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Abstract

A grand goal in Al is to build a robot that
can accurately navigate based on natural lan-
guage instructions, which requires the agent
to perceive the scene, understand and ground
language, and act in the real-world environ-
ment. One key challenge here is to learn
to navigate in new environments that are un-
seen during training. Most of the existing ap-
proaches perform dramatically worse in un-
seen environments as compared to seen ones.
In this paper, we present a generalizable nav-
igational agent. Our agent is trained in two
stages. The first stage is training via mixed im-
itation and reinforcement learning, combining
the benefits from both off-policy and on-policy
optimization. The second stage is fine-tuning
via newly-introduced ‘unseen’ triplets (envi-
ronment, path, instruction). To generate these
unseen triplets, we propose a simple but effec-
tive ‘environmental dropout’ method to mimic
unseen environments, which overcomes the
problem of limited seen environment variabil-
ity. Next, we apply semi-supervised learn-
ing (via back-translation) on these dropped-
out environments to generate new paths and
instructions. Empirically, we show that our
agent is substantially better at generalizabil-
ity when fine-tuned with these triplets, outper-
forming the state-of-art approaches by a large
margin on the private unseen test set of the
Room-to-Room task, and achieving the top
rank on the leaderboard.

1 Introduction

One of the important goals in Al is to develop a
robot/agent that can understand instructions from
humans and perform actions in complex environ-
ments. In order to do so, such a robot is re-
quired to perceive the surrounding scene, under-
stand our spoken language, and act in a real-world

'Our code, data, and models publicly available at:
https://github.com/airsplay/R2R-EnvDrop
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Figure 1: Room-to-Room Task. The agent is given
an instruction, then starts its navigation from some
staring viewpoint inside the given environment. At
time ¢, the agent selects one view (highlighted as red
dotted bounding boxes) from a set of its surrounding
panoramic views to step into, as an action a;.

house. Recent years have witnessed various types
of embodied action based NLP tasks being pro-
posed (Correa et al., 2010; Walters et al., 2007;
Hayashi et al., 2007; Zhu et al., 2017b; Das et al.,
2018; Anderson et al., 2018b).

In this paper, we address the task of instruction-
guided navigation, where the agent seeks a route
from a start viewpoint to an end viewpoint based
on a given natural language instruction in a given
environment, as shown in Fig. 1. The naviga-
tion simulator we use is the recent Room-to-Room
(R2R) simulator (Anderson et al., 2018b), which
uses real images from the Matterport3D (Chang
et al., 2017) indoor home environments and col-
lects complex navigable human-spoken instruc-
tions inside the environments, hence connecting
problems in vision, language, and robotics. The
instruction in Fig. 1 is “Walk past the piano
through an archway directly in front. Go through
the hallway when you see the window door. Turn
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right to the hanged pictures...”. At each posi-
tion (viewpoint), the agent perceives panoramic
views (a set of surrounding images) and selects
one of them to step into. In this challenging task,
the agent is required to understand each piece
of the instruction and localize key views (“pi-
ano”, “hallway”, “door”, etc.) for making ac-
tions at each time step. Another crucial chal-
lenge is to generalize the agent’s navigation under-
standing capability to unseen test room environ-
ments, considering that the R2R task has substan-
tially different unseen (test) rooms as compared to
seen (trained) ones. Such generalization ability is
important for developing a practical navigational
robot that can operate in the wild.

Recent works (Fried et al., 2018; Wang et al.,
2019, 2018a; Ma et al., 2019) have shown promis-
ing progress on this R2R task, based on speaker-
follower, reinforcement learning, imitation learn-
ing, cross-modal, and look-ahead models. How-
ever, the primary issue in this task is that most
models perform substantially worse in unseen en-
vironments than in seen ones, due to the lack of
generalizability. Hence, in our paper, we focus
on improving the agent’s generalizability in un-
seen environments. For this, we propose a two-
stage training approach. The first stage is train-
ing the agent via mixed imitation learning (IL)
and reinforcement learning (RL) which combines
off-policy and on-policy optimization; this signif-
icantly outperforms using IL or RL alone.

