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Abstract

Solving math word problems is a challeng-
ing task that requires accurate natural language
understanding to bridge natural language texts
and math expressions. Motivated by the intu-
ition about how human generates the equations
given the problem texts, this paper presents a
neural approach to automatically solve math
word problems by operating symbols accord-
ing to their semantic meanings in texts. This
paper views the process of generating equa-
tions as a bridge between the semantic world
and the symbolic world, where the proposed
neural math solver is based on an encoder-
decoder framework. In the proposed model,
the encoder is designed to understand the se-
mantics of problems, and the decoder focuses
on tracking semantic meanings of the gener-
ated symbols and then deciding which sym-
bol to generate next. The preliminary exper-
iments are conducted in a benchmark dataset
Math23K, and our model significantly outper-
forms both the state-of-the-art single model
and the best non-retrieval-based model over
about 10% accuracy, demonstrating the effec-
tiveness of bridging the symbolic and semantic
worlds from math word problems.'

1 Introduction

Automatically solving math word problems has
been an interesting research topic and also been
viewed as a way of evaluating machines’ abil-
ity (Mandal and Naskar, 2019). For human, writ-
ing down an equation that solves a math word
problem requires the ability of reading compre-
hension, reasoning, and sometimes real world un-
derstanding. Specifically, to solve a math word
problem, we first need to know the goal of
the given problem, then understand the semantic

The source code is available at https://github.
com/MiuLab/E2EMathSolver.
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meaning of each numerical number in the prob-
lem, perform reasoning based on the comprehen-
sion in the previous step, and finally decide what
to write in the equation.

Most prior work about solving math word prob-
lems relied on hand-crafted features, which re-
quired more human knowledge. Because those
features are often in the lexical level, it is not
clear whether machines really understand the math
problems. Also, most prior work evaluated their
approaches on relatively small datasets, and the
capability of generalization is concerned.

This paper considers the reasoning procedure
when writing down the associated equation given a
problem. Figure 1 illustrates the problem solving
process. The illustration shows that human actu-
ally assigns the semantic meaning to each number
when manipulating symbols, including operands
(numbers) and operators (+ — x=). Also, we be-
lieve that the semantic meaning of operands can
help us decide which operator to use. For example,
the summation of “price of one pen” and “number
of pens Tom bought” is meaningless; therefore the
addition would not be chosen.

Following the observation above, this paper
proposes a novel encoder decoder model, where
the encoder extracts semantic meanings of num-
bers in the problem, and the decoder is equipped
with a stack that facilitates tracking the semantic
meanings of operands. The contributions of this
paper are 4-fold:

e This paper is the first work that models se-
mantic meanings of operands and operators
for math word problems.

e This paper proposes an end-to-end neural
math solver with a novel decoding process
that utilizes the stack to generate associated
equations.
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Figure 1: The solving process of the math word problem “Each notebok takes $0.5 and each pen takes $1. Tom has
$10. How many notebook can he buy after buying 5 pens?” and the associated equation is z = (10 — 1 x 5) + 0.5.

The associated equation is 2 = (10 — 1 x 5) + 0.5.

e This paper achieves the state-of-the-art per-
formance on the large benchmark dataset
Math23K.

e This paper is capable of providing interpreta-
tion and reasoning for the math word problem
solving procedure.

2 Related Work

There is a lot of prior work that utilized hand-
crafted features, such as POS tags, paths in the de-
pendency trees, keywords, etc., to allow the model
to focus on the quantities in the problems (Kush-
man et al., 2014; Hosseini et al., 2014; Roy et al.,
2015; Roy and Roth, 2015; Koncel-Kedziorski
et al., 2015; Roy et al., 2016; Upadhyay et al.,
2016; Upadhyay and Chang, 2017; Roy and Roth,
2018; Wang et al., 2018). Recently, Mehta et al.;
Wang et al.; Ling et al. attempted at learning mod-
els without predefined features. Following the re-
cent trend, the proposed end-to-end model in this
paper does not need any hand-crafted features.
Kushman et al. first extracted templates about
math expressions from the training answers, and
then trained models to select templates and map
quantities in the problem to the slots in the tem-
plate. Such two-stage approach has been tried
and achieved good results (Upadhyay and Chang,
2017). The prior work highly relied on hu-
man knowledge, where they parsed problems into
equations by choosing the expression tree with the
highest score calculated by an operator classifier,
working on a hand-crafted “trigger list” contain-
ing quantities and noun phrases in the problem, or
utilizing features extracted from text spans (Roy
etal., 2015, 2016; Koncel-Kedziorski et al., 2015).
Shi et al. defined a Dolphin language to connect
math word problems and logical forms, and gen-
erated rules to parse math word problems. Upad-
hyay et al. parsed math word problems without
explicit equation annotations. Roy and Roth clas-

sified math word problems into 4 types and used
rules to decide the operators accordingly. Wang
et al. trained the parser using reinforcement learn-
ing with hand-crafted features. Hosseini et al.
modeled the problem text as transition of world
states, and the equation is generated as the world
states changing. Our work uses a similar intuition,
but hand-crafted features are not required and our
model can be trained in an end-to-end manner.
Some end-to-end approaches have been proposed,
such as generating equations directly via a seq2seq
model (Wang et al., 2017). Ling et al. tried to
generate solutions along with its rationals with a
seq2seq-like model for better interpretability.

