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Abstract

While rule-based detection of subject–verb
agreement (SVA) errors is sensitive to syntac-
tic parsing errors and irregularities and excep-
tions to the main rules, neural sequential la-
belers have a tendency to overfit their training
data. We observe that rule-based error genera-
tion is less sensitive to syntactic parsing errors
and irregularities than error detection and ex-
plore a simple, yet efficient approach to getting
the best of both worlds: We train neural sequ-
ential labelers on the combination of large vo-
lumes of silver standard data, obtained through
rule-based error generation, and gold standard
data. We show that our simple protocol leads
to more robust detection of SVA errors on both
in-domain and out-of-domain data, as well as
in the context of other errors and long-distance
dependencies; and across four standard bench-
marks, the induced model on average achieves
a new state of the art.

1 Introduction

Grammatical Error Detection. Grammatical
Error Detection (GED, Leacock et al., 2010) is
the task of detecting grammatical errors in text.
It is used in various real-world applications, such
as writing assistance tools, self-assessment fra-
meworks and language tutoring systems, facili-
tating incremental and/or exploratory editing of
one’s writing. Accurate error detection systems
also have potential applications for language ge-
neration and machine translation systems, guiding
automatically generated output towards gramma-
tically correct sequences.

The problem of detecting subject–verb agre-
ement (SVA) errors is an important subtask of
GED. In this work, we focus on detecting subject–
verb agreement errors in the English as a Second
Language (ESL) domain. Most SVA errors occur
at the third-person present tense when determining

whether the subject describes a singular or a plu-
ral concept. The following examples demonstrate
subject–verb agreement errors (bold):

(1) a. *They all knows where the conference is.
b. *The Hotel are very close to Town Hall.

The task can be formulated as a sequence labe-
ling problem, with the goal of labeling subject–
verb pairs as being in agreement or not.

Approaches. Sequence labeling problems in
NLP, including GED and the subtask of iden-
tifying SVA errors, have, in recent years, been
handled with Recurrent Neural Networks (RNNs)
trained on large amounts of data (Rei and Yan-
nakoudakis, 2016, 2017). However, most publi-
cly available datasets for GED are relatively small,
making it difficult to learn a general grammar re-
presentation and potentially leading to over-fitting.
Previous work has also shown that neural langu-
age models with a similar architecture have diffi-
culty learning subject–verb agreement patterns in
the presence of agreement attractors (Linzen et al.,
2016).

Rule-based approaches (Andersen et al., 2013)
are still considered a strong alternative to end-to-
end neural networks, with many industry solutions
still relying on rules defined over syntactic trees.
The rule-based approach has the advantage of not
requiring manual annotation, while also allowing
easy access to adding and removing individual ru-
les. On the other hand, language is continuously
evolving, and there are exceptions to most gram-
mar rules we know. Additionally, rule-based mat-
ching typically relies on syntactic pre-processing,
which is error-prone, leading to compounding er-
rors that hurt the downstream GED performance.

Our contributions. In this work, we compare
the performance of rule-based approaches and
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end-to-end neural models for the detection of SVA
errors. We show that rule-based systems are vul-
nerable to errors in the underlying syntactic par-
sers, while also failing to capture irregularities and
exceptions. In contrast, end-to-end neural archi-
tectures are limited by the available labeled exam-
ples and sensitive to the variance in these datasets.
We then make the following observation: while
rule-based error detection is severely affected by
errors and irregularities in syntactic parsing, rule-
based error generation is more robust. SVA errors
can be generated without identifying subject de-
pendency relations in advance, and changing the
number of a verb almost always leads to an er-
ror. This generated data can be used as a silver
standard for optimizing neural sequence labeling
models. We demonstrate that a system trained on
a combination of available labeled data and large
volumes of silver standard data outperforms both
neural and rule-based baselines by a margin on
three out of four standard benchmarks, and on ave-
rage achieves a new state-of-the-art on detecting
SVA errors.

2 Related work

Neural approaches. Recent neural approaches
to GED include Rei and Yannakoudakis (2016)
who argue that bidirectional (bi-) LSTMs, in par-
ticular, are superior to other RNNs when eva-
luated on standard ESL benchmarks for GED
and give state-of-the-art results. Rei and Yan-
nakoudakis (2017) show even better performance
using a multi-task learning architecture for trai-
ning bi-LSTMs that additionally predicts linguis-
tic properties of words, such as their part of spe-
ech (PoS).