The second, more important stage is semi-
supervised learning with generalization-focused
‘environmental dropout’. Here, the model is fine-
tuned using additional training data generated via
back-translation. This is usually done based on
a neural speaker model (Fried et al., 2018) that
synthesizes new instructions for additional routes
in the existing environments. However, we found
that the bottleneck for this semi-supervised learn-
ing method is the limited variability of given
(seen) environments. Therefore, to overcome this,
we propose to generate novel and diverse environ-
ments via a simple but effective ‘environmental
dropout’ method based on view- and viewpoint-
consistent masking of the visual features. Next,
the new navigational routes are collected from
these new environments, and lastly the new in-
structions are generated by a neural speaker on
these routes, and these triplets are employed to
fine-tune the model training.

Overall, our fine-tuned model based on back-
translation with environmental dropout substan-
tially outperforms the previous state-of-the-art
models, and achieves the most recent rank-1 on
the Vision and Language Navigation (VLN) R2R
challenge leaderboard’s private test data, outper-
forming all other entries in success rate under all
evaluation setups (single run, beam search, and
pre-exploration).” We also present detailed abla-
tion and analysis studies to explain the effective-
ness of our generalization method.

2 Related Work

Embodied Vision-and-Language Recent years
are witnessing a resurgence of active vision. For
example, Levine et al. (2016) used an end-to-
end learned model to predict robotic actions from
raw pixel data, Gupta et al. (2017) learned to
navigate via mapping and planning, Sadeghi and
Levine (2017) trained an agent to fly in sim-
ulation and show its performance in the real
world, and Gandhi et al. (2017) trained a self-
supervised agent to fly from examples of drones
crashing. Meanwhile, in the intersection of active
perception and language understanding, several
tasks have been proposed, including instruction-
based navigation (Chaplot et al., 2018; Anderson
et al., 2018b), target-driven navigation (Zhu et al.,
2017b; Gupta et al., 2017), embodied question an-
swering (Das et al., 2018), interactive question
answering (Gordon et al., 2018), and task plan-
ning (Zhu et al., 2017a). While these tasks are
driven by different goals, they all require agents
that can perceive their surroundings, understand
the goal (either presented visually or in language
instructions), and act in a virtual environment.

Instruction-based Navigation For instruction-
based navigation task, an agent is required to navi-
gate from start viewpoint to end viewpoint accord-
ing to some given instruction in an environment.
This task has been studied by many works (Tellex
et al., 2011; Chen and Mooney, 2011; Artzi and
Zettlemoyer, 2013; Andreas and Klein, 2015; Mei
et al., 2016; Misra et al., 2017) in recent years.
Among them, (Anderson et al., 2018b) differs
from the others as it introduced a photo-realistic
dataset — Room-to-Room (R2R), where all images
are real ones taken by Matterport3D (Chang et al.,
2017) and the instructions are also natural. In R2R

https://evalai.cloudcv.org/web/
challenges/challenge—-page/97/overview
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environments, the agent’s ability to perceive real-
world images and understanding natural language
becomes even more crucial. To solve this chal-
lenging task, a lot of works (Fried et al., 2018;
Wang et al., 2018a, 2019; Ma et al., 2019) have
been proposed and shown some potential. The
most relevant work to us is Fried et al. (2018),
which proposed to use a speaker to synthesize new
instructions and implement pragmatic reasoning.
However, we observe there is some performance
gap between seen and unseen environments. In
this paper, we focus on improving the agent’s gen-
eralizability in unseen environment.

Back-translation Back translation (Sennrich
et al., 2016), a popular semi-supervised learning
method, has been well studied in neural machine
translation (Hoang et al., 2018; Wang et al., 2018b;
Edunov et al., 2018; Prabhumoye et al., 2018).
Given paired data of source and target sentences,
the model first learns two translators — a forward
translator from source to target and a backward
translator from target to source. Next, it generates
more source sentences using the back translator
on an external target-language corpus. The gen-
erated pairs are then incorporated into the training
data for fine-tuning the forward translator, which
proves to improve the translation performance.
Recently, this approach (also known as data aug-
mentation) was applied to the task of instruction-
based navigation (Fried et al., 2018), where the
source and target sentences are replaced with in-
structions and routes.

