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Abstract

This paper studies the performance of a neu-
ral self-attentive parser on transcribed speech.
Speech presents parsing challenges that do not
appear in written text, such as the lack of
punctuation and the presence of speech dis-
fluencies (including filled pauses, repetitions,
corrections, etc.). Disfluencies are especially
problematic for conventional syntactic parsers,
which typically fail to find any EDITED dis-
fluency nodes at all. This motivated the de-
velopment of special disfluency detection sys-
tems, and special mechanisms added to parsers
specifically to handle disfluencies. However,
we show here that neural parsers can find
EDITED disfluency nodes, and the best neu-
ral parsers find them with an accuracy sur-
passing that of specialized disfluency detection
systems, thus making these specialized mech-
anisms unnecessary. This paper also investi-
gates a modified loss function that puts more
weight on EDITED nodes. It also describes
tree-transformations that simplify the disflu-
ency detection task by providing alternative
encodings of disfluencies and syntactic infor-
mation.

1 Introduction

While a great deal of effort has been expended on
parsing written text, parsing speech (either tran-
scribed or ASR output) has received less atten-
tion. Parsing speech is important because speech
is the easiest and most natural means of com-
munication, it is increasingly used as an input
modality in human-computer interactions. Speech
presents parsing challenges that do not appear in
written text, such as the lack of punctuation and
sentence boundaries, speech recognition errors
and the presence of speech disfluencies (including
filled pauses, repetitions, corrections, etc.) (Kahn
et al., 2005). Of the major challenges associated
with transcribed speech, we focus here on speech

disfluencies, which are frequent in spontaneous
speech.

Disfluencies include filled pauses (“um”, “uh”),
parenthetical asides (you know”, I mean”),
interjections (“well”, like”) and partial words
(“wou-", “oper-"). One type of disfluency which
is especially problematic for conventional syntac-
tic parsers are speech repairs. Following the anal-
ysis of Shriberg (1994), a speech repair consists of
three main parts; the reparandum, the interregnum
and the repair. As illustrated in the following ex-
ample, the reparandum we don’t is the part of the
utterance that is replaced or repaired, the interreg-
num uh I mean (which consists of a filled pause
uh and a discourse marker / mean) is an optional
part of the disfluency, and the repair a lot of states
don’t replaces the reparandum. The fluent version
is obtained by removing the reparandum and the
interregnum.

reparandum repair

——
We don’'t a lot of states don’t (1)

have capital punishment.

In the Switchboard treebank corpus (Mitchell
et al., 1999) the reparanda, filled pauses and dis-
course markers are dominated by EDITED, INTJ
and PRN nodes, respectively (see Figure 1). Of
these disfluency nodes, EDITED nodes pose a
major problem for conventional syntactic parsers,
as the parsers typically fail to find any EDITED
nodes at all. Conventional parsers mainly cap-
ture tree-structured dependencies between words,
while the relation between reparandum and re-
pair is quite different: the repair is often a “rough
copy” of the reparandum, using the same or very
similar words in roughly the same order (Char-
niak and Johnson, 2001; Johnson and Charniak,
2004). The “rough copy” dependencies are strong
evidence of a disfluency, but conventional syntac-
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tic parsers cannot capture them. Moreover, the
reparandum and the repair do not form conven-
tional syntactic phrases, as illustrated in Figure 1,
which is an additional difficulty when integrating
disfluency detection with syntactic parsing. This
motivated the development of special disfluency
detection systems which find and remove disfluent
words from the input prior to parsing (Charniak
and Johnson, 2001; Kahn et al., 2005; Lease and
Johnson, 2006), and special mechanisms added to
parsers specifically to handle disfluencies (Rasooli
and Tetreault, 2013; Honnibal and Johnson, 2014,
Yoshikawa et al., 2016; Tran et al., 2018).

3
TN
VBP RB VP
/\
VB NP
A
Nl‘\IS J‘J N‘N

a lot of states do n't have capital punishment

S NP PP

DT NN IN NP

we do n't

Figure 1: An example parse tree from the Switchboard
corpus — We don’t uh I mean a lot of states don’t have
capital punishment, where reparandum We dont, filled
pause uh and discourse marker I mean are dominated
by EDITED, INTJ and PRN nodes.