Recent studies (Linzen et al., 2016; Gulordava
et al., 2018; Kuncoro et al., 2018) have specifically
analyzed the performance of LSTMs in learning
syntax-sensitive dependencies such as SVA.

Rule-based approaches. Cai et al. (2009) use
a combination of dependency parsing and sen-
tence simplification, as well as special handling
of wh-elements, to detect SVA errors. Once the
subject–verb relation is identified, after parsing the
simplified input sentence, a PoS tagger is used
to check agreement. This is similar in spirit to
the rule-based baseline system used in our expe-
riments below. Wang et al. (2015) use a simi-
lar approach, distinguishing between four diffe-
rent sentence types and using slightly different ru-

les for each type. Their rules are, again, defined
over the outputs of a dependency parser and a PoS
tagger. Sun et al. (2007) use labeled data to derive
rules based on dependency tree patterns.

Automatic error generation. Because of the
scarcity of annotated datasets in GED, research
has been carried out on creating artificial er-
rors, where errors are injected into otherwise cor-
rect text using deterministic rules or probabilis-
tic approaches using linguistic information (Felice
and Yuan, 2014; Kasewa et al., 2018). Studies fo-
cusing on detecting specific error types such as de-
terminers and prepositions (Rozovskaya and Roth,
2011) or noun number (Brockett et al., 2006) are
mainly developed within the framework of auto-
matic error generation. Recent work, expanding
the detection (Rei et al., 2017) and the correction
(Xie et al., 2018) tasks to all types of errors, impro-
ves the performance of neural models by training
on additional artificial error data generated via ma-
chine translation methods.

Miscellaneous. Recent work has also led to
good performance in correcting grammatical er-
rors (Yannakoudakis et al., 2017; Bryant and Bri-
scoe, 2018; Chollampatt and Ng, 2018). However,
in this paper, we are interested in the task of gram-
matical error detection and we therefore compare
our work to current state-of-the-art approaches to
detecting errors and do not report the performance
of correction systems.

3 Subject–verb agreement detection

Following recent work on GED (Rei and Yannako-
udakis, 2016), we define SVA error detection as a
sequence labeling task, where each token is simply
labeled as correct or incorrect. For a given SVA
error, only the verb is labeled as incorrect. Error
types other than SVA are ignored, i.e., we do not
correct the errors in the text and we do not attempt
to predict them as incorrect.

In this paper, we only study SVA in English.
We note that even for English, there is some
controversy about what constitutes an SVA error.
Manaster-Ramer (1987), cites this example, which
has been used by some as an argument for English
exhibiting cross-serial dependencies:

(2) The man and the women dance and sing, res-
pectively.

We also note that subject–verb agreement can
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be more or less pervasive across languages, de-
pending on how rich the morphology is, whether
the given language exhibits pro-drop, and how far
apart subjects and verbs are likely to occur.

4 Systems

4.1 Rule-based system

Typically, building a GED rule-based system is
time-consuming and requires specific knowledge
to deal with the multiple exceptions and irregula-
rities of languages. Difficult cases (such as long
distance subject–verb relations) are often ignored
in order to ensure high precision, at the expense
of the recall of the system. However, our rule-
based system is not limited to the detection of sim-
ple cases of SVA errors. It relies on PoS tags and
dependency relations to identify all types of SVA
errors. Specifically, our rule-based system opera-
tes as follows: (i) it identifies the candidate verbs
based on PoS tags;1 (ii) for a given verb, it uses
the dependency relations to find its subject;2 (iii)
the PoS tag of the verb and its subject are used to
check whether they agree in number and person.
We use predicted Penn Treebank PoS tags and de-
pendency relations provided by the Stanford Log-
linear PoS Tagger (Toutanova et al., 2003) and
the Stanford Neural Network Dependency Parser
(Chen and Manning, 2014) respectively.