This paper belongs to the end-to-end category,
but different from the previous work; we are the
first approach that generates equations with stack
actions, which facilitate us to simulate the way
how human solves problems. Furthermore, the
proposed approach is the first model that is more
interpretable and provides reasoning steps without
the need of rational annotations.

3 End-to-End Neural Math Solver

Our approach composes of two parts, an encoder
and a decoder, where the process of solving math
word problems is viewed as transforming multi-
ple text spans from the problems into the target
information the problems ask for. In the exam-
ple shown in Figure 1, all numbers in the problem
are attached with the associated semantics. Moti-
vated by the observation, we design an encoder to
extract the semantic representation of each num-
ber in the problem text. Considering that human
usually manipulates those numbers and operators
(such as addition, subtraction, etc.) based on their
semantics for problem solving, a decoder is de-
signed to construct the equation, where the seman-
tics is aligned with the representations extracted
by the encoder. The idea of the proposed model
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Figure 2: The encoder-decoder model architecture of the proposed neural solver machine.

is to imitate the human reasoning process for solv-
ing math word problems. The model architecture
is illustrated in Figure 2.

3.1 Encoder

The encoder aims to extract the semantic represen-
tation of each constant needed for solving prob-
lems. However, the needed constants may come
from either the given problem texts or domain
knowledge, so we detail these two procedures as
follows.

3.1.1 Constant Representation Extraction

For each math word problem, we are given a pas-
sage consisting of words {w/ }7,, whose word
embeddings are {el’}7 ;. The problem text in-
cludes some numbers, which we refer as constants.
The positions of constants in the problem text are
denoted as {p;}"_;. In order to capture the seman-
tic representation of each constant by considering
its contexts, a bidirectional long short-term mem-
ory (BLSTM) is adopted as the encoder (Hochre-
iter and Schmidhuber, 1997):

h,cf = BLSTM(h{ 1, cf 1. ef), (D)

and then for the i-th constant in the problem, its
semantic representation e{ is modeled by the cor-
responding BLSTM output vector:

e =hl. (2)

3.1.2 External Constant Leveraging

External constants, including 1 and m, are lever-
aged, because they are required to solve a math
word problem, but not mentioned in the prob-
lem text. Due to their absence from the problem
text, we cannot extract their semantic meanings by

BLSTM in (2). Instead, we model their semantic
representation e™, e as parts of the model parame-
ters. They are randomly initialized and are learned
during model training.

3.2 Decoder

The decoder aims at constructing the equation that
can solve the given problem. We generate the
equation by applying stack actions on a stack to
mimic the way how human understands an equa-
tion. Human knows the semantic meaning of
each term in the equation, even compositing of
operands and operators like the term ”(10—1x5)”
in Figure 1. Then what operator to apply on a
pair operands can be chosen based on their seman-
tic meanings accordingly. Hence we design our
model to generate the equation in a postfix man-
ner: a operator is chosen base on the semantic rep-
resentations of two operands the operator is going
to apply to. Note that the operands a operator can
apply to can be any results generated previously.
That is the reason why we use “stack” as our data
structure in order to keep track of the operands
a operator is going to apply to. The stack con-
tains both symbolic and semantic representations
of operands, denoted as

S = I:(,Ui’? 65), (vli—l’ el‘S;—l)a Ty (UIS’ e‘ls)]v (3)

where v° of each pair is the symbolic part, such
as = + 1, while e° is the semantic representation,
which is a vector. The components in the decoder
are shown in the right part of Figure 2, each of
which is detailed below.

3.3 Decoding State Features

At each decoding step, decisions are made based
on features of the current state. At each step, fea-
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Figure 3: Tllustration of the inference process. The purple round blocks denote the transformed semantics, while

the green ones are generated by the variable generator.

tures °¢ and r°P% are extracted to select a stack
action (section 3.3.2) and an operand to push (sec-
tion 3.3.3). Specifically, the features are the gated
concatenation of following vectors:

e hP is the output of an LSTM, which encodes
the history of applied actions:

hy,cf = LSTM(h{ 1, cf |, resi—1), (4)

where res;_; is the result from the previ-
ous stack action similar to the seq2seq model
(Sutskever et al., 2014). For example, if the
previous stack action o;—; is “push”, then
res;_1 is the semantic representation pushed
into the stack. If the previous stack action
01 is to apply an operator ¢, then res;_; is
the semantic representation generated by fs.

e s; is the stack status. It is crucial because
some operators are only applicable to certain
combinations of operand semantics, which is
similar to the type system in programming
languages. For example, operating multi-
plication is applicable to the combination of
“quantity of an item” and “price of an item”,
while operating addition is not. Consider-
ing that all math operators supported here
(+, —, X, +) are binary operators, the seman-
tic representations of the stack’s top 2 ele-
ments at the time ¢ — 1 are considered:

S. S
s¢ = lepser].

(&)
e ¢; incorporates problem information in the
decision. It is believed that the attention
mechanism (Luong et al., 2015) can effec-
tively capture dependency for longer dis-
tance. Thus, the attention mechanism over

the encoding problem h¥ h¥’ ... is adopted:

¢ = Attention(h?, {hEY™ ), (6)
where the attention function in this paper is

defined as a function with learnable parame-
ters w, W, b:

Attention(u, {v;}i%;) = Zaihi, (7
i=1

exp(s;)
= S 8
S, exp(s) ®
si =w! tanh (W7 [u; ;] + b). )

In order to model the dynamic features for dif-
ferent decoding steps, features in 7 is gated as
follows:

= (g5 WP gt s gl (10)
g = o(W* - [h; s q4), (in

where o is a sigmoid function and W** is a
learned gating parameter. 7% is defined simi-
larly, but with a different learned gating parameter

word.,
3.3.1 Stack Action Selector

The stack action selector is to select an stack ac-
tion at each decoding step (section 3.3.2) until the
unknowns are solved. The probability of choosing
action a at the decoding step ¢ is calculated with
a network NN constituted of one hidden layer and
ReLU as the activation function:

t—1

P(Y: Hyitizy, {witiZe)
= StackActionSelector(r;*)
= softmax(NN(r;?)),

(12)

where 77 is decoding state features as defined in
section 3.3.
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3.3.2 Stack Actions
The available stack actions are listed below:

e Variable generation: The semantic repre-
sentation of an unknown variable z is gener-
ated dynamically as the first action in the de-
coding process. Note that this procedure pro-
vides the flexibility of solving problems with
more than one unknown variables. The de-
coder module can decide how many unknown
variables are required to solve the problem,
and the semantic representation of the un-
known variable is generated with an attention
mechanism:

e® = Attention(h”, {RFY™ ). (13)

e Push: This stack action pushes the operand
chosen by the operand selector (section
3.3.3). Both the symbolic representation v,
and semantic representation e, of the chosen
operand would be pushed to the stack S in
(3). Then the stack state becomes

S = [(U;?’ef)a (Ugaei)7 e 7(“?765)]'
(14)

e Operator ¢ application (¢ € {4, —, x, =+ }):
One stack action pops two elements from the
top of the stack, which contains two pairs,
(vi,e;) and (vj,e;), and then the associated
symbolic operator, v, = v; ¢ vj, is recorded.
Also, a semantic transformation function f,
for that operator is invoked, which generates
the semantic representation of v by trans-
forming semantic representations of v; and v;
to ey = fo(es, €j). Therefore, after an opera-
tor is applied to the stack specified in (3), the
stack state becomes

S =[(vy ovp_y, folep ef 1)), (15)

S S S S
(vlt—Qv elt—2)7 Ty (vl €1 )]

e Equal application: When the equal appli-
cation is chosen, it implies that an equation
is completed. This stack action pops 2 tu-
ples from the stack, (v;, €;), (v}, €;), and then
v; = wj is recorded. If one of them is
an unknown variable, the problem is solved.
Therefore, after an OP is applied to the stack
specified in (3), the stack state becomes

S = [(UZS,;—% 65—2)7 T (’Uigv ef)] (16)

3.3.3 Operand Selector

When the stack action selector has decided to
push an operand, the operand selector aims at
choosing which operand to push. The operand
candidates e include constants provided in the
problem text whose semantic representations are
ef, €5, -+ ,e5, unknown variable whose semantic
representation is e®, and two external constants 1
and 7 whose semantic representations are e!, e™:

el e, el

e=lef,e5, - e, (17)
An operand has both symbolic and semantic repre-
sentations, but the selection focuses on its seman-
tic meaning; this procedure is the same as what
human does when solving math word problems.
Inspired by addressing mechanisms of neural
Turing machine (NTM) (Graves et al., 2014), the
probability of choosing the i-th operand candidate
is the attention weights of r; over the semantic rep-

resentations of the operand candidates as in (8):

P(Zy | {yiyizh {wi}it)
opd
p)

(18)
= OperandSelector(r
= AttentionWeight(rfpd, {e}™, U {el,e™, e},

and 7" is defined in section 3.3.

3.3.4 Semantic Transformer

A semantic transformer is proposed to generate the
semantic representation of a new symbol resulted
from applying an operator, which provides the ca-
pability of interpretation and reasoning for the tar-
get task. The semantic transformer for an operator
o € {+,—, x,+} transforms semantic represen-
tations of two operands eq, e into

foler, ea) = tanh(U,ReLU (W [e1; ea]+bs)+co),

(19)
where W, U, b,, c, are model parameters. Se-
mantic transformers for different operators have
different parameters in order to model different
transformations.

