
Proceedings of NAACL-HLT 2019, pages 2475–2485
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

2475

Adaptive Convolution for Text Classification

Byung-Ju Choi Jun-Hyung Park SangKeun Lee
Department of Computer Science and Engineering

Korea University, Korea
{bj1123, irish07, yalphy}@korea.ac.kr

Abstract

In this paper, we present an adaptive
convolution for text classification to give
stronger flexibility to convolutional neural
networks (CNNs). Unlike traditional
convolutions that use the same set of filters
regardless of different inputs, the adaptive
convolution employs adaptively generated
convolutional filters that are conditioned
on inputs. We achieve this by attaching
filter-generating networks, which are carefully
designed to generate input-specific filters, to
convolution blocks in existing CNNs. We
show the efficacy of our approach in existing
CNNs based on our performance evaluation.
Our evaluation indicates that adaptive
convolutions improve all the baselines,
without any exception, as much as up to 2.6
percentage point in seven benchmark text
classification datasets.

1 Introduction

Text classification assigns topics to texts by
understanding the semantics of the texts. It is
one of the fundamental tasks in natural language
processing (NLP) which has a broad range of
applications, including web search (Broder et al.,
2007), contextual advertising (Lee et al., 2013),
and user profiling (Kazai et al., 2016). Traditional
approaches to text classification use sparse
representations of text, such as bag-of-words
(Lodhi et al., 2002). To date, neural network-
based text embedding techniques, particularly
convolutional neural networks (CNNs) (Kim,
2014; Zhang et al., 2015; Wang et al., 2018b) have
shown remarkable results in text classification.

One of the driving forces of CNNs is
a convolution operation. It screens local
information which appear in inputs (either input
texts or outputs from the previous convolution
block) by convolving a set of filters with

inputs. In the context of text classification, this
operation is analogous to questions and answers.
Convolutional filters are like questions asking for
the intensity of particular patterns in receptive
fields. Outputs of convolution operations are the
answers from the inputs to the questions. CNNs
derive the right class with stacked convolution
blocks1. On this point, CNNs can be likened
to players of the twenty questions who guess
the answers by iteratively asking questions and
receiving information.

However, differences exist between humans
and traditional CNNs in the manner in which
they play this game. Humans adaptively ask
questions by fully utilizing information they have
obtained. If players have narrowed the answer
down to the name of a person, they would not
want to ask questions such as, “Does that have
four legs?”. Rather, they would prefer questions
related to the target’s profession or origin that are
practical for inferring the answer. In contrast,
typical CNNs use the same set of filters in any
circumstances (Kim, 2014; Johnson and Zhang,
2017; Wang et al., 2018b). This may hamper
CNNs from leveraging the information they have
as intermediate hidden representations of inputs
processed in consecutive convolution operations,
and focusing their capacity on disentangling
uncertainty.

Motivated by this, we propose an adaptive
convolution to give stronger flexibility to
networks and allow networks to simulate human
capabilities of utilizing the information they have.
The adaptive convolution performs convolution
operations with filters (questions) dynamically
generated conditioned on inputs (outputs from
the previous convolution block). We achieve this
by attaching filter-generating networks, carefully

1Pooling can be interleaved with convolution. However,
this does not affect the nature of a convolution block.
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designed modular networks for generating filters,
to convolutional blocks in CNNs. Each attached
filter-generating network produces filters from
the input and pass the filters to its convolution
block. Generated filters are reflections of the
information contained in the inputs and allow
the networks to focus on extracting informative
features. We further propose a hashing technique
to substantially compress the size of the filter-
generating networks, and prevent a considerable
increase in the number of parameters when
applying the adaptive convolution.

Our adaptive convolution can easily be applied
to existing CNNs, because of the modularity of
the filter-generating networks. We demonstrate
that significant gains can be realized by applying
adaptive convolutions to baseline CNNs (Kim,
2014; Johnson and Zhang, 2017; Wang et al.,
2018b), based on a performance evaluation. Our
adaptive convolutions improve performance of
all the baseline CNNs as much as up to 2.6
percentage point, without any exception, in seven
text classification benchmark datasets.