4.2 Neural system

We use the state-of-the-art neural sequence labe-
ling architecture for error detection (Rei and Yan-
nakoudakis, 2016). The model receives a sequ-
ence of tokens (w1, ..., wT ) as input and outputs
a sequence of labels (l1, ..., lT ), i.e., one for each
token, indicating whether a token is grammatically
correct (in agreement) or not, in the given context.
All tokens are first mapped to distributed word re-
presentations, pre-trained using word2vec (Miko-
lov et al., 2013) on the Google News corpus. Fo-
llowing Lample et al. (2016), character-based re-
presentations are also built for every word using
a bi-LSTM (Hochreiter and Schmidhuber, 1997)
and then concatenated onto the word embedding.

The combined embeddings are then given as in-
put to a word-level bi-LSTM, creating represen-
tations that are conditioned on the context from

1Present tense verbs + “was” and “were”.
2The subject can be direct – attached with a nsubj re-

lation – or indirect, such as when the syntactic subject is a
relative pronoun, e.g., who, or an expletive, e.g., there.

both sides of the target word. These representa-
tions are then passed through an additional feed-
forward layer, in order to combine the extracted
features and map them to a more suitable space.
A softmax output layer returns the probability dis-
tribution over the two possible labels (correct or
incorrect) for each word. We also include the lan-
guage modeling objective proposed by Rei (2017),
which encourages the model to learn better repre-
sentations via multi-tasking and predicting surro-
unding words in the sentence. Dropout (Srivas-
tava et al., 2014) with probability 0.5 is applied
to word representations and to the output from
the word-level bi-LSTM. The model is optimi-
sed using categorical cross-entropy with AdaDelta
(Zeiler, 2012).

5 Data

5.1 Data preprocessing

As the public datasets either have their own taxo-
nomy or they are not annotated with error types
at all, we apply the error type extraction tool of
Bryant, Felice, and Briscoe (2017) to automatica-
lly get error types mapped to the same taxonomy
for all datasets. The tool automatically annotates
parallel original and corrected sentences with error
type information. When evaluated by human ra-
ters, the predicted error types were rated as “good”
or “acceptable” in at least 95% of the cases. We
use their publicly available tool3 to automatically
get error types for all public datasets mapped to
the same taxonomy of 25 error types in total. We
then set SVA errors as our target class.

5.2 Test data

We compare the rule-based and neural approaches
for the task of SVA error detection on four bench-
marks in the ESL domain.

• FCE. The Cambridge Learner Corpus of
First Certificate in English (FCE) exam
scripts consists of texts produced by ESL
learners taking the FCE exam, which assesses
English at the upper-intermediate proficiency
level (Yannakoudakis et al., 2011). We use
the publicly available test set.

• AESW. The dataset from the Automated
Evaluation of Scientific Writing Shared Task

3https://github.com/chrisjbryant/errant
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2016 (AESW) is a collection of text ex-
tracts from published journal articles (mos-
tly in physics and mathematics) along with
their (sentence-aligned) corrected counter-
parts (Daudaravicius et al., 2016). We test on
the combined trained, development and test
set.4

• JFLEG. The JHU Fluency-Extended GUG
corpus (JFLEG) represents a cross-section of
ungrammatical data, consisting of sentences
written by ESL learners with different profi-
ciency levels and L1s (Napoles et al., 2017).
We evaluate our models on the public test set.

• CoNLL14. The test dataset from the CoNLL
2014 shared task consists of (mostly argu-
mentative) essays written by advanced un-
dergraduate students from the National Uni-
versity of Singapore, and are annotated for
grammatical errors by two native speakers of
English (Ng et al., 2014).

5.3 Training data

ESL writings. We use the following ESL data-
sets as training data:

• Lang8 is a parallel corpus of sentences with
errors and their corrected versions created by
scraping the Lang-8 website5, which is an
open platform where language learners can
write texts and native speakers of that lan-
guage can provide feedback via error cor-
rection (Mizumoto et al., 2011). It contains
1, 047, 393 sentences.

• NUCLE comprises around 1, 400 essays
written by students from the National Uni-
versity of Singapore. It is annotated for error
tags and corrections by professional English
instructors (Dahlmeier et al., 2013). It con-
tains 57, 151 sentences.

• FCE train set. We use the publicly available
FCE training set, containing 25, 748 senten-
ces. A subset of 5, 000 sentences was separa-
ted and used for development experiments.

4Sentences containing special placeholders for mathema-
tical equations, dates, etc. are filtered out.