3.4 Training

Both stack action selection and operand selection
can be trained in a fully supervised way by giving
problems and associated ground truth equations.
Because our model generates the equation with
stack actions, the equation is first transformed into
its postfix representation. Let the postfix represen-
tation of the target equation be y1,-- -y, -+ , Y7,

2660



where y, can be either an operator (+, —, X, +, =)
or a target operand. Then for each time step ¢, the
loss can be computed as

otherwise

[ La(pushiop) + La(y)
Llw) = {Ll(yt)

where L is the stack action selection loss and Lo
is the operand selection loss defined as

Li(y) = —log P(Y; =y, | {021, {wi by,
Lo(y:) = —log P(Zy =y | 14).

The objective of our training process is to min-
imize the total loss for the whole equation,

23:1 L (yt)
3.5 Inference

When performing inference, at each time step
t, the stack action with the highest probability
P(Yi[{7i}i=1, {w;}7,) is chosen. If the chosen
stack action is “push”, the operand with the high-
est probability P(Z;|{Y;}/Z1, {w;}7,) is chosen.
When the stack has less than 2 elements, the prob-
ability of applying operator +, —, X, <+, = would
be masked out to prevent illegal stack actions, so
all generated equations must be legal math ex-
pressions. The decoder decodes until the un-
known variable can be solved. After the equations
are generated, a Python package SymPy (Meurer
et al., 2017) is used to solve the unknown variable.
The inference procedure example is illustrated in
Figure 3. The detailed algorithm can be found in
Algorithm 1.

4 Experiments

To evaluate the performance of the proposed
model, we conduct the experiments on the bench-
mark dataset and analyze the learned semantics.

4.1 Settings

The experiments are benchmarked on the dataset
Math23k  (Wang et al., 2017), which con-
tains 23,162 math problems with annotated equa-
tions. Each problem can be solved by a single-
unknown-variable equation and only uses opera-
tors +, —, X, +. Also, except m and 1, quantities
in the equation can be found in the problem text.
There are also other large scale datasets like Dol-
phin18K (Shi et al., 2015) and AQuA (Ling et al.,
2017), containing 18,460 and 100,000 math word

Algorithm 1 Training and Inference

y¢ is an operand

function SOLVEPROBLEM(problem_text)
v < ExtractConstants(problem_text)
> v is a list of constants in the problem.
hE, hP, P, E < Encoder(problem_text)
S+ Stack()
ret, loss, t, equations < padding, 0, 1, {}
while not solvable(equations) do
hP « LSTM(h{ 1, ci—1,ret)
s¢ < S.get_top2()
h¥ « Attention(h? ;, h%)
Tt < [h‘tD: St hE}
Dsa < StackActionSelector(r:)
Popd  OperandSelector(r;)
if training then
> Target equation y is available when training.
Yy
if y: is operand then
loss < loss + Li(push) + La(y:)
else
loss < loss + L1 (y:)
end if
else
Y; + StackActionSelector(r;®)
if Y; = push then
Z; + OperandSelector(r???)
end if
end if
if Y; = gen_var then
e® < Attention(h?, h%)
ret «+ e*
else if Y; = push then
S.push(vz,,ez,)
ret < ez,
elseif Y; € {+, —, x,+} then
(Va; €a), (vb, ep) = S.pop(), S.pop()
S.push(va Ysvn, fy; (€a, cb))
ret < fy,(eq,€p)
else if Y; = equal then
(U(h ea)7 (Ulh eb) = S.pOp(), SpOp()
equations = equations U " v, = vp”
ret < S.top()
end if
end while
return solve(equations)
end function

problems respectively. The reasons about not eval-
uating on these two datasets are 1) Dolphinl8k
contains some unlabeled math word problems and
some incorrect labels, and 2) AQuA contains ra-
tional for solving the problems, but the equations
in the rational are not formal (e.g. mixed with
texts, using x to represent X, etc.) and incon-
sistent. Therefore, the following experiments are
performed and analyzed using Math23K, the only
large scaled, good-quality dataset.

4.2 Results

The results are shown in Table 1. The retrieval-
based methods compare problems in test data with
problems in training data, and choose the most
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Model Accuracy Model Accuracy
Retrieval Jaccard 47.2% Char-Based 65.8%
Cosine 23.8% Word-Based 65.3%
Classification BLSTM 57.9% Word-Based - Gate . 64.1%
Self-Attention 56.8% Word-Based - Gate - Attention 62.5%
Seq2Seq w/ SNI 58.1% Word-Based - Gate - Attention - Stack  60.1%
Generation Proposed Word-Based 65.3% Word-Based - Semantic Transformer ~ 64.1%
Proposed Char-Based 65.8% Word-Based - Semantic Representation 61.7%
Hybrid Retrieval + Seq2Seq  64.7%

Table 1: 5-fold cross validation results on Math23K.

similar one’s template to solve the problem (Kush-
man et al., 2014; Upadhyay and Chang, 2017).
The classification-based models choose equation
templates by a classifier trained on the training
data. Their performance are reported in Robaidek
et al.. The seq2seq and hybrid models are from
Wang et al., where the former directly maps nat-
ural language into symbols in equations, and the
latter one ensembles prediction from a seq2seq
model and a retrieval-based model. The ensemble
is the previous state-of-the-art results of Math23K.