To summarize, our technical contributions are
three fold:
• We propose an adaptive convolution which

can give stronger flexibility to existing
CNNs.
• We design a hashing technique to apply

the adaptive convolution without a
considerable increase in the number of
required parameters.
• We show the effectiveness of our approach

based on an evaluation on seven text
classification benchmark datasets.

The remainder of this paper is organized as
follows. Section 2 discusses related works and
Section 3 describes the proposed methodology.
We present our evaluation in Section 4 and
conclude the paper in Section 5.

2 Related Works

2.1 CNN-based Text Classification
Ever since single layer CNNs were successfully
applied to text classification with pre-trained
word embeddings (Kim, 2014), many researches
have sought effective utilization of CNNs in
text classification. Kalchbrenner et al. (2014)
introduced a dynamic k-max pooling to handle
variable length sequences. Zhang et al. (2015)
classified texts wholly based on the characters in

the texts. Lai et al. (2015) and Xiao et al. (2016)
incorporated recurrent neural networks (RNNs)
into CNNs. Conneau et al. (2017) and Johnson
et al. (2017) investigated deepening CNNs.
Wang et al. (2018b) used dense connections to
reuse features from upstream layers at downstream
layers. Interests of these researches were
concentrated to network architectures, pooling
operations or input structures, accepting the nature
of the convolution operation. Our work is different
from them in that we focus on the convolution
operation.

2.2 Parameter Generation

Generating parameters in neural networks have
been examined in various researches. Noh et
al. (2016) used embedded questions to adaptively
create parameters for a fully connected layer
in visual question answering. Bertinetto et
al. (2016) predicted parameters of a predictor
network from an exemplar in a one-shot learning
framework. Van den Oord et al. (2016) generated
feature-wise biases from descriptive labels or tags
that were directly added to layer outputs for
conditional image generation. Liu et al. (2017)
introduced a specifically designed meta network
to produce weights for compositional matrices in
tree structured neural networks.

Several researches have adopted parameter
generation for conditional normalization (CN).
In these studies, parameters in the normalization
layer were substituted with learned functions
of conditioning information, the outputs from
which were then used as normalizing parameters.
Different types of CN include conditional instance
normalization (Dumoulin et al., 2017) for style
transfer, dynamic layer normalization (Kim et al.,
2017) for speech recognition and conditional
batch normalization (De Vries et al., 2017) for
visual question answering. Perez et al. (Perez
et al., 2018) relaxed CN by modulating inputs with
affine transformation without normalization.

Studies that are most similar to our own
involve generating convolutional filters in the
field of computer vision. Klein et al. (2015)
proposed a dynamic convolution layer for weather
prediction. They generated filters for subsequent
frames with the previous image. De Brabandere
et al. (2016) expanded the dynamic convolution
layer by allowing position-specific filters. Niklaus
et al (2017) estimated convolutional filters with
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images in receptive patches to interpolate their
corresponding output pixels. Kang et al.
(2017) produced convolutional filters with side
information such as camera perspective for crowd
counting. These approaches can be generalized
by the hypernetworks (Ha et al., 2017) in which
all weights for the main networks are generated
with original inputs. Although this idea can
be directly applied for text processing (Shen
et al., 2018a), our approach is different from
theirs in that we generate filters with outputs
from previous convolution blocks, to fully utilize
intermediate information obtained from networks
as they process inputs.

3 Proposed Methodology

This section introduces our adaptive convolution.
Instead of convolving the same set of filters with
inputs, an adaptive convolution uses dynamically
generated filters conditioned on the outputs from
the previous convolution block. In Section 3.1,
we explain how the filters are generated in the
filter-generating network. In Section 3.2, we show
how the adaptive convolution operates with the
generated filters, and how it can be applied to
existing CNNs.

3.1 Filter-Generating Network

Figure 1 schematically shows the overall
architecture of our filter-generating network.
The filter-generating network takes an input to a
convolution block I = [x1,x2, · · · ,xm]. m is the
length which can be the number of words in each
text or reduced number of it as a result of a pooling
operation. Entry xi ∈ Rd is a d-dimensional
vector in the ith position in the input. d is equal to
the number of filters of the previous convolution
block, except for the first convolution block which
uses word embedding dimension. It outputs a set
of k convolutional filters F = [f1,f2, · · · ,fk].
Each filter f i ∈ Rh·d consists of a filter size h by
d weights.