In this paper, we investigate the performance
of a neural self-attentive constituency parser on
speech transcripts. We show that an “off-the-
shelf” self-attentive parser, unlike conventional
parsers, can detect disfluent words with a perfor-
mance which is competitive to or better than spe-
cialized disfluency detection systems. In sum-
mary, the main contributions of this paper are:

e We show that the self-attentive constituency
parser sets a new state-of-the-art for syntactic
parsing of transcribed speech,

e A neural constituency parser can detect
EDITED words with an accuracy surpassing
that of specialized disfluency detection mod-
els,

e We demonstrate that syntactic information
helps the neural syntactic parsing detect dis-
fluent words more accurately,

e Replacing the constituent-based representa-
tion of disfluencies with a word-based repre-
sentation of disfluencies improves the detec-
tion of disfluent words,

e Modifying the training loss function to put
more weight on EDITED nodes during train-
ing also improves disfluency detection.

2 Related Work

Speech recognition errors, unknown sentence
boundaries and disfluencies are three major prob-
lems addressed by previous work on parsing
speech. In this work, we focus on the problem of
disfluency detection in parsing human-transcribed
speech, where we assume that sentence boundaries
are given and there are no word recognition errors.
This section reviews approaches that add special
mechanisms to parsers to handle disfluencies as
well as specialized disfluency detection models.

2.1 Joint Parsing and Disfluency Detection

Many speech parsers adopt a transition-based
dependency approach to (i) find the relation-
ship between head words and words modifying
the heads, and (ii) detect and remove disfluent
words and their dependencies from the sentence.
Transition-based parsers can be augmented with
new parse actions to specifically handle disflu-
ent words (Rasooli and Tetreault, 2013; Honnibal
and Johnson, 2014; Yoshikawa et al., 2016; Wu
et al., 2015). A classifier is trained to choose be-
tween the standard and the augmented parse ac-
tions at each time step. Using pattern-match fea-
tures in the classifier significantly improves dis-
fluency detection (Honnibal and Johnson, 2014).
This reflects the fact that parsing based models use
pattern-matching to capture the “rough copy” de-
pendencies that are characteristic of speech disflu-
encies.

Speech parsing models usually use lexical fea-
tures. One recent approach (Tran et al., 2018) in-
tegrates lexical and prosodic cues in an encoder-
decoder constituency parser. Prosodic cues result
in very small performance gain in both parsing
and disfluency detection. Augmenting the parser
with a location-aware attention mechanism is spe-
cially useful for detecting disfluencies (Tran et al.,
2018).

In general, parsing models are poor at detecting
disfluencies, mainly due to “rough copy” depen-
dencies in disfluent sentences, which are difficult
for conventional parsers to detect.

2.2 Specialized Disfluency Detection Models

Disfluency detection models often use a sequence
tagging technique to assign a single label to each
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word of a sequence. Previous work shows that
LSTMs and CNNs operating on words alone are
poor at disfluency detection (Zayats et al., 2016;
Wang et al., 2016; Jamshid Lou et al., 2018). The
performance of state-of-the-art disfluency detec-
tion models depends heavily on hand-crafted pat-
tern match features, which are specifically de-
signed to find “rough copies”. One recent pa-
per (Jamshid Lou et al., 2018) augments a CNN
model with a new kind of layer called an auto-
correlational layer to capture “rough copy” de-
pendencies. The model compares the input vectors
of words within a window to find identical or sim-
ilar words. The addition of the auto-correlational
layer to a “vanilla” CNN significantly improves
the performance over the baseline CNN model.
The results are competitive to models using com-
plex hand-crafted features or external information
sources, indicating that the auto-correlation model
learns “rough copies”.