3 Method

3.1 Problem Setup

Navigation in the Room-to-Room task (Anderson
et al., 2018b) requires an agent to find a route R
(a sequence of viewpoints) from the start view-
point S to the target viewpoint T according to the
given instruction I. The agent is put in a photo-
realistic environment E. At each time step ¢, the
agent’s observation consists of a panoramic view
and navigable viewpoints. The panoramic view oy
is discretized into 36 single views {o;;}3°,. Each
single view o;; is an RGB image v;; accompa-
nied with its orientation (6, ¢+ ;), where 6, ; and
¢¢; are the angles of heading and elevation, re-
spectively. The navigable viewpoints {l; k};c\L are
the NN; reachable and visible locations from the
current viewpoint. Each navigable viewpoint I; j,

is represented by the orientation (0}7,{, étk) from
current viewpoint to the next viewpoints. The
agent needs to select the moving action a; from
the list of navigable viewpoints {/; ;. } according to
the given instruction I, history/current panoramic
views {0, }L_,, and history actions {a, }'_}. Fol-
lowing Fried et al. (2018), we concatenate the
ResNet (He et al., 2016) feature of the RGB im-
age and the orientation as the view feature f; ;:

fti = [ResNet (v ;);

(cos by ;,sin by ;,cos dpi,sin gy ;)| (1)

The navigable viewpoint feature g ; is extracted
in the same way.

3.2 Base Agent Model

For our base instruction-to-navigation translation
agent, we implement an encoder-decoder model
similar to Fried et al. (2018). The encoder is a bidi-
rectional LSTM-RNN with an embedding layer:

w; = embedding(w;) ()

U, U2, -+ , UL, = Bl-LSTM(II)l, cee ,wL) (3)

where u; is the j-th word in the instruction with
a length of L. The decoder of the agent is an at-
tentive LSTM-RNN. At each decoding step t, the
agent first attends to the view features { f; ;} com-
puting the attentive visual feature ft:

oy ; = softmax;( ftT,iWF l~zt_1) 4)
fi= Zl i fi )

The input of the decoder is the concatenation of
the attentive visual feature ft and the embedding
of the previous action a;—1. The hidden output h;
of the LSTM is combined with the attentive in-
struction feature u; to form the instruction-aware
hidden output hy. The probability of moving to the
k-th navigable viewpoint p;(a, ) is calculated as
softmax of the alignment between the navigable
viewpoint feature g; ; and the instruction-aware
hidden output Bt.

he = LSTM ([fisar] haet)  (6)

fBtj = softmax; (uJT Wy ht) @)
Up = Zj Bt,j uj (8
hy = tanh (W [is; hy)) )

pe(ag ) = softmaxy, (gtTk Wa ilt) (10)
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Figure 2: Left: IL+RL supervised learning (stage 1). Right: Semi-supervised learning with back translation and

environmental dropout (stage 2).

Different from Fried et al. (2018), we take the
instruction-aware hidden vector Bt_l as the hid-
den input of the decoder instead of h;_;. Thus, the
information about which parts of the instruction
have been attended to is accessible to the agent.

3.3 Supervised Learning: Mixture of
Imitation+Reinforcement Learning

We discuss our IL+RL supervised learning
method in this section.’

Imitation Learning (IL) In IL, an agent learns
to imitate the behavior of a teacher. The teacher
demonstrates a teacher action a; at each time step
t. In the task of navigation, a teacher action a;
selects the next navigable viewpoint which is on
the shortest route from the current viewpoint to the
target T. The off-policy* agent learns from this
weak supervision by minimizing the negative log
probability of the teacher’s action ay. The loss of
IL is as follows:

£t = ZE%L = Z—logpt(a:f)
t t

For exploration, we follow the IL method of Be-
havioral Cloning (Bojarski et al., 2016), where
the agent moves to the viewpoint following the
teacher’s action aj at time step t.

(11)

Reinforcement Learning (RL) Although the
route induced by the teacher’s actions in IL is the
shortest, this selected route is not guaranteed to
satisfy the instruction. Thus, the agent using IL
is biased towards the teacher’s actions instead of

3As opposed to semi-supervised methods in Sec. 3.4, in
this section we view both imitation learning and reinforce-
ment learning as supervised learning.