5http://lang-8.com/

Artificial errors. We generate artificial subject–
verb agreement errors from large amounts of data.
Specifically, we use the British National Corpus
(BNC, BNC-Consortium et al., 2007), a collection
of British English sentences that includes samples
from different media such as newspapers, jour-
nals, letters or essays. Subject–verb agreement
in English merely consists of inflecting 3rd per-
son singular verbs in the present tense (and be in
the past), which makes any text in English fairly
easy to corrupt with SVA errors. We assume that
the BNC data is written in correct British English.
Using predicted PoS tags provided by the Stanford
Log-linear PoS Tagger, we identify verbs in pre-
sent tense, as well as was and were for the past
tense, and flip them to their respective opposite
version using the list of inflected English words
(annotated with morphological features) from the
Unimorph project (Kirov et al., 2016). The final
artificial training set includes the sentences with
injected errors (265, 742 sentences), their original
counterpart, and sentences where SVA errors co-
uld not be injected due to not containing candidate
verbs that could be flipped (241, 295 sentences).

6 Experiments

The models. We compare our neural model
trained on both artificially generated errors
and ESL data (LSTMESL+art) to three baseli-
nes: a neural model trained only on ESL data
(LSTMESL) (i.e., reflecting the performance of
current state-of-the-art approaches for GED), a
language model based method (BERT-LM) and
our rule-based system.
In order to measure the real performance of a
language model (LM) on the detection of SVA
errors, we choose to use the BERT system (Devlin
et al., 2018) to assign probabilities to different
versions of the test sentences. Specifically, we use
the pre-trained uncased BERT-Base model. We
duplicate the sentences each time a corruptible
verb occurs (flipping its number). The LM assigns
a probability to both possible versions of the
verbs. We select the version which has the highest
probability, if this probability is at least 0.16

higher than the probability of the verb in the
original sentence.

6We tune the threshold on the test dataset from the CoNLL
2013 shared task on Grammatical Error Correction of ESL
learner essays.
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FCE AESW CoNLL14 JFLEG

System P R F0.5 P R F0.5 P R F0.5 P R F0.5 F0.5 avg.

Rules 43.75 40.23 43.00 14.82 49.75 17.24 27.93 31.96 28.65 37.50 48.21 39.24 32.03
BERT-LM 66.67 52.87 63.36 18.36 39.61 20.57 50.00 35.24 46.13 60.00 32.14 51.14 45.30
LSTMESL 71.88 26.44 53.49 27.75 10.33 20.75 54.84 17.53 38.46 73.91 30.91 57.82 42.63

LSTMESL+art 72.41 48.84 66.04 19.05 40.66 21.31 49.32 37.11 46.27 64.71 39.29 57.29 47.73

Table 1: Performance of our systems (rule-based and LSTMs) and baselines. BERT-LM is the language model
baseline.

Hyper-parameters. We tune the model hyper-
parameters on the FCE development set, accor-
ding to the F0.5 score. Training is stopped when
F0.5 on the FCE development set does not improve
over 7 epochs. Word representations have size
300, while character representations have size 100.
The word-level LSTM hidden layers have size 300
for each direction, and the character-level LSTM
hidden layers have size 100 for each direction.

Evaluation. Existing approaches are typically
optimised for high precision at the cost of recall,
as a system’s utility depends strongly on the ra-
tio of true to false positives, which has been found
to be more important in terms of learning effect.
A high number of false positives would mean that
the system often flags correct language as incor-
rect, and may therefore end up doing more harm
than good (Nagata and Nakatani, 2010). Because
of this, F0.5 is preferred to F1 in the GED domain
as it puts more weight on precision than recall. For
each experiment, we report the token-level preci-
sion (P), the recall (R), and the F0.5 scores.

7 Results

The main results are summarized in Table 1. Loo-
king at the performance of the LSTMESL+art sys-
tem, we see that on 3 out of 4 benchmarks, our
neural model trained on artificially generated er-
rors outperforms the LSTMESL system with res-
pect to F0.5. On average, over the four bench-
marks, its F0.5 score is 2.43 points higher than the
best performing baseline. Both neural models ob-
tain higher F0.5 scores than the rule-based base-
line, on average and across the board, i.e., +10.6
for LSTMESL and +15.7 for LSTMESL+Art. The
BERT-LM outperforms the LSTMESL (mostly
due to its higher recall, i.e., +18.66) but still does
not reach the F0.5 score of the LSTMESL+Art sys-
tem which gets higher precision and recall overall
(+2.62 and +1.51 respectively).