One recent paper (Wang et al., 2018) introduces
a semi-supervised approach to disfluency detec-
tion. Their self-attentive model is the current state-
of-the-art result in disfluency detection. The com-
mon factor in Wang et al. (2018) and the approach
presented here is the self-attentive transformer ar-
chitecture, which suggests that this architecture is
capable of detecting disfluencies with very high
accuracy. The work we present goes beyond the
work of Wang et al. (2018) in also studying the
impact of jointly predicting syntactic structure and
disfluencies (so it can be understood as a kind of
multi-task learning). We also investigate the im-
pact of different ways of representing disfluency
information in the context of a syntactic parsing
task.

3 Neural Constituency Parser

We use the self-attentive constituency parser intro-
duced by Kitaev and Klein (2018) and train it on
the Switchboard corpus of transcribed speech (we
describe the training and evaluation conditions
in more detail in Section 4). The self-attentive
parser achieves state-of-the-art performance on
WSJ data, which is why we selected it as the best
“off-the-shelf” parsing model. The constituency
parser uses a self-attentive transformer (Vaswani
et al., 2017) as an encoder and a chart-based
parser (Stern et al., 2017) as a decoder, as reviewed
in the following sections.

3.1 Self-Attentive Encoder

The encoder of a transformer is a stack of n iden-
tical layers, each consists of two stacked sub-
layers: a multi-head attention mechanism, and a
point-wise fully connected network. The inputs
to the encoder first flow through a self-attention
sublayer, which helps the encoder attends to sev-
eral words in the sentence as it encodes a specific
word. Because the model lacks recurrent layers,
this sublayer is the only mechanism which prop-
agates information between positions in the sen-
tence. The self-attention maps the input to three
vectors called query, key and value and defines an
attention function as mapping a query and a set of
key-value pairs to an output vector. The output is
computed as a weighted sum of the values, where
the weight assigned to each value is computed by
a compatibility function of the query with the cor-
responding key. Each self-attention sublayer has
several attention heads, where each head has its
own query, key and value weight matrices. The
multi-head attention allows the model to jointly
attend to information from several different posi-
tions. The outputs of the self-attention layer are
fed to a feed-forward neural network, which is ap-
plied to each position independently. For further
detail, see Vaswani et al. (2017).

We believe that the self-attention mechanism
is especially useful for detecting disfluencies in a
sentence. In pilot experiments we found that sim-
ilar LSTM-based parsers, such as the AllenNLP
parser (Gardner et al., 2018), were much worse at
disfluency detection than the self-attentive parser.
As shown in Figure 1, the “rough copy” similarity
between the repair and the reparandum is a strong
indicator of disfluency. ‘“Rough copies” involve
same or very similar words in roughly same word
order; for example, in the Switchboard training
data, over 60% of the words in the reparandum
are exact copies of the words in the repair. Us-
ing the multi-head self-attention mechanism the
model can presumably learn to focus on “rough
copies” when detecting a reparandum.

3.2 Tree Score and Chart Parse Decoder

A chart-based parser scores a tree as a sum of po-
tentials on its labeled constituent spans as follows:

s(T) =Y s(i,4,0) )

(i.5,D €T
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where s(i, j,1) is a score of a constituent located
between string positions ¢ and j with label [. At
test time, a modified CYK algorithm is used to find
the highest scoring parse tree for a given sentence.

T = argmax s(T) 3)
T

Given the gold tagged tree T, we train the
model by minimizing a hinge loss:

mazx <O,%171£aTX*[S(T) + AT, T%)] — s(T*)) 4)

where A is the Hamming loss on labeled spans.
For further detail, see Kitaev and Klein (2018) and
Stern et al. (2017).

3.3 External Embedding and Edited Loss

Peters et al. (2018) have recently introduced a new
approach for word representation called Embed-
dings from Language Models (ELMo) which has
achieved state-of-the-art results in various NLP
tasks. These embeddings are produced by a LSTM
language model (LM) which inputs words and
characters and generates a vector representation
for each word of the sentence. The ELMo output
is a concatenation of both the forward and back-
ward LM hidden states. We found that using ex-
ternal ELMo embedding as the only lexical rep-
resentation used by the model leads to the high-
est EDITED word f-score. Following Kitaev and
Klein (2018), we use a trainable weight matrix to
project the ELMo pretrained weights of 1024 di-
mension to a 512-dimensional content representa-
tion. We tried different combinations of input in-
cluding predicted POS tags, character LSTM and
word embeddings with ELMo, but the result was
either worse or not significantly better than when
using ELMo alone.