* According to Poole and Mackworth (2010), an off-policy
learner learns the agent policy independently of the agent’s
navigational actions. An on-policy learner learns the policy
from the agent’s behavior including the exploration steps.

finding the correct route indicated by the instruc-
tion. To overcome these misleading actions, the
on-policy reinforcement learning method Advan-
tage Actor-Critic (Mnih et al., 2016) is applied,
where the agent takes a sampled action from the
distribution {p(a )} and learns from rewards. If
the agent stops within 3 around the target view-
point T, a positive reward +3 is assigned at the
final step. Otherwise, a negative reward —3 is as-
signed. We also apply reward shaping (Wu et al.,
2018): the direct reward at each non-stop step ¢ is
the change of the distance to the target viewpoint.

IL+RL Mixture To take the advantage of both
off-policy and on-policy learners, we use a method
to mix IL and RL. The IL and RL agents share
weights, take actions separately, and navigate two
independent routes (see Fig. 2). The mixed loss is
the weighted sum of £'" and LR:
LM = £RE 4 ' (12)
IL can be viewed as a language model on action
sequences, which regularizes the RL training.’

3.4 Semi-Supervised Learning: Back
Translation with Environmental Dropout

3.4.1 Back Translation

Suppose the primary task is to learn the mapping
of X — Y with paired data {(X,Y)} and un-
paired data {Y'}. In this case, the back transla-
tion method first trains a forward model Px_vy
and a backward model Pv_x, using paired data
{(X,Y)}. Next, it generates additional datum X’

5This approach is similar to the method ML4+RL in Paulus
et al. (2018) for summarization. Recently, Wang et al.
(2018a) combines purely supervised learning and RL training
however, they use a different algorithm named MIXER (Ran-
zato et al., 2015), which computes cross entropy (XE) losses
for the first k£ actions and RL losses for the remaining.
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Figure 4: Comparison of the two dropout methods
(based on image features).

from the unpaired Y’ using the backward model
Py_x. Finally, (X', Y’) are paired to further
fine-tune the forward model Px_y as additional
training data (also known as ‘data augmentation’).

Back translation was introduced to the task of
navigation in Fried et al. (2018). The forward
model is a navigational agent Pg 1R (Sec. 3.2),
which navigates inside an environment E, trying
to find the correct route R according to the given
instruction I. The backward model is a speaker
Pg r-1, which generates an instruction I from
a given route R inside an environment E. Our
speaker model (details in Sec. 3.4.3) is an en-
hanced version of Fried et al. (2018), where we
use a stacked bidirectional LSTM-RNN encoder
with attention flow.

For back translation, the Room-to-Room
dataset labels around 7% routes {R} in the train-
ing environments®, so the rest of the routes {R’}
are unlabeled. Hence, we generate additional in-
structions I’ using Pg r-1 (E,R’), so to obtain

5The number of all possible routes (shortest paths) in
the 60 existing training environments is 190K. Of these,
the Room-to-Room dataset labeled around 14K routes with

one navigable instruction for each, so the amount of labeled
routes is around 7% of 190K.

the new triplets (E, R/, T'). The agent is then fine-
tuned with this new data using the IL+RL method
described in Sec. 3.3. However, note that the envi-
ronment E in the new triplet (E, R’,T’) for semi-
supervised learning is still selected from the seen
training environments. We demonstrate that the
limited amount of environments {E} is actually
the bottleneck of the agent performance in Sec. 7.1
and Sec. 7.2. Thus, we introduce our environmen-
tal dropout method to mimic the “new” environ-
ment E’, as described next in Sec. 3.4.2.

3.4.2 Environmental Dropout

Failure of Feature Dropout Different from
dropout on neurons to regularize neural networks,
we drop raw feature dimensions (see Fig. 4a) to
mimic the removal of random objects from an
RGB image (see Fig. 3a). This traditional fea-
ture dropout (with dropout rate p) is implemented
as an element-wise multiplication of the feature
f and the dropout mask £/. Each element 54’
in the dropout mask ¢/ is a sample of a random
variable which obeys an independent and identi-
cal Bernoulli distribution multiplied by 1/(1 — p).
And for different features, the distributions of
dropout masks are independent as well.