The filter-generating network generates filters
in two phases: context vector generation and filter
generation. During context vector generation, the
variable size input I is encapsulated into a fixed
size g-dimensional context vector c ∈ Rg. During
filter generation, the filter-generating network
adaptively produces filters from the context vector.

Context Vector Generation We generate a
context vector by leveraging the sequential

Figure 1: Graphical illustration of filter-generating
network. It generates context vector by self-attending
hidden states of bidirectional GRU. Convolutional
filters are generated from context vector.

information inherent in inputs. An input to
each convolution block is an intermediate hidden
representation of a text. Clearly, text has a
sequential nature. This property is preserved
when text is processed in typical CNNs because
they do not shuffle position information between
convolution blocks. Operations in CNNs produce
an entry for each position from the corresponding
position of the filters. As words within a text are
dependent on each other, entries within an input
are related.

To gain some dependencies between entries
in a sequence, we use the Gated Recurrent
Unit (GRU) (Cho et al., 2014). We found
from our preliminary experiments that GRU
shows comparable performance to the Long-
Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) with fewer parameters and
lower computational cost. We obtain a hidden
state ht ∈ Rg for entry xt by concatenating two
hidden states of bidirectional GRU at time step t :

−→
ht =

−−−→
GRU(xt,

−−→
ht−1),

←−
ht =

←−−−
GRU(xt,

←−−
ht+1),

ht = [
−→
ht;
←−
ht] (1)

We then have m number of hidden states H =
[h1,h2, · · · ,hm]. We encapsulate H into a fixed
size context vector c by the weighted sum of
hidden states :

c =

m∑
j=1

ajhj (2)

where aj is a scalar weight of each hidden state hj
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calculated as follows:

aj =
exp(q>hj)∑m
k=1 exp(q>hk)

(3)

where q is a trainable query vector. This is
a special case of self-attention (Lin et al., 2017)
with a hop size of one and without a hidden state
projection. The context vector c is an effective
summarization of the input, and convolutional
filters can be readily generated from the fixed size
context vector.

Filter Generation : Once we obtain the
context vector c by attending hidden states of
the bidirectional GRU, we generate convolutional
filters F by a function of c.

F = f(c) (4)

Although any kinds of function can be applied, we
are interested in adding filter-generating networks
to existing CNNs. In order for existing CNNs
to be trained in an end-to-end fashion even after
filter-generating networks are added to them, a
differentiable architecture is preferred so that
gradients can be backpropagated. We use a fully-
connected layer for its simplicity. With this
layer, convolutional filters can be generated in two
different approaches: full generation and hashed
generation. For clarity, we explain how each filter
f i is generated. All filters in F are produced in
the same manner.

Full Generation: The most straightforward way
to generate a convolutional filter is to use an
output of a fully-connected layer directly as a
convolutional filter. The layer takes the context
vector c and yields filter f i as follows:

f i = W ic (5)

where W i ∈ R(h·d)×g is the weight matrix for
generating ith filters.

Hashed Generation: Full generation requires
numerous parameters because the size of the
matrix W i increases quadratically between the
size of the context vector and the convolutional
filter. This may cause a memory issue in very
deep CNNs. To address this issue, we employ a
hashing trick. The hashing trick allows the filter to
be generated with only a fraction of the required
number of parameters for full generation.

Our hashing trick is motivated by the recently
proposed hash embeddings (Svenstrup et al.,

2017), which constructs word embeddings with
the weighted sum of n component vectors from
a shared pool. Based on this idea, we generate
each f i by a linear combination of component
filters from a shared pool. The shared pool E ∈
Rb×(h·d) contains b component filters. We select
n component filters for f i from the shared pool
using predefined hash functions. The filter f i is
generated by the linear combination as follows:

f i =
n∑

j=1

pi,jHj(f̂ i) (6)

where pi,j is the importance parameter which
determines the weight for the linear combination,
and Hj is a function that outputs a component
filter from an ID of the filter, which is denoted as
f̂ i. Hj is implemented by Hj = EDj(f̂ i)

, where
Dj is a hash function. More specifically, Dj takes
f̂ i, and outputs a bucket index in {1, · · · , b}. The
component filter is extracted by taking a row of the
bucket index in E. To obtain input-specific filters,
we control pki as follows:

pi,j = wi,j
>c (7)

where wi,j ∈ Rg is a vector for generating pi,j
from the context vector.