The sole change we made to the self-attentive
parser was to modify the loss function, so it puts
more weight onto EDITED nodes. We show below
that this improves the model’s ability to recover
EDITED nodes. We modify the tree scoring in 2
as follows:

s(T)y= > wys(i, 1) 5)
(4,5,1)€T
where w; depends on the label [. We only used two
different values of w; here, one for EDITED nodes
and one for all other node labels. We treat these
as hyperparameters, and tune them to maximize
EDITED nodes f-score (this is F(Sg) in Section 4.1
below).

4 Experiments

We evaluate the self-attentive parser on the Penn
Treebank-3 Switchboard corpus (Mitchell et al.,
1999). Following Charniak and Johnson (2001),
we split the Switchboard corpus into training, dev
and test sets as follows: training data consists of
the sw[23]+.mrg files, dev data consists of the
sw4[5-9]+.mrg files and test data consists of the
sw4[0-1]+.mrg files. Except as explicitly noted
below, we remove all partial words (words tagged
XX and words ending in “-”’) and punctuation from
data, as they are not available in realistic ASR ap-
plications (Johnson and Charniak, 2004).

4.1 Evaluation Metrics

We evaluate the self-attentive parser in terms of
parsing accuracy and disfluency detection perfor-
mance. We report precision (P), recall (R) and f-
score (F) for both constituent spans (S) and word
positions (W), treating each word position as la-
beled by all the constituents that contain that word.
We also consider subsets of constituent spans and
word positions; specifically: (i) Sg, the set of
constituent spans labeled EDITED, (ii) Wg, the
set of word positions dominated by one or more
EDITED nodes, and (iii) Wgpp, the set of word po-
sitions dominated by one or more EDITED, INTJ
or PRN nodes.

We demonstrate the evaluation metrics with an
example here. Consider the gold and predicted
parse trees illustrated in Figure 2. The con-
stituency trees are viewed as a set of labeled spans
over the words of the sentence, where constituent
spans are pairs of string positions. As explained
earlier, we ignore punctuation and partial words
when calculating evaluation scores. To calculate
fscore for a span, i.e., F(S), the gold, predicted and
correct labeled spans are counted. In this case, the
number of predicted, gold and correctly predicted
spans is 13, 14 and 12.

Since a parse tree with EDITED nodes identifies
certain words as EDITED, we can evaluate how
accurately a parser classifies words as EDITED
(i.e. F(WEg)). Continuing with the example in Fig-
ure 2, the number of predicted, gold and correctly
predicted EDITED words is 1, 3 and 1.

Similarly, we can also measure how well the
parser can identify all disfluency words, i.e., the
words dominated by EDITED, INTJ or PRN
nodes. Continuing with the example in Figure 2,
the number of predicted, gold and correctly pre-
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EDITED NP VP ‘DITED S NP VP
] VAN
EDITED S PRP VBP NP NP VP PRP VBP
[VANE VAN R VAN
NP NP VP PRP PRP VBP
PRP PFLP VBP | | ‘ ‘
RN |
I ‘'ve I enjoy e 1 enjoy
(a) Gold tree (b) Predicted tree

ol112vesuhslsmeanse Iy enjoys

Figure 2: An example gold and predicted parse tree.

dicted EDITED, INTJ and PRN words is 4, 6, 4.

4.2 Model Training

We use randomized search (Bergstra and Bengio,
2012) to tune the optimization and architecture pa-
rameters of the model on the dev set. We op-
timize the model for its performance on parsing
EDITED nodes F(Sg). The hyperparameters in-
clude dimensionality of the model, learning rate,
edited loss weight, dropout, number of layers and
heads as shown in Table 1. All other hyperparam-
eters not mentioned here are the same as in Kitaev
and Klein (2018).