=fod
€l ~ —Ber(1-p)

dropout,,(f) (13)

(14)

Because of this independence among dropout
masks, the traditional feature dropout fails in aug-
menting the existing environments because the
‘removal’ is inconsistent in different views at the
same viewpoint, and in different viewpoints.
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To illustrate this idea, we take the four RGB
views in Fig. 3a as an example, where the chairs
are randomly dropped from the views. The re-
moval of the left chair (marked with a red poly-
gon) from view oy 2 is inconsistent because it also
appears in view oy 1. Thus, the speaker could still
refer to it and the agent is aware of the existence of
the chair. Moreover, another chair (marked with
a yellow polygon) is completely removed from
viewpoint observation oy, but the views in next
viewpoint o441 provides conflicting information
which would confuse the speaker and the agent.
Therefore, in order to make generated environ-
ments consistent, we propose our environmental
dropout method, described next.

Environmental Dropout We create a new envi-
ronment E’ by applying environmental dropout on
an existing environment E.

E = envdrop,,(E) (15)

The view feature ffii observed from the new envi-
ronment E’ is calculated as an element-wise mul-
tiplication of the original feature f;; and the envi-
ronmental dropout mask ¢¥ (see Fig. 4b):

fli=fei© e
1
&~ ﬂBer(l —p)

(16)
(7)

To maintain the spatial structure of view-
points, only the image feature ResNet(v;;)
is dropped while the orientation feature
(cos(Bt:),sin(0y ), cos(Pr i), sin(¢ri)) is fixed.
As illustrated in Fig. 3b, the idea behind envi-
ronmental dropout is to mimic new environments
by removing one specific class of object (e.g.,
the chair). We demonstrate our idea by running
environmental dropout on the ground-truth se-
mantic views in Sec. 7.3, which is proved to be far
more effective than traditional feature dropout. In
practice, we perform the environmental dropout
on image’s visual feature where certain struc-
tures/parts are dropped instead of object instances,
but the effect is similar.

We apply the environmental dropout to the back
translation model as mentioned in Sec. 3.4.1. Note
the environmental dropout method still preserves
the connectivity of the viewpoints, thus we use the
same way (Fried et al., 2018) to collect extra un-
labeled routes {R’}. We take speaker to gener-
ate an additional instruction I'=Pg g1 (E/,R’)
in the new environment E’. At last, we use IL+RL

(in Sec. 3.3) to fine-tune the model with this new
triplet (E', R/, T').

3.4.3 Improvements on Speaker

Our speaker model is an enhanced version of the
encoder-decoder model of Fried et al. (2018), with
improvements on the visual encoder: we stack two
bi-directional LSTM encoders: a route encoder
and a context encoder. The route encoder takes
features of ground truth actions {a} }1_; from the
route as inputs. Each hidden state r; then attends
to surrounding views { fm}?il at each viewpoint.
The context encoder then reads the attended fea-
tures and outputs final visual encoder representa-
tions:

T1y ey Tr = Bi—LSTl\/IRTE(gl%7 s Grar)  (18)

Vei = softmaxi(fgiWR Tt) (19)
fi = Zz Ve,ifti (20)
¢,y 0r = Bi-LSTMC™(f1, ..., fr) 1)

The decoder is a regular attentive LSTM-RNN,
which is discussed in Sec. 3.2. Empirically, our
enhanced speaker model improves the BLEU-4
score by around 3 points.

4 Experimental Setup

Dataset and Simulator We evaluate our agent
on the Matterport3D simulator (Anderson et al.,
2018b). Navigation instructions in the dataset are
collected via Amazon Mechanical Turk by show-
ing them the routes in the Matterport3D environ-
ment (Chang et al., 2017). The dataset is split
into training set (61 environments, 14,025 instruc-
tions), seen validation set (61 environments, 1,020
instructions), unseen validation set (11 environ-
ments, 2,349 instructions), and unseen test set
(18 environments, 4,173 instructions). The un-
seen sets only involve the environments outside
the training set.