Because we require n numbers of pi,j , n · g
parameters are needed to generate each filter. The
number of the importance parameters n can be
chosen to be quite small (we typically use five),
and it can provide a huge reduction in the number
of parameters compared to the full generation,
which uses h · d · g parameters. The additional
parameters for the hashed generation come from
the shared pool E. Yet, their portion is relatively
small, because E is shared across the filters and
the size of the shared pool b can be moderate (we
typically use 20).

3.2 Adaptive Convolution

We achieve the adaptive convolution by
adding a filter-generating network to each
convolution block. The filter-generating network
yields filters from its input (output from the
previous convolution block). The adaptive
convolution involves the input-specifically
generated filters, which are applied to inputs to
produce new outputs. More formally, a feature
oi,j corresponding to the filter f i and jth position
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Dataset AG DBPedia Yelp.p Yelp.f Yahoo Amazon.p Amazon.f
# of training data 120k 560k 560k 650k 1400k 3600k 3000k
# of test data 7.6k 70k 38k 50k 60k 400k 650k
# of classes 4 14 2 5 10 2 5
# of average words 44 54 155 157 108 90 92
# of vocabulary 27k 129k 63k 68k 161k 223k 202k

Table 1: Statistics of the datasets

Algorithm 1 Generalized forward propagation of
CNNs applied with the adative convolution.

Inputs : A text as a sequence of words
Outputs : Label predictions

1: I ← embeds a sequence of words
2: for each convolution block in CNNs do
3: c← context generation(I)
4: F ← filter generation(c)
5: O ← convolution(I ,F)

// apply convolution to I with F
6: O ← pooling(O)
7: I ← O
8: end for
9: label predictions← softmax(I)

10: return label predictions

of window in inputs is computed as follows:

oi,j = φ(f>i xj:j+h−1) (8)

where xj:j+h−1 denotes the concatenation of
inputs [xj ,xj+1, · · · ,xj+h−1], and φ is an
activation function such as ReLU (Nair and
Hinton, 2010). A position feature oj is
produced by concatenating features from all filters
f1,f2, · · · ,fk, which are applied to the jth

position of a window. The output of an adaptive
convolution is a sequence of position features
O = [o1,o2, · · · ,om−h+1]. This output becomes
the input to the next convolution block, after
operations predefined in the network structure
(such as a pooling) are applied. This procedure is
repeated for all convolution blocks in the network.
Algorithm 1 details our approach. Models adopted
with our adaptive convolution can be trained in
a typical backpropagation, as all components in
adaptive convolution are differentiable.

4 Experiments

4.1 Experimental Settings

Datasets and Data Preprocessing We employ
seven datasets covering seven different

classification tasks compiled by Zhang et al.
(2015). Statistics are summarized in Table 1.
‘AG’,‘DBPedia’ and ‘Yahoo’ are news, ontology,
and topic classification datasets, respectively. The
others are sentiment classification datasets, where
‘.p’(polarity) in the dataset name indicates that
labels are binary and ‘.f’ (full) means that the
labels refer to the number of stars.

We tokenize each text using Stanford’s
CoreNLP (Manning et al., 2014) after converting
all uppercase letters to lowercase letters. In
building a vocabulary, we retain words that appear
more than five times in a corpus. We replace
remaining words with the special ‘UNK’ tokens.