Configuration Parser
hidden label dim 340
model dim 2048
non-EDITED label weight 0.7
EDITED label weight 2
learning rate 0.0006
learning rate warmup steps 110
step decay factor 0.52
num heads 7
num layers 4
attention dropout 0.27
relu dropout 0.09
residual dropout 0.26
elmo dropout 0.57
tag embedding dropout 0.35
word embedding dropout 0.2

Table 1: Hyperparameter setting for the self-attentive
constituency parser.

4.3 Edited Loss

Our best dev model (see Table 1) uses an edited
loss that puts more weight on EDITED nodes and
less weight on non-EDITED nodes. To explore the

effect of edited loss, we retrained the best model
with an equally weighted loss. The results in Ta-
ble 2 indicate that differential weighting improves
parsing EDITED nodes as well as EDITED word
detection. It also rebalances the precision vs. re-
call trade-off and slightly increases overall parsing
accuracy F(S).

equal weight | different weight
P(Sk) 83.0 83.3
R(Sk) 91.6 91.4
F(Se) 87.1 87.2
F(S) 92.8 93
F(Wk) 86.9 87.5

Table 2: Parsing precision P(Sg), recall R(Sg) and f-
score F(Sg) of EDITED nodes, parsing f-score F(S) and
EDITED word f-score F(Wg) on the Switchboard dev
set for the equally and differentially weighted loss.

4.4 Modifying the Training Data

We investigate the effect of modifying the training
data on the performance of the parser.

4.4.1 Simplified Tree Structures

We use different tree-transformations to explore
the effect of different amounts of and encodings of
disfluencies and syntactic information on the per-
formance of the model.

e Baseline: Parse trees as they appear in the
Switchboard corpus. A sample is shown in

Figure 3.
S
EDITED NP VP
EDITED DT NN VBZ  ADJP
EDITED NP ADVP TYPO
L o
NP VP
E‘X B]‘ES

There 's there this topic is kind of mute

Figure 3: Baseline parse trees as they appear in the
Switchboard corpus

2760



e Transformation PosDisfl: Pushing disflu-
ency nodes (i.e. EDITED, INTJ and PRN)
down to POS tags, as shown in Figure 4.

S
S NP NP VP
| NN
NP VP EDITED DT NN VBZ ADJP

|| N
EDITED EDITED EX ADVP TYPO

I /N

EX BES RB RB ]JJ

| | ||
There 's  there this topic is kind of mute

Figure 4: Transformation PosDisfl, where disfluency
nodes are pushed down to POS tags.

e Transformation NoSyntax: Deleting all
non-disfluency nodes, as shown in Figure 5.

EDITED DT NN VBZ RB RB ]JJ

EDITED
EDITED EX
EX BES

There 's

there this topic is kind of mute

Figure 5: Transformation NoSyntax, where all non-
disfluency nodes are deleted.

e Transformation PosDisfl+NoSyntax: Push-
ing disfluency nodes down to POS tags and
deleting all non-disfluency nodes, as shown
in Figure 6.

EDITED EDITED EDITED DT NN VBZ RB RB ]JJ

EX BES EX

There 's there this topic is kind of mute

Figure 6: Transformation PosDisfl+NoSyntax, where
disfluency nodes are pushed down to POS tags and all
non-disfluency nodes are deleted.

e Transformation TopDisfl: Deleting all dis-
fluency nodes but the top ones, as shown in

Figure 7.
S
EDITED NP VP
S/\NP D&N VBZ  ADJP
NAP E’X AD@PO
L /N
EX BES RB RB JJ

There 's there this topic is kind of mute

Figure 7: Transformation TopDisfl, where all disflu-
ency nodes but the top ones are deleted.

e Transformation TopDisfl+NoSyntax:
Deleting all nodes but the top-most disflu-
ency nodes, as shown in Figure 8.

S

EDITED DT NN VBZ RB RB ]J

EX BES EX

There 's there this topic is kind of mute

Figure 8: Transformation TopDisfl+NoSyntax, where
all nodes but the top-most disfluency nodes are deleted.