Evaluation Metrics For evaluating our model,
Success Rate (SR) is the primary metric. The ex-
ecution route by the agent is considered a success
when the navigation error is less than 3 meters.
Besides success rate, we use three other metrics’
: Navigation Length (NL), Navigation Error (NE),
and Success rate weighted by Path Length (SPL)
(Anderson et al., 2018a). Navigation Error (NE) is

7 The Oracle Success Rate (OSR) is not included because
it’s highly correlated with the Navigation Length.
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Models Test Unseen (Leader-Board)
Single Run Beam Search Pre-Explore

NL SR(%) SPL | NL SR(%) SPL | NL SR(%) SPL
Random (Anderson et al., 2018b) 9.89 13.2 0.12 - - - - - -
Seq-to-Seq (Anderson et al., 2018b) 8.13 20.4 0.18 - - - - - -
Look Before You Leap (Wang et al., 2018a) | 9.15 25.3 0.23 - - - - - -
Speaker-Follower (Fried et al., 2018) 14.8 35.0 0.28 | 1257 53.5 0.01 - - -
Self-Monitoring (Ma et al., 2019) 18.0 48.0 0.35 | 373 61.0  0.02 - - -
Reinforced Cross-Modal (Wang et al., 2019) | 12.0 43.1 0.38 | 358 63.0 0.02 | 948 60.5 0.59
Ours 11.7 51.5 0.47 | 687 689 0.01 | 9.79 63.9 0.61

Table 1: Leaderboard results under different experimental setups. NL, SR, and SPL are Navigation Length, Success
Rate and Success rate weighted by Path Length. The primary metric for each setup is in italics. The best results

are in bold font and the second best results are underlined.

the distance between target viewpoint T and agent
stopping position.

Implementation Details Similar to the tradi-
tional dropout method, the environmental dropout
mask is computed and applied at each training
iteration. Thus, the amount of unlabeled semi-
supervised data used is not higher in our dropout
method. We also find that sharing the environmen-
tal dropout mask in different environments inside
a batch will stabilize the training. To avoid over-
fitting, the model is early-stopped according to the
success rate on the unseen validation set. More
training details in appendices.

5 Results

In this section, we compare our agent model with
the models in previous works on the Vision and
Language Navigation (VLN) leaderboard. The
models on the leaderboard are evaluated on a pri-
vate unseen test set which contains 18 new envi-
ronments. We created three columns in Table 1
for different experimental setups: single run, beam
search, and unseen environments pre-exploration.
For the result, our model outperforms all other
models in all experimental setups.

Single Run Among all three experimental se-
tups, single run is the most general and highly cor-
related to the agent performance. Thus, it is con-
sidered as the primary experimental setup. In this
setup, the agent navigates the environment once
and is not allowed® to: (1) run multiple trials, (2)
explore nor map the test environments before start-
ing. Our result is 3.5% and 9% higher than the
second-best in Success Rate and SPL, resp.

Beam Search In the beam search experimental
setup, an agent navigates the environment, col-

8According to the Vision and Language Navigation
(VLN) challenge submission guidelines

lects multiple routes, re-ranks them, and selects
the route with the highest score as the prediction.
Besides showing an upper bound, beam search
is usable when the environment is explored and
saved in the agent’s memory but the agent does
not have enough computational capacity to fine-
tune its navigational model. We use the same
beam-search algorithm, state factored Dijkstra al-
gorithm, to navigate the unseen test environment.
Success Rate of our model is 5.9% higher than the
second best. SPL metric generally fails in evaluat-
ing beam-search models because of the long Nav-
igation Length (range of SPL is 0.01-0.02).

Pre-Exploration The agent pre-explores the test
environment before navigating and updates its
agent model with the extra information. When ex-
ecuting the instruction in the environment, the ex-
perimental setup is still “single run”. The “pre-
exploration” agent mimics the domestic robots
(e.g., robot vacuum) which only needs to navi-
gate the seen environment most of the time. For
submitting to the leaderboard, we simply train
our agent via back translation with environmental
dropout on test unseen environments (see Sec.7.2).
Our result is 3.4% higher than Wang et al. (2019)
in Success Rate and 2.0% higher in SPL. °

6 Ablation Studies

Supervised Learning We first show the effec-
tiveness of our IL+RL method by comparing it
with the baselines (Table 2). We implement Be-
havioural Cloning'® and Advantage Actor-Critic

°To fairly compare with Wang et al. (2019), we exclude
the exploration route in calculating Navigation Length.