Our proposed end-to-end model belongs to the
generation category, and the single model perfor-
mance achieved by our proposed model is new
state-of-the-art (> 65%) and even better than the
hybrid model result (64.7%). In addition, we are
the first to report character-based performance on
this dataset, and the character-based results are
slightly better than the word-based ones. Among
the single model performance, our models ob-
tain about more than 7% accuracy improvement
compared to the previous best one (Wang et al.,
2017). The performance of our character-based
model also shows that our model is capable of
learning the relatively accurate semantic represen-
tations without word boundaries and achieves bet-
ter performance.

4.3 Ablation Test

To better understand the performance contributed
by each proposed component, we perform a series
of ablation tests by removing components one by
one and then checking the performance by 5-fold
cross validation. Table 2 shows the ablation re-
sults.

Char-Based v.s. Word-Based As reported
above, using word-based model instead of
character-based model only causes 0.5% perfor-
mance drop. To fairly compare with prior word-

Table 2: 5-fold cross validation results of ablation tests.

based models, the following ablation tests are per-
formed on the word-based approach.

Word-Based - Gate It uses r; instead of 7 and
opr

ry" as the input of both StackActionSelector and
OperandSelector.

Word-Based - Gate - Attention Considering
that the prior generation-based model (seq2seq)
did not use any attention mechanism, we compare
the models with and without the attention mecha-
nism. Removing attention means excluding q;—1
in (11), so the input of both operator and operand
selector becomes 7; = [h; s;]. The result implies
that our model is not better than previous models
solely because of the attention.

Word-Based - Gate - Attention - Stack To
check the effectiveness of the stack status (s; in
(11)), the experiments of removing the stack sta-
tus from the input of both operator and operand
selectors (ry = hf) ) are conducted. The results
well justify our idea of choosing operators based
on semantic meanings of operands.

Word-Based - Semantic Transformer To val-
idate the effectiveness of the idea that views an
operator as a semantic transformer, we modify
the semantic transformer function of the operator
o into fo(e1,e2) = e, where e, is a learnable
parameter and is different for different operators.
Therefore, e, acts like the embedding of the op-
erator ¢, and the decoding process is more simi-
lar to a general seq2seq model. The results show
that the semantic transformer in the original model
encodes not only the last operator applied on the
operands but other information that helps the se-
lectors.

Word-Based - Semantic Representation To
explicitly evaluate the effectiveness of operands’
semantic representations, we rewrite semantic rep-
resentation of the i-th operand in the problem texts
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Figure 4: The self-attention map visualization of operands’ semantic expressions for the problem “There are 58
bananas. Each basket can contain 6 bananas. How many bananas are needed to be token off such that exactly 9

baskets are filled?”.

from (2) to e = bf, where b is a parameter.
Thus for every problem, the representation of the
i-th operand is identical, even though their mean-
ings in different problems may be different. This
modification assumes that no semantic informa-
tion is captured by b$, which can merely represent
a symbolic placeholder in an equation. Because
the semantic transformer is to transform the se-
mantic representations, applying this component
is meaningless. Here the semantic transformer is
also replaced with f.(e1,e2) = e, as the setting
of the previous ablation test. The results show that
the model without using semantic representations
of operands causes a significant accuracy drop of
3.5%. The main contribution of this paper about
modeling semantic meanings of symbols is vali-
dated and well demonstrated here.

5 Qualitative Analysis

To further analyze whether the proposed model
can provide interpretation and reasoning, we visu-
alize the learned semantic representations of con-
stants to check where the important cues are,

5.1 Constant Embedding Analysis

To better understand the information encoded in
the semantic representations of constants in the
problem, a self-attention is performed when their
semantic representations are extracted by the en-
coder. Namely, we rewrite (2) as

e = Attention(hfi, {hf}?ll (20)

Then we check the trained self-attention map (« in
the attention function) on the validation dataset.
For some problems, the self-attention that gen-
erates semantic representations of constants in the
problem concentrates on the number’s quantifier
or unit, and sometimes it also focuses on infor-
mative verbs, such as “gain”, “get”, “fill”’, etc., in
the sentence. For example, Figure 4 shows the at-
tention weights for an example math word prob-
lem, where lighter colors indicate higher weights.

The numbers “58” and “6” focus more on the
quantifier-related words (e.g. “every” and “how
many”), while “9” pays higher attention to the verb
“fill’. The results are consistent with those hand-
craft features for solving math word problems pro-
posed by the prior research (Hosseini et al., 2014;
Roy and Roth, 2015; Roy et al., 2015). Hence, we
demonstrate that the automatically learned seman-
tic representations indeed capture critical informa-
tion that facilitates solving math word problems
without providing human-crafted knowledge.

5.2 Decoding Process Visualization

We visualize the attention map (g; in (6)) to see
how the attention helps the decoding process. An
example is shown in the top of Figure 5, where
most attention focuses on the end of the sentence.
Unlike the machine translation task, the attention
shows the word-level alignment between source
and target languages, solving math word problems
requires high-level understanding due to the task
complexity.