We report the performance of the self-attentive
parser in terms of EDITED word f-score and dis-
fluency word f-score in Table 3. Since the trans-
formations change the tree shapes, it is not mean-
ingful to compare their parsing f-scores. As illus-
trated in Table 3, pushing disfluency nodes down
to POS tags (i.e. Transformation PosDisfl) in-
creases precision about 2%, resulting in 1% im-
provement in word f-score F(Wg). It also im-
proves F(Wgpp) by 0.4%. In general, the model
can take advantage of the simplified encoding
of disfluency nodes (see Transformations PosD-
isfl and TopDisfl). Moreover, deleting all but the
top-most disfluency nodes as in Transformation
TopDisfl+NoSyntax significantly drops precision
(about 20%), resulting in more than 13% decrease
in EDITED word f-score. It also hurts detecting
all types of disfluency (more than 7% decrease in
F(WEgrp)). In general, removing syntactic struc-
ture dramatically degrades the performance of the
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model in terms of F(Wg) and F(Wgp), as shown
in Transformations NoSyntax, PosDisfl+ NoSyntax
and TopDisfl+ NoSyntax. This indicates that syn-
tactic information is important for detecting dis-
fluencies.

Setting P(Wg)| R(Wg)| F(Wg)| F(Wgrp)
Baseline 81.6 94.2 87.5 94.0
PosDisfl 83.7 94.2 | 88.7 94.4
NoSyntax 73.0 95.0 82.5 92.3
PosDisfl+NoSyntax| 73.4 93.4 82.2 91.6
TopDisfl 81.9 94.3 87.7 93.8
TopDisfl+NoSyntax| 61.3 93.1 74.0 86.7

Table 3: EDITED word precision P(Wg), recall R(Wg)
and f-score F(Wg) as well as EDITED, INTJ and PRN
word f-score F(Wgpp) on the Switchboard dev set for
different encodings of disfluency nodes in data. The
best f-scores are shown in bold.

4.4.2 Punctuation and Partial words

As mentioned before, speech recognition models
generally do not produce punctuation and partial
words in their outputs. Thus, prior work has re-
moved them from the data to make the evalua-
tion more realistic. However, it is interesting to
see what information partial words and punctu-
ation convey about syntactic structure in general
and disfluencies in particular, so we did an exper-
iment to investigate the effect of including these
in the training and test data. We use the best
hyperparameter configuration on the Switchboard
dev set and retrain the model on two versions
of the data: (i) with partial words and (ii) with
punctuation and partial words. As shown in Ta-
ble 4, keeping punctuation and partial words in the
training data increases EDITED word f-score by
about 4%, indicating that punctuation and partial
words greatly help disfluency detection. Punctua-
tion leads to more gain in disfluency detection than
partial words. Punctuation also improves the word
f-score for all types of disfluencies by more than

1%.

5 Results

We selected our best model based on the dev set
results (including differentially weighted loss) and
compared the results achieved for the Tree Trans-
formation PosDisfl and No Tree Transformation on
the test set with previous work. Although most
previous work has used the Switchboard corpus,

Setting F(Wg) | F(Werp)
without punctuation & par- | 88.7 94.4
tial words

with partial words 89.7 94.4
with punctuations & partial | 92.2 95.5
words

Table 4: EDITED word F(Wg) and EDITED, INTJ and
PRN word f-score F(Wgp) on the Switchboard dev set
for three versions of the training data.

it is sometimes difficult to compare systems di-
rectly due to different scoring metrics and differ-
ences in experimental setup, such as the use of
partial words, punctuation, prosodic cues and so
on. Since some studies report their results using
partial words and/or punctuation, we divide prior
work according to the setting they used and report
the results of the self-attentive parser on the test
data for each setting.

Table 5 shows the test performance of the
self-attentive constituency parser against previous
parsing models of speech transcripts. The self-
attentive parser outperforms all previous models
in parsing accuracy. It has also better performance
than Kahn et al. (2005) and Tran et al. (2018), who
used acoustic/prosodic cues from speech wave-
form as well as the words in the transcript.

Parsing Model F(S)
without partial words
self-attentive parser (PDT) 92.4
self-attentive parser (NT) 92.7
partial words:
Hale et al. (2006) 71.1
Kahn et al. (2005) 86.6
Tran et al. (2018) 88.5
self-attentive parser (NT) 92.3
self-attentive parser (PDT) 92.6

Table 5: Parse f-score F(S) for all constituent spans on
the Switchboard test set with and without partial words.
NT = No Transformation and PDT = PosDisfl Transfor-
mation.