10 The Behavioral Cloning (IL) baseline is the same as the
panoramic view baseline in Fried et al. (2018) except for two
differences: (1) The agent takes the teacher action instead
of the sampled action from the distribution (see “imitation
learning” of Sec. 3.3), (2) The hidden input of the LSTM
is the instruction-aware hidden from the previous step (see
Sec. 3.2). We improve our baseline result with these modifi-
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Models Val Seen Val Unseen
NL(m) NE(m) SR(%) SPL | NL(m) NE(m) SR(%) SPL
[ SUPERVISED LEARNING ]
Behavioral Cloning (IL) 10.3 5.39 48.4 0.46 9.15 6.25 43.6 0.40
Advantage Actor-Critic (RL) 73.8 7.11 22.0 0.03 73.8 7.32 24.0 0.03
IL + RL 10.1 4.71 55.3 0.53 9.37 5.49 46.5 0.43
[ SEMI-SUPERVISED LEARNING ]
Back Translation 10.3 4.19 58.1 0.55 10.5 543 48.2 0.44
+ Feat Drop 10.3 4.13 58.4 0.56 9.62 5.43 48.4 0.45
+ Env Drop (No Tying) 10.3 4.32 57.3 0.55 9.51 5.27 49.0 0.46
+ Env Drop (Tying) 11.0 3.99 62.1 0.59 10.7 5.22 52.2 0.48
[ FULL MODEL ]
Single Run 11.0 3.99 62.1 0.59 10.7 5.22 52.2 0.48
Beam Search 703 2.52 75.7 0.01 663 3.08 69.0 0.01
Pre-Explore 9.92 4.84 54.7 0.52 9.57 3.78 64.5 0.61

Table 2: For the ablation study, we show the results of our different methods on validation sets. Our full model
(single run) gets 8.6% improvement in validation unseen success rate above our baseline. And both the supervised
learning (IL+RL) and semi-supervised learning methods (back translation + env drop) have substantial contribu-

tions to our final result.

as our imitation learning (IL) and reinforcement
learning (RL) baselines, respectively. The mixture
of IL+RL (see Sec. 3.3) outperforms the IL-only
model and RL-only model by 2.9% and 22.5%,
which means that our IL+RL could overcome the
misleading teacher actions in IL and significantly
stabilize the training of RL.

Semi-Supervised Learning We then fine-tune
our best supervised model (i.e., IL+RL) with back
translation. Besides providing a warm-up, IL+RL
is also used to learn the new generated data triplets
in back translation. As shown in Table 2, back
translation with environmental dropout improves
the best supervised model by 5.7%, where the im-
provement is 3 times more than the back trans-
lation without new environments. We then show
the results of the alternatives to environmental
dropout. The performance with feature dropout
is almost the same to the original back transla-
tion, which is 3.8% lower than the environmen-
tal dropout. We also prove that the improvement
from the environmental dropout method does not
only come from generating diverse instructions in-
troduced by dropout in the speaker, but also comes
from using the same dropout mask in the follower
agent too. To show this, we use two indepen-
dent (different) environmental dropout masks for
the speaker and the follower (i.e., no tying of the
dropout mask), and the result drops a lot as com-
pared to when we tie the speaker and follower
dropout masks.

cations.

60% La -

a2
g
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Success rate
\
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#—a  SL with more envs
e—a SL with more data in the given envs

All routes in train envs
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10% 26%  49% 73%100%
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Percent of training data (#data)

Figure 5: Success rates of agents trained with different
amounts of data. X-axis in log-scale. The blue line rep-
resents the growth of results by gradually adding new
environments to the supervised training method. The
red line is trained with the same amounts of data as the
blue line, but the data is randomly selected from all 60
training environments. The dashed lines are predicted.

Full Model Finally, we show the performance of
our best agent under different experimental setups.
The “single run” result is copied from the best
semi-supervised model for comparison. The state-
factored Dijkstra algorithm (Fried et al., 2018) is
used for the beam search result. The method for
pre-exploration is described in Sec. 7.2, where the
agent applies back translation with environmental
dropout on the validation unseen environment.

7 Analysis

In this section, we present analysis experiments
that first exposed the limited environments bottle-
neck to us, and hence inspired us to develop our
environmental dropout method to break this bot-
tleneck.
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" (b) RGB view

(a) Semantic View

Figure 6: Comparison of semantic and raw RGB views.

