepage, 2017).

Disfluency removal for speech translation has
traditionally been done as an intermediate step
between ASR and MT to better-match additional
clean corpora used for MT training; we do not

processing steps. Performance evaluated with new flu-
ent references.

allel data. Simply filtering filler words and rep-
etitions from the disfluent model (Filter) outputs
as a post-processing step, the dev scores improve
slightly, but test stays the same or decreases. In
some cases, treating disfluency removal as a filter-
ing task can reduce the fluency of an utterance:

Disfluent mm well and from and the email is a
scandal the spam.

Fluent the email is a scandal it’s spam.

A filtering or tagging system may not capture all
false starts or corrections, leading to lower flu-
ency, and requires labeled spans. Treating the
post-processing step as a monolingual translation
task (MonoMT) rather than a filtering task allows
for reordering and insertions, which we saw boost
fluency. We trained a 4-layer BiLSTM encoder-
decoder model to translate between the disfluent
and fluent English references and applied this to the
output of the end-to-end disfluent model. BLEU
scores approach the results with the end-to-end
fluent target model (Table 3), but we note, this re-
quires the same resources as the direct task.
Showing the importance of fluent references for
evaluation, Table 5 shows the performance of flu-
ent models as evaluated on the original disfluent
references. Disfluent target scores are the same as
in Table 2, and have been copied for easy compar-

dev test
Model Metric | 1Ref 4Ref | 1Ref 4Ref
Fluent BLEU |166 29.8|17.0 304
Disfluent| BLEU | 19.0 324 | 19.6 33.7
Fluent METEOR | 21.8 259|227 27.0
Disfluent | METEOR | 25.1 30.0 | 26.1 30.9

Table 5: Performance evaluated with original disflu-
ent references. Comparing average single reference
scores (1Ref) vs multi-reference scores using all refer-
ences (4Ref).
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ison. As we would expect, here there is a greater
difference in scores. The fluent references have
fewer long n-gram matches with disfluencies re-
moved, lowering BLEU. The fluent model’s ME-
TEOR scores suffer more than BLEU due to the
recall calculation; recall on the disfluent references
is lower because the fluent model does not produce
many of the disfluencies (indeed filler words are
not in the vocabulary when trained with the fluent
references). Recall is reduced by ~14% with the
fluent model, reflecting the approximate distribu-
tion of disfluencies in the original data.

The differences in scores with these two metrics
do not show the full picture. Outputs generated
by the fluent model are on average 13% shorter
and contain 1.5 fewer tokens per utterance than
the disfluent model, which is significant with av-
erage utterance lengths of 10-11 tokens. When
scoring the fluent output against the original dis-
fluent references, the shorter length significantly
contributes to the lower scores, with the BLEU
brevity penalty calculated as 0.86 as opposed to
0.96-1.0 for all other conditions. Removing the
length penalty from the BLEU score calculation,
single-reference scores are boosted to 19.3 and 19.8
from 16.6 and 17.0 for dev and test, respectively
(Table 5). This is a somewhat fairer comparison of
the disfluent and fluent models, as we do not want
the fluent output to match the disfluent sequence
length, and the disfluent models are not penalized
due to length. These BLEU scores are now very
similar to those of the disfluent model on the disflu-
ent references, though the outputs are very different
(Figure 1). The changes here and the difference in
trends between the two metrics with respect to the
two types of references show that evaluating this
task cannot be simply accomplished with one exist-
ing metric: depending on the combination of metric
and references, it’s possible to mask the difference
between disfluent and fluent systems, unless you
have word-level disfluency annotations, which are
more difficult to obtain.

5 Conclusion

Machine translation applications for speech can
suffer due to conversational speech phenomena,
particularly the presence of disfluencies. Previous
work to remove disfluencies in speech translation
did so as a separate step between speech recogni-
tion and machine translation, which is not possible
using end-to-end models. Using clean references

for disfluent data collected by Salesky et al. (2018),
we extend their text baseline to speech input and
provide first results for direct generation of fluent
text from noisy disfluent speech.

While fluent training data enables research on
this task with end-to-end models, it is unlikely to
have this resource for every corpus and domain and
it is expensive to collect. In future work, we hope to
reduce the dependence on fluent target data during
training through decoder pretraining on external
non-conversational corpora or multitask learning.
Further, standard metrics alone do not tell the full
story for this task; additional work on evaluation
metrics may better demonstrate the differences be-
tween such systems.
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A Appendix. LSTM/NiN Encoder and
Training Procedure Details

A.1 Encoder Downsampling Procedure

Weiss et al. (2017) and Bansal et al. (2018) use two
strided convolutional layers atop three bidirectional
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) layers to downsample input
sequences in time by a total factor of 4. Weiss
et al. (2017) additionally downsample feature di-
mensionality by a factor of 3 using a ConvLSTM
layer between their convolutional and LSTM layers.
This is in contrast to the pyramidal encoder (Chan
et al., 2016) from sequence-to-sequence speech
recognition, where pairs of consecutive layer out-
puts are concatenated before being fed to the next
layer to halve the number of states between layers.

To downsample in time we instead use the
LSTM/NiN model used in Sperber et al. (2018)
and Zhang et al. (2017), which stacks blocks con-
sisting of an LSTM, a network-in-network (NiN)
projection, layer batch normalization and then a
ReLU non-linearity. NiN denotes a simple linear
projection applied at every timestep, performing
downsampling by a factor of 2 by concatenating
pairs of adjacent projection inputs. The LSTM/NiN
blocks are extended by a final LSTM layer for a
total of three BILSTM layers with the same to-
tal downsampling of 4 as Weiss et al. (2017) and
Bansal et al. (2018). These blocks give us the ben-
efit of added depth with fewer parameters.

A.2 Training Procedure

We follow the training procedure from Sperber
et al. (2018). The model uses variational recur-
rent dropout with probability 0.2 and target charac-
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ter dropout with probability 0.1 (Gal and Ghahra-
mani, 2016). We apply label smoothing (Szegedy
et al., 2016) and fix the target embedding norm to 1
(Nguyen and Chiang, 2018). For inference, we use
a beam size of 15 and length normalization with
exponent 1.5. We set the batch size dynamically de-
pending on the input sequence length such that the
average batch size was 36. We use Adam (Kingma
and Ba, 2015) with initial learning rate of 0.0003,
and decay by 0.5 when validation BLEU did not
improve first over 10 epochs and after 5 epochs af-
ter the first decay. We do not use L2 weight decay
or Gaussian noise, and use a single model replica.
All models use the same preprocessing as previous
work on this dataset: lowercasing and removing
punctuation aside from apostrophes.
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