We also compare the performance of the self-
attentive parser with state-of-the-art disfluency de-
tection methods in terms of EDITED word f-score.
As shown in Table 6, the self-attentive parser (with
PosDisfl Transformation) achieves a new state-of-
the-art for detecting EDITED words. Its perfor-
mance is competitive with specialized disfluency
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detection models that directly optimize for dis-
fluency detection. Using partial words increases
edited word f-score for No Transformation mode
by 0.1% and for PosDisfl Transformation mode by
0.6%, which is not surprising as the presence of
partial words is strongly correlated with the pres-
ence of a disfluency.

It is interesting to compare the self-attentive
parser with the ACNN model presented
in Jamshid Lou et al. (2018). They intro-
duce a new ACNN layer which is able to learn
the “rough copy” dependencies between words,
for which previous models heavily relied on
hand-crafted pattern-matching features. “Rough
copies” are a strong indicator of disfluencies that
can help the model detect reparanda (i.e. EDITED
nodes). That the self-attentive parser is better
than the ACNN model (Jamshid Lou et al., 2018)
in detecting disfluencies may indicate that the
self-attention mechanism can learn “rough copy”
dependencies.

Model F(Wg)

without partial words:
Honnibal and Johnson (2014) 84.1
Jamshid Lou et al. (2018) e 84.5
Wu et al. (2015) 85.1
Ferguson et al. (2015) e 85.4
Wang et al. (2016) e 86.7
Jamshid Lou and Johnson (2017) e 86.8
self-attentive parser (NT) 86.9
Wang et al. (2017) o 87.5
self-attentive parser (PDT) 88.1

partial words:
Hale et al. (2006) 41.7
Tran et al. (2018) 77.5
Kahn et al. (2005) 78.2
Rasooli and Tetreault (2013) 81.4
Zayats et al. (2016) 85.9
self-attentive parser (NT) 87.0
self-attentive parser (PDT) 88.7

Table 6: Edited word f-score F(Wg) on the Switch-
board test set with and without partial words. e Spe-
cialized disfluency detection models. NT = No Trans-
formation and PDT = PosDisfl Transformation.

We also compare the performance of the self-
attentive parser with Wang et al.’s (2018) self-
attentive disfluency detection model in terms of
disfluency (i.e. EDITED, INTJ and PRN) word
f-score. As shown in Table 7, the self-attentive

parser outperforms this state-of-the-art specialized
self-attentive disfluency detection model.

Self-attentive Model F(Wgrp)
punctuation & partial words
Wang et al. (2018) 91.1
self-attentive parser (NT) 93.7
self-attentive parser (PDT) 94.0

Table 7: EDITED, INTJ and PRN word f-score
F(Wgp) on the Switchboard test set with punctuation
and partial words. NT = No Transformation and PDT
= PosDisfl Transformation.

6 Conclusion and Future Work

This paper shows that using an “off-the-shelf”
constituency parser achieves a new state-of-the-art
in parsing transcribed speech. The self-attentive
parser is effective in detecting disfluent words as it
outperforms specialized disfluency detection mod-
els, suggesting that it is feasible to use standard
neural architectures to perform disfluency detec-
tion as part of some other task, rather than requir-
ing a separate disfluency detection pre-processing
step. We also show that removing syntactic in-
formation hurts word f-score. That is, perform-
ing syntactic parsing and disfluency detection as
a multi-task training objective yields higher dis-
fluency detection accuracy than performing disflu-
ency detection in isolation. Modifying encoding
by indicating disfluencies at the word level leads
to further improvements in disfluency detection.

In future work we hope to integrate syntactic
parsing more closely with automatic speech recog-
nition. A first step is to develop parsing models
that parse ASR output, rather than speech tran-
scripts. It may also be possible to more directly
integrate an attention-based syntactic parser with
a speech recogniser, perhaps trained in an end-to-
end fashion.
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