7.1 More Environments vs. More Data

In order to show that more environments are cru-
cial for better performance of agents, in Fig. 5,
we present the result of Supervised Learning
(SL) with different amounts of data selected by
two different data-selection methods. The first
method gradually uses more #environments (see
the blue line “SL with more envs”) while the sec-
ond method selects data from the whole training
data with all 60 training environments (see the red
line “SL with more data”). Note that the amounts
of data in the two setups are the same for each plot
point As shown in Fig. 5, the “more envs” selec-
tion method shows higher growth rate in success
rate than the “more data” method. We also predict
the success rates (in dashed line) with the predic-
tion method in Sun et al. (2017). The predicted
result is much higher when training with more en-
vironments. The predicted result (the right end of
the red line) also shows that the upper bound of
Success Rate is around 52% if all the 190K routes
in the training environments is labeled by human
(instead of being generated by speaker via back
translation), which indicates the need for “new”
environments.

7.2 Back Translation on Unseen
Environments

In this subsection, we show that back translation
could significantly improve the performance when
it uses new data triplets from testing environments
— the unseen validation environments where the
agent is evaluated in. Back translation (w.0. Env
Drop) on these unseen environments achieves a
success rate of 61.9%, while the back translation
on the training environments only achieves 46.5%.
The large margin between the two results indicates
the need of “new” environments in back trans-
lation. Moreover, our environmental dropout on
testing environments could further improve the re-
sult to 64.5%, which means that the amount of en-
vironments in back translation is far from enough.

7.3 Semantic Views

To demonstrate our intuition of the success of en-
vironmental dropout (in Sec. 3.4.2), we replace
the image feature ResNet(v;;) with the seman-
tic view feature. The semantic views (as shown in
Fig. 6) are rendered from the Matterport3D dataset
(Chang et al., 2017), where different colors indi-
cate different types of objects. Thus, dropout on
the semantic view feature would remove the ob-
ject from the view. With the help of this additional
information (i.e., the semantic view), the success
rate of IL+RL is 49.5% on the unseen validation
set. Back translation (without dropout) slightly
improves the result to 50.5%. The result with
feature dropout is 50.2% while the environmen-
tal dropout could boost the result to 52.0%, which
supports our claim in Sec. 3.4.2.

8 Conclusion

We presented a navigational agent which bet-
ter generalizes to unseen environments. The
agent is supervised with a mixture of imitation
learning and reinforcement learning. Next, it
is fine-tuned with semi-supervised learning, with
speaker-generated instructions. Here, we showed
that the limited variety of environments is the bot-
tleneck of back translation and we overcome it
via ‘environmental dropout’ to generate new un-
seen environments. We evaluate our model on the
Room-to-Room dataset and achieve rank-1 in the
Vision and Language Navigation (VLN) challenge
leaderboard under all experimental setups.
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A Appendices

A.1 Implementation Details

We use ResNet-152 (He et al., 2016) pretrained on
the ImageNet (Russakovsky et al., 2015) to extract
the 2048-dimensional image feature. The agent
model is first trained with supervised learning via
the mixture of imitation and reinforcement learn-
ing. The model is then fine-tuned by back trans-
lation with environmental dropout. To stabilize
the optimization of back translation, we calculate
supervised loss for half of the batch and semi-
supervised loss for the other half. We find that
sharing the environmental dropout mask in differ-
ent environments inside the same batch will stabi-
lize the training.

The word embedding is trained from scratch
with size 256 and the dimension of the action em-
bedding is 64. The size of the LSTM units is set
to 512 (256 for the bidirectional LSTM). In RL
training, the discounted factor v is 0.9. We use
the reward shaping (Wu et al., 2018): the direct
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reward r; at time step ¢ is the change of the dis-
tance d;—1 — d;, supposing d; is the distance to
the target position at time step t. The maximum
decoding action length is set to 35. For optimizing
the loss, we use RMSprop (Hinton et al., 2012) (as
suggested in Mnih et al. (2016)) with a fixed learn-
ing rate 1e — 4 and the batch size is 64. We apply-
ing dropout rate 0.4 to the environmental dropout
and 0.5 to the dropout layers which regularize the
network. The global gradient norm is clipped by
40. We tuned the hyper-parameters based on the
Success Rate of the unseen validation set.

When working with the semantic view, the key
labels (e.g., wall, floor, ceil) are not dropped, be-
cause they are the basic structure of the envi-
ronment. Empirically, no improvement will be
achieved when the key labels are dropped as well.
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