Furthermore, we observe a trend that the two

LSTM systems trade off precision and recall, with
the LSTMESL system yielding the highest preci-
sion across most datasets, but also yielding signifi-
cantly lower recall than LSTMESL+Art. It is also
evident that the performance varies over domains:
all models struggle with AESW. This is likely due
to the complexity of the scientific writing genre
where, for example, sentences contain parenthe-
ses interposed between a verb and its subject. We
also note errors are far less frequent in this genre,
leading to moderate recall and very low precision.
For the rest of the datasets, system performance is
generally better.

8 Analysis

We analyze the effect of adding artificial errors to
the training data. In particular, we focus on the ro-
bustness of our models by looking at how sensitive
they are to grammatical errors in the surrounding
context; and by looking at how good the models
are at predicting agreement relative to the distance
between the subject and verb. This set of experi-
ments is similar in spirit to Linzen et al. (2016).
We also analyze our rule-based baseline: so far,
we know our rule-based baseline was sensitive to
parser errors and irregularities. We inspect the qu-
ality of the underlying parser by evaluating it on
data that resembles the data used in our experi-
ments, to see whether errors seem to result more
from parser errors or irregularities. Finally, we
also look at the sensitivity of our systems to other
linguistic phenomena such as relative clauses or
conjunctions.

8.1 Sensitivity to other errors in the
surrounding context

In ESL writings, multiple errors can occur in the
same sentence. This means more variable con-
texts, which can lead to degradation in the perfor-
mance of both syntactic parsers / rule-based sys-
tems and GED models.
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Figure 1: Performance (F0.5 scores) of the systems with respect to the noise in test data (i.e., the number of
additional non-SVA errors in sentences).

Testing on noisy contexts We first evaluate how
our systems are impacted by additional non-SVA
errors in the surrounding context of SVA errors in
our test data. For each of the test datasets, we cre-
ate multiple versions, allowing for n non-SVA er-
rors per sentence (we correct the extra non-SVA
errors). This way we can create datasets with di-
fferent levels of complexity with respect to the
grammatical errors within them.

In Figure 1, the F0.5 scores of the models are
shown for different numbers of grammatical errors
per sentence. It is evident that all of the models are
negatively affected by the presence of other errors
in the same sentence. Using more data for trai-
ning – i.e., our artificial training data which does
not include context errors – generally boosts per-
formance on data with and without grammatical
errors in the context. In other words, training with
additional artificially generated errors seems, ove-
rall, to be making our model more robust. We
also note that our rule-based baseline is affected
by errors to roughly the same extent as our base-
line neural model is. One might have thought the
rule-based baseline would suffer more, because of
it being sensitive to errors in the underlying syn-
tactic parser. We return to this issue below.

Training on non-noisy contexts In order to as-
sess the benefit of training on non-erroneous con-
texts, we create a new dataset from our ESL trai-
ning data (see §5.3). Based on the annotations
in the data, we apply the corrections of error ty-
pes other than SVA, thereby only leaving SVA er-
rors in the data. We experiment with how adding
this ‘clean’ dataset to the training set of our exis-
ting systems affects performance. The resulting
F0.5 scores are listed in Table 2. Using ‘clean’
sentences in addition to our original ESL data for
training always positively affects performance. In
this regard, as experimented in (Rei and Yannako-

udakis, 2016), training on more data in the same
domain is a valid solution for improving the per-
formance of LSTM models. However, when also
adding artificially generated data to the training
set, we reach higher scores only on 2 out of the
4 benchmarks. It greatly improves the average
recall (+11.03), without hurting the precision on
FCE and CoNLL14 but affects negatively the pre-
cision on AESW and JFLEG.

FCE AESW CoNLL14 JFLEG

System F0.5 F0.5 F0.5 F0.5

LSTMESL 53.49 20.75 38.46 57.82
LSTMESL+art 66.04 21.31 46.27 57.29

LSTMESL+cor 65.08 27.16 46.26 59.52
LSTMESL+art+cor 67.16 21.12 52.28 54.64

Table 2: Performance (F0.5 scores) of the LSTM mo-
dels when trained using an additional set of ‘clean’ sen-
tences (cor) where non-SVA errors have been correc-
ted.