Baselines We select three baseline CNNs
to which we apply our adaptive convolution.
First one is CNN (Kim, 2014), the basic
form of CNNs consists of a single convolution
block. The others are recently proposed DPCNN
(Johnson and Zhang, 2017) and DenseCNN (Wang
et al., 2018b) which employ multiple convolution
blocks. We reproduce these three models and
apply adaptive convolutions to assess the efficacy
of our methodology. All of them are word-level
CNNs. We do not apply adaptive convolutions
to character-level CNNs (Zhang et al., 2015;
Conneau et al., 2017) because of their relatively
poor performance compared to word-level CNNs
(Johnson and Zhang, 2016). We also compare
the performance of our methodology with ACNN
(Shen et al., 2018a). Similar to our approach,
ACNN employs dynamically generated filters for
convolutions. Different from our approach,
however, it generates filters with original inputs
from a single subnetwork. Note that ACNN is
a specifically designed network architecture, so
its filter generation approach can not readily be
applied to other existing CNNs. Models other
than CNNs, such as RNNs (Yang et al., 2016;
Lin et al., 2017; Wang et al., 2017) and word
embedding-based models (Joulin et al., 2017;
Shen et al., 2018b; Wang et al., 2018a) are also
included as baseline models. We do not include
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Models AG DBPedia Yelp.p Yelp.f Yahoo Amazon.p Amazon.f

CharCNN (Zhang et al., 2015) * 91.45 98.45 95.12 62.05 71.20 95.07 59.57
VDCNN (Conneau et al., 2017) * 91.3 98.7 95.7 64.7 73.4 95.7 63.0
FastText (Joulin et al., 2017) * 92.5 98.6 95.7 63.9 72.3 94.6 60.2
WSEM (Shen et al., 2018b) * 92.66 98.57 95.81 63.79 73.53
LEAM (Wang et al., 2018a) * 92.45 99.02 95.31 64.09 77.42
HAN (Yang et al., 2016) 93.28 98.99 97.08 67.92 75.88 95.94 63.54

(75.8) (63.6)
KnnLSTM (Wang et al., 2017) * 94.2 99.1 94.5 61.9 74.4 95.3 60.3
Self-Attention (Lin et al., 2017) † 91.5 98.3 94.9 63.4 59.8
ACNN (Shen et al., 2018a) 93.82 99.01 96.51 65.98 74.95 95.54 62.03

(98.93) (96.21)
CNN (Kim, 2014) 93.15 98.92 96.33 65.52 74.2 95.24 61.09

(93.05) (98.88) (96.54) (65.79) (73.94) (95.73) (62.49)
(Ours) AC CNN - full generation 94.07 99.17 97.18 68.12 76.15 96.23 63.60
(Ours) AC CNN - hashed generation 93.81 99.13 97.16 68.07 76.01 96.25 63.74
DPCNN (Johnson and Zhang, 2017) 92.87 98.98 96.77 67.01 75.33 96.07 63.30
(Ours) AC DPCNN - full generation 94.03 99.13 97.05 67.91 76.36 96.31 63.94
(Ours) AC DPCNN - hashed generation 93.70 99.10 97.12 67.98 76.07 96.20 63.72
DenseCNN (Wang et al., 2018b) 93.30 99.00 96.48 66.02 74.91 95.95 62.71

(93.6) (99.2) (96.5) (66.0) (63.0)
(Ours) AC DenseCNN - full generation 94.35 99.12 97.01 67.63 76.43 96.30 63.91
(Ours) AC DenseCNN - hashed generation 93.63 99.09 96.96 67.74 75.95 96.14 63.59

Table 2: Test accuracies [%] on the seven text classification datasets. Results marked with * are reported in each
reference, while results marked with † are re-printed following (Wang et al., 2018b). If not specified, results are
from our implementations. Values in the parentheses are from their reference, except for CNN whose performances
is reported in (Johnson and Zhang, 2016).

CNN DPCNN DenseCNN
(depth=11) (depth=6)

Baseline 0.4M 3.1M 2.2M
Hashed generation 2.1M 7.1M 11.6M
Full generation 217.5M 220M 263.2M

Table 3: Number of parameters in each model.
Parameter counts do not include word embeddings.

the models where transfer learning is applied,
such as ULMFiT (Howard and Ruder, 2018) to
compare the capacity of models by themselves,
not the effectiveness of transfer.

Training Details We implement all of the
models with PyTorch (Paszke et al., 2017)
framework. For all the models and datasets, we
use 300 dimensional GloVe (Pennington et al.,
2014) vectors trained on 840 billion words for
word embedding initialization and initialize out-
of-vocabulary words with Gaussian distribution
with the standard deviation of 0.6. We do
not use the text region embedding (Johnson and
Zhang, 2017), for fair comparisons with other
comparative models. We optimize parameters
using Adam (Kingma and Ba, 2015) with initial
learning rate of 0.01 and batch size of 128.