To further analyze the effectiveness of the pro-
posed gating mechanisms for stack action and
operand selection, the activation of gates g*¢, g°P¢
at each step of the decoding process is shown in
the bottom of Figure 5. It shows that most of time,
the gate activation is high, demonstrating that the
proposed gating mechanisms play an important
role during decoding. We also observe a com-
mon phenomenon that the activation g5, which
controls how much attention the stack action se-
lector puts on the stack state when deciding an
stack action, is usually low until the last “opera-
tor application” stack action. For example, in the
example of Figure 5, g5% is less than 0.20 till the
last argument selection stack action, and activates
when deciding the division operator application
(=) and the equal application (=). It may re-
sult from the higher-level semantics of the operand
(6.75—2.75) on the stack when selecting the stack
action division operator application (=). In terms
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Problem & Results

I A60%, izt 51/65, ZA %

xS

(There are 60 red flowers. Yellow flowers

are more than red ones by 1/6. How many yellow flowers are there?)

Generated Equation: 60 + %
Correct Answer: 70

K& 48 4TI 5920 T K. A% 25 DEATR 2250 TR, AEFHEIHLKESEDHE
% » XK ? (The train travels 5920 kilometers in hours, and the car travels 2250 kilometers in 25
hours. How many kilometers per hour is the car slower than the train?)

Generated Equation: 2250 + 25 — 5920 + 48
Correct Answer: 33%

AT E 5 A, B@E T A

—#7 % » A? (There are 5 people in front of Little Red and 7

people behind. How many persons are there in total?)

Generated Equation: 5 + 7
Correct Answer: 13

Table 3: Randomly sampled incorrect predictions.

gv x 6.752.75 - 5.0 / = noop
6.75 18 .01 . .01
substrates /#Z% .09 . .02 .
unknown 5 .28 . .07 .
number £ 48 .00 . .00 .
's {9 18 14 . .02 .
5.0 48 .04 . .02 .
times 1 8 .09 . .18 .
is 15 8 .03 . 18 . .04 .
2.75 18 .02 . A4 . .03 .
., .00 . .08 .00 .01
ask 3K 8 .00 . .00 .00 .00 .
unknown ¥ & .01 . .01 .00 .00 .
number £ 48 .01 . .01 .00 .01

o o EEQERRER) - -

.01 .00 .01 .01 .04 .

<unk>

g7 +.97 1.0 1.0 1.0 1.0 .99 .61 .73 ki
.06 .02 .09 .26 . .83
g7 4.99 1.0 1.0 1.0 97 96 96 1.0 1.0

gt .74 98 JEEN 66 50 [N

gort+.69 .61 “ih 68 .74 .83 .83 .93 .70
gPi4.77 99 1.0 .98 .90 .78 .62 I3
T T

v x 6.752.75

5i0 } = noop
Figure 5: Word attention and gate activation (g** and
g°P%) visualization when generating stack actions for
the problem “6.75 deducting 5 times of an unknown
number is 2.75. What is the unknown number?”, where
the associated equation is z = (6.75 — 2.75) = 5. Note
that g°7¢ is meaningful only when the ¢-th stack action
is push_op.

of the activation of g°P%, we find that three features
are important in most cases, demonstrating the ef-
fectiveness of the proposed mechanisms.

5.3 Error Analysis

We randomly sample some results predicted incor-
rectly by our model shown in Table 3. In the first
example, the error is due to the language ambigu-
ity, and such ambiguity cannot be resolved without
considering the exact value of the number. From
the second example, although our model identi-
fies the problem as a comparison problem success-
fully, it handles the order of the operands incor-
rectly. For the third problem, it cannot be solved
by using only the surface meaning but requires
some common sense. Therefore, above phenom-
ena show the difficulty of solving math word prob-
lems and the large room for improvement.

6 Conclusion

We propose an end-to-end neural math solver us-
ing an encoder-decoder framework that incorpo-
rates semantic representations of numbers in or-
der to generate mathematical symbols for solving
math word problems. The experiments show that
the proposed model achieves the state-of-the-art
performance on the benchmark dataset, and empir-
ically demonstrate the effectiveness of each com-
ponent in the model. In sum, the proposed neu-
ral math solver is designed based on how human
performs reasoning when writing equations, pro-
viding better interpretation without the need of la-
beled rationals.

2664



References

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing, pages 523-533.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Adam:
CoRR,

Diederik P. Kingma and Jimmy Ba. 2014.
A method for stochastic optimization.
abs/1412.6980.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. TACL, 3:585-597.

Nate Kushman, Luke Zettlemoyer, Regina Barzilay,
and Yoav Artzi. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2014, pages 271-281.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2017, pages 158-167.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412-1421.

Sourav Mandal and Sudip Kumar Naskar. 2019. Solv-
ing arithmetic mathematical word problems: A re-
view and recent advancements. In Information Tech-
nology and Applied Mathematics, pages 95-114.
Springer.

Purvanshi Mehta, Pruthwik Mishra, Vinayak Athavale,
Manish Shrivastava, and Dipti Misra Sharma. 2017.
Deep neural network based system for solving arith-
metic word problems. In Proceedings of the 1JC-
NLP 2017, pages 65—68.