Gradients are clipped at 5.0 by norm. We use
ReLU activation after convolution operations.

Model-specific configurations are as follows:

• CNN: We use the total of 300 filters, with 100
filters each having window size of 3,4 and 5.
• DPCNN: We use 100 filters with a size of 3,

for each convolution operation. We set the
depth to 11 for all the datasets except for the
‘AG’ dataset in which depth is set to 9.
• DenseCNN: We use 75 filters with a size of

3 for each convolution block. Input texts are
padded or truncated to a fixed length. We set
the fixed length to 300, except for the ‘AG’ in
which 100 is used. For ‘AG’ dataset, we use
six convolution blocks and seven for all the
other datasets.

These configurations are set on the validation
set held out by 10% from the training data. If not
specified, the same configurations are used in all
the datasets. Once we fit model settings, we apply
our adaptive convolution to those settings. We use
600 for the context vector size (i.e. 300 for GRU
hidden states). In the hashed generation, we use
20 for the hash (shared) pool size and five for the
number of importance parameters.



2481

(a)

(b)

Figure 2: Validation accuracies on Yahoo dataset with
different model settings. (a) shows the results with
different filter size, where x-axis is in logarithmic scale.
(b) illustrates varying performance on different depths.

4.2 Main Results

Table 2 shows the evaluation results on the
datasets. In the table, CharCNN and VDCNN
are character level CNNs. FastText, SWEM and
LEAM are word embedding-based models. HAN,
KnnLSTM and Self-Attention are RNN variants.
‘AC’ in the model names indicate that adaptive
convolution is applied in the model. Both ‘full
generation’ and ‘hashed generation’ are filter-
generating methods.

As shown in the table, adaptive convolutions
improve all baseline CNNs in all datasets, with
no exception. The performance improvements
are relatively small for datasets in which known
performances are already nearly 100%. In
DBPedia dataset, performance improves by as
much as 0.15 percentage point (%p) over the
baselines. However, for datasets with a potential
for considerable performance improvement,
such as Yelp.f and Yahoo datasets, adaptive
convolutions produce significant results. The
performance improvements are up to 2.6%p for
Yelp.f dataset.

Without adaptive convolutions, RNNs show
better performance than CNNs on most datasets.
However, when adaptive convolutions are applied,
our baselines perform better than RNN variants
on every dataset. Also our approaches perform

(a)

(b)

Figure 3: Validation accuracies on Yahoo dataset
with different hashed generation settings. (a) shows
the results with different number of importance
parameters, and (b) depicts performance with different
hash (shared) pool size.

better than word embedding-based models except
for LEAM model on Yahoo dataset. Furthermore,
our adaptive convolutions beat ACNN on all the
datasets. This suggests that generating filters
block by block with outputs from the previous
convolution block is much more efficient than
generating filters with original inputs in a single
subnetwork.

Adaptive convolutions are found to be effective
both in the full and hashed generation. The
performance differences between the hashed
generation and the full generation are within
0.3%p except for a few cases (AG and Yahoo
datasets in DenseCNN). However, the hashed
generation is much more efficient than the full
generation in terms of the parameter size. Overall,
the total number of parameters for models with the
hashed generation is less than 3% that of the full
generation (Table 3).

4.3 Analysis
Analysis on model settings To further
demonstrate the effectiveness of our adaptive
convolutions, we compare the performance with
varying filter sizes and depths. We select CNN
and AC CNN with filter sizes ranging from 2 to
150 to check the performance with different filter
sizes. To analyze the effect of depths, we choose
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DPCNN and DenseCNN, and their counterparts
to which adaptive convolutions are applied. We
evaluate the performance with depths ranging
from 2 to 13.

The results are illustrated in Figure 2. Note
that validation accuracies are lower than test
accuracies because only 90% of the training set
is used to save remaining 10% for the validation
set. As can be seen in the figure, models
adopted with our adaptive convolutions show
stable performance. In case of filter sizes, CNN
drastically drops performance when the filter size
gets smaller. Its performance with the filter size of
two is 8.4%p lower than that of the filter size of
100. However, the performance of AC CNN with
the filter size of two declines by 0.6%p from the
model with the filter size of 100, which is only 10
percent of the performance loss of CNN.

This tendency is also found in the analysis
on depths. Performance of DPCNN and
DenseCNN with depths of two or three are
0.6%p lower than that of the baselines with the
best performing depths. Contrarily, models with
adaptive convolutions perform only 0.12%p lower
with depths of two or three than models with the
best performing depths.

These results demonstrate that adaptive
convolutions effectively generate filters for
capturing important information that need to be
disambiguated given current inputs. Only few
filters and shallow depths are enough for the
adaptive convolution to extract such information.
This suggests that the required effort to tune
hyperparameters can be mitigated by applying
adaptive convolutions.

Additional noteworthy fact is that increasing
filter sizes and depths beyond a certain level
does not lead to performance improvements in
all the baseline CNNs. In case of CNN, no
change in performance is observed when the
filter size exceeds 100. In case of DenseCNN,
increasing depths more than seven rather results
in a performance drop and increasing depths of
DPCNN exceeding eleven has no effect on the
performance. This implies that performance gain
is caused by the effectiveness of the proposed
adaptive convolution, instead of the increased
number of parameters (Table. 3).

Analysis on hashed generation We investigate
the effect of the hashed generation settings on the
performance with different importance parameters

AC CNN AC DPCNN AC DenseCNN

with GRU 75.86 75.87 75.72
w/o GRU 74.76 75.37 75.36

Table 4: Validation accuracies on Yahoo dataset for the
hashed generation-based models with different context
generation settings.

and hash (shared) pool sizes. The number of
importance parameters is ranging from 2 to 9 and
the hash (shared) pool size is in the range from
10 to 100. The results are shown in Figure 3. As
illustrated, increasing the sizes of hash pool and
importance parameters beyond certain threshold
does not guarantee performance gain. The number
of importance parameter is optimal at five. Higher
value of it has no effect on performance and in
some cases, negatively affect performance. In case
of the hash pool size, 20 is enough for containing
candidate filters.

This observation supports the previous
finding (Denil et al., 2013) that many redundant
parameters exist in deep neural networks.
Our results reveal that the networks can be
parameterized with a set of candidate weights,
and their size can be sufficiently small to
significantly reduce the number of required
parameters in the network with little performance
loss.

Effect of GRU We perform an ablation test
to validate the usage of GRUs in generating
the context vector. Table 4 shows the results of
the ablation test. In all models, utilizing GRUs
in generating the context vector significantly
improves performance as much as up to
1.1%p. This clearly indicates the existence of
dependencies between entries in each layer. These
can be effectively captured and incorporated into
the context vector with GRUs and attention-based
context vector generation scheme.

Filter visualization To better understand
generated filters by adaptive convolutions with
different inputs, we visualize filters with t-SNE
(Maaten and Hinton, 2008). We compare filters
trained with the baseline CNN as well as filters
generated by AC CNN from different input texts.
The corresponding results are shown in Figure 4.
As clearly seen, filters from CNN are dispersed in
the projected space. By contrast, filters generated
by AC CNN with a positively and a negatively
labeled sample are concentrated on the upper right
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Figure 4: Filters visualized with t-SNE. Filters
generated by AC CNN and trained in CNN on Yelp.p
dataset are visualized. Negatively and positively
labeled samples are used to generate filters from AC
CNN.

and the lower left part of the space, respectively.
This demonstrates that the generated filters in
adaptive convolutions are focused to disambiguate
uncertainty in given information. Filters trained
in CNN are not specified to given inputs, but are
generally tuned to solve given tasks.

5 Conclusion

In this paper, we have introduced the adaptive
convolution to endow flexibility to convolution
operations. Further, we have proposed the hashing
technique which can drastically reduce the number
of parameters for adaptive convolutions. We have
validated our approach based on the performance
evaluation with seven datasets, and investigated
the effectiveness of adaptive convolutions through
analysis. We believe that our methodology is
applicable to other NLP tasks with text pairs, such
as textual entailment, question answering. We
plan to apply the proposed approach to those tasks
in the future.
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