Aaron Meurer, Christopher P. Smith, Mateusz Pa-
procki, Ondiej Certik, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Ja-
son K. Moore, Sartaj Singh, Thilina Rathnayake,

Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats,
Fredrik Johansson, Fabian Pedregosa, Matthew J.
Curry, Andy R. Terrel, Stépan Roucka, Ashutosh
Saboo, Isuru Fernando, Sumith Kulal, Robert Cim-
rman, and Anthony Scopatz. 2017. Sympy: sym-
bolic computing in python. PeerJ Computer Sci-
ence, 3:¢103.

Benjamin Robaidek, Rik Koncel-Kedziorski, and
Hannaneh Hajishirzi. 2018.  Data-driven meth-
ods for solving algebra word problems. CoRR,
abs/1804.10718.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portu-
gal, September 17-21, 2015, pages 1743-1752.

Subhro Roy and Dan Roth. 2018. Mapping to declar-
ative knowledge for word problem solving. TACL,
6:159-172.

Subhro Roy, Shyam Upadhyay, and Dan Roth. 2016.
Equation parsing : Mapping sentences to grounded
equations. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016, pages 1088-1097.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Rea-
soning about quantities in natural language. TACL,
3:1-13.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2015, pages 1132—-1142.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural Infor-
mation Processing Systems 2014, pages 3104-3112.

Shyam Upadhyay and Ming-Wei Chang. 2017. An-
notating derivations: A new evaluation strategy and
dataset for algebra word problems. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 494-504.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,
and Wen-tau Yih. 2016. Learning from explicit and
implicit supervision jointly for algebra word prob-
lems. In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Process-
ing, pages 297-306.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018. Math-
DQN: Solving arithmetic word problems via deep

2665



reinforcement learning. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intel-
ligence.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845—
854.

A Algorithm Detail

The training and inference procedures are shown
in Algortihm 1.

B Hyperparameter Setup

The model is trained with the optimizer adam
(Kingma and Ba, 2014), and the learning rate is set
to 0.001. Pretrained embeddings using FastText
(Joulin et al., 2016) are adopted. The hidden state
size of LSTM used in the encoder and decoder is
256. The dimension of hidden layers in attention,
semantic transformer and operand/stack action se-
lector is 256. The dropout rate is set as 0.1 before
inputting the decoder LSTM, before the stack ac-
tion selector and after the hidden layer of the stack
action selector and attention. The reported accu-
racy is the result of 5-fold cross-validation, same
as Wang et al. for fair comparison.

C Error Analysis between Seq2Seq

We implement the seq2seq model as proposed by
Wang et al. and compare the performance differ-
ence between our proposed model and the base-
line seq2seq model. Table 4 shows the generated
results seq2seq predicts correctly but our model
predicts incorrectly. Table 5 show the results our
model can predict correctly but seq2seq cannot.
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Problem & Results

aa@ S A, BE@T A, —&HA % ) A? (There are 5 people in front of Little Red and 7
people behind. How many persons are there in total?)

Proposed Model: 5 + 7

Seq2Seq Model: 5+ 7+ 1

M ASFAR 228, de R R IR V3, R EKG HeS, AR A EA18 £=2 (The difference between
two numbers is 28. If the minuend is reduced by 3, and the subtrahend is increased by 5, then their
difference=?)

Proposed Model: (28 — 3) +5

Seq2Seq Model: 28 — (3 + 5)

MRS B —FRASSA F=FRAASA, FAFRFHEF6INTH, ZAA FREF
REAZ % P AEA? (There are 55 people in the first workshop of the machine tool factory and
45 people in the second workshop. Each person produces 261 small components per day in average.
How many components do the two workshops produce every day in total?)

Proposed Model: (55 + 45) + 261

Seq2Seq Model: (55 + 45) x 261

A &t B B 69 18 E28K/AY . 8AV T VAd#E % K?  (The swordfish swims at speed 28 meters/sec.
How many meters can it swim in 8 seconds?)

Proposed Model: 28 = 8

Seq2Seq Model: 28 x 8

KRJERRFT3RT 5L, FH205F05, RER—$, AEKREXARTS L. KR
J&EXERHF % VT 352 (The fruit shop has 387 kilograms of pears . After selling 205 kilograms,
some pears arrive. Now the fruit shop has 945 kilograms of pears in total. How many kilograms of
pears does the fruit shop get?)

Proposed Model: 945 x (387 — 205)

Seq2Seq Model: 945 — (387 — 205)

ITEFRMRMTI40L, XERAGELEHRGIE. ZLFRXR—-ARNT $ I 1
(Teacher Wang spent 40 dollars buying volleyballs and 3 times of money for basketballs. How many
dollars did Teacher Wang spend for the balls?)

Proposed Model: 40 = 3 + 40

Seq2Seq Model: 40 + 40 x 3

RIS R — FK1200K 89 3%, T IRERGBA0R T AT AL 5> CINE R B30 K 7T VA %Ak,
% . FREREGGILTI D % 5 K? (The road construction team built a road with a length of
1200 meters. Team A can complete the task in 40 days alone, and team B can complete the task in
30 days alone. How many meters does team A construct more than team B every day?)

Proposed Model: 1200 = 40 — 1200 =+ 30

Seq2Seq Model: 1200 + 30 — 1200 = 40

— 18004 EMNFRIF2/9, HHEFRGKIA S T AFRGYS5, BFR>FS5 D
A2 (There are 1800 books in total. We sixth grade get 2/9. The number of books given to the fifth
grade is equal to 4/5 of the number to the sixth grade. How many books does the fifth grade get?)
Proposed Model: 1800 x % = %

Seq2Seq Model: 1800 x 3 x 2

A —dA o, R ABERTAMIOM, 4o R AMIEF T ABIS 5, A A Z A AT AL
£ XA 69 RAR? (There is a batch of fabrics. If all is used for making shirts, 10 pieces can be made,
and 15 pieces if used to make pants only. Then how many suits of such clothes can be made with this
batch of fabric?)

Proposed Model: 10 x 1 + 15

Seq2Seq Model: 1 + (1 +10+ 1+ 15)

MMEEE—ASITEREKEZ06L, K —F48LE, K THREFX—AEAKRE, &R
%% % V4?2 (Beibei needs 0.6 dollars more to buy a notebook of 5.9 dollars. If he buys one of
4.8 dollars, the remaining money allows her to buy exactly one ball pen. How much is the ball pen?)
Proposed Model: 5.9 + 0.6 — 4.8

Seq2Seq Model: 5.9 — 0.6 — 4.8 2667

Table 4: Examples that Seq2Seq predicts correctly while our proposed model predicts incorrectly.



Problem & Results

EREZZRRBRAMATHRAK, RN HBAKLRN HBEAKEL: 19856, 1RIE
X WAZ L, MRAE4 AT 242 (In hospital, it is often necessary to give glucose injection to patient.
This glucose water is prepared by mixing glucose and water at 1:19. Based on this information, what
do you know?)

Proposed Model: 1 = (1 + 19.0)

Seq2Seq Model: 1 x (1 + 19.0)

— R K245K 89 KAEAT AT R ILEMAF RAEK EIE S K0T5K . KPK1.05K, RER
MAITERFTEKE=% Y K? (A wooden pile of 2.45 meters long is hammered into the bottom
of a river. Now the part above water is measured as 0.75 meters long, and the part in the water is
measured as 1.05 meters long. How long is the part of the pile in the mud?)

Proposed Model: 2.45 — 0.75 — 1.05

Seq2Seq Model: 2.45 + 0.75 4 1.05

FROAMEEFFAH255T, R FTET15%. ¥4 7T % L. (LiQiang’s living expenses
in June were 255 dollars, 15% savings over the plan. How much did he save?)

Proposed Model: (255.0 = (1 — 0.15)) x 0.15

Seq2Seq Model: 0.15 = 6.0/(1 — 255.0) — 6.0

D F AT AR08, BRTART RS, ERFA32, ERMGLERE A= (When
Xiaofang calculates a number divided by 10, the division sign is mistakenly treated as a multiplica-
tion sign, and the result is 3.2. The correct result should be = .)

Proposed Model: 3 + 10 + 10

Seq2Seq Model: 3.2 + (1 + 10)

24 +91 85 2/13, PTA3 894 ATk 19/20, # =2 (2/13 of 91 + 24, and the sum is divided by 19/20,
quotient = ?)

Proposed Model: 33 + (24 + 91 x Z)
Seq2Seq Model: % + (24 x 91 — 1%)

1/734025=° (1/3+0.25=7)
Proposed Model: % +0.25
Seq2Seq Model: % x 0.25

RMEZRLERBELTR. SEFME0TL BEFAEIITEL AE—RZROEE
ot & % % L2 (The store shipped 7 boxes of eggs and duck eggs respectively. Eggs weigh
26 kilograms per box, duck eggs weigh 31 kilograms per box. How many kilograms of eggs and
duck eggs are shipped from the store in total?)

Proposed Model: 26 x 7+ 31 x 7

Seq2Seq Model: 26 x 7 + 31

38-254+146=" (3.8-2.54+146=)
Proposed Model: 3.8 — 2.54 + 1.46
Seq2Seq Model: 3.8 + 2.54 4+ 1.46

H—K, F—RAE200E, FRILE—KRZH20% FIRAT ERKG36% EiFs
WAK . RkKE A% Poh? (There was a pool of water, which released 200 tons of water in
the first day, 20% more in the second day than the first day, and 36% of the whole pool on the third
day. Then the water is gone. How many tons of water did this pool have?)

Proposed Model: (200.0 + 200.0 x (1 +0.2)) + (1 — 0.36)

Seq2Seq Model: (200.0 + 0.2) x 3.0 + 0.2 x (1 — 0.36)

16 8 5/12 )b — N8y 7458 % 2, X A%k =2 (5/12 of 16 is more than 7 times of a number by 2.
What is the number="?)

Proposed Model: (16 x 2 —2) =7

Seq2Seq Model: (16 x = +7) + 2

Table 5: Examples that Seq2Seq predicts incorrectly while our proposed model predicts correctly.
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