8.2 Sensitivity to long-distance dependencies
Next, we want to study how well our models per-
form when the subjects and verbs are far apart,
i.e., when the agreement relation is defined over
a long-distance dependency. In order to see how
our systems are affected by the distance between
the subject and verb, we split the test sets based on
different subject–verb distances.

Note, however, that our benchmarks are not an-
notated with PoS tags and dependency relations. If
we binned our test data based on predicted depen-
dencies, the inductive bias of our syntactic parser
and the errors it made would bias our evaluation.
Instead, we perform our analyses on section 22
and 23 of the Penn Treebank (PTB) dataset (Mar-
cus et al., 1993). The PTB however is not annota-
ted with grammatical errors. We therefore corrupt
the sentences by injecting SVA errors, in the same
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way we corrupted the BNC (§5.3) to create addi-
tional training data.

For each sentence in the PTB, we identify a
subject–verb pair, and group the sentences by the
subject–verb distance. We then run our models on
two versions of each sentence: an unaltered ver-
sion and a corrupted one, where we have genera-
ted an SVA error by corrupting the verb, using the
method described earlier (§5.3). This way we can
compute the performance of our models as F0.5

scores over this dataset. The results are displayed
in Figure 2. We can see that the LSTM trained
with artificial data performs significantly better on
long-distance subject–verb pairs than the LSTM
trained only on ESL data. This suggests that trai-
ning on artificially generated errors also makes our
models more robust to this potential source of er-
ror.

1 2 3 4 5 6 7 8 9 101112

0

0.5

1

subject–verb distance

F 0
.5

LSTMESL+art

LSTMESL

rule-based

Figure 2: F0.5 scores of the systems on the PTB as a
function of subject–verb distance.

Note that, in general, there is a substantial gap
between the performance of the two LSTM mo-
dels. This is because one is trained on artificial
data – similar to the data we use in our analysis.
However, the conclusions are based on the relative
differences in performance over long-distance de-
pendencies, and these differences should still be
comparable across the two models.

8.3 Sources of error for our rule-based
baseline

There are two obvious potential sources of error
for our rule-based baseline: sensitivity to errors in
the underlying syntactic parsers, and sensitivity to
the irregularities of language, e.g., when collec-
tive nouns or named entities are subjects, subject–
verb agreement cannot always be determined by
the PoS tags. We show that the main source of
error seems to be irregularities by showing that
the underlying syntactic parsers perform relatively

well, even in the ESL domain.
Table 3 lists the parsing and tagging perfor-

mance of our underlying syntactic parsers across
three domains: learner data (ESL) and web data
(EWT) from the Universal Dependencies (UD)
project (Nivre et al., 2017), as well as the new-
swire data it was trained on (PTB). We only evalu-
ate subject–verb relations, since these are the only
ones of interest in this paper. We see that while
there is a noticeable out-of-domain drop going
from newswire to learner language or web data,
the parser is still able to detect subject–verb rela-
tions with high precision and recall. This suggests
that the vulnerability of our rule-based baseline is
primarily a result of linguistic irregularities and
exceptions to the implemented rules.

UD-ESL UD-EWT PTB 23

Subject–verb precision 88.47 88.86 91.31
Subject–verb recall 89.37 85.11 89.84
PoS tags accuracy 96.36 93.20 97.79

Table 3: The Stanford PoS Tagger and Dependency
Parser’s performance on different treebanks. Subject–
verb precision/recall relates to subject–verb relations.
PoS tag accuracy is only for PoS tags of the subjects
and verbs.

8.4 Sensitivity to other linguistic phenomena
Finally, manually reviewing the errors made by the
rule-based system, we identified frequent lingu-
istic sources of errors, including relative clauses,
conjunctions, ambiguous PoS tags, and collective
nouns. We therefore analyze how the LSTMs
and the rule-based system are globally sensitive to
these potential sources of error. Since our bench-
marks are not annotated with PoS and dependency
relations, we again use the corrupted PTB senten-
ces (see §8.2).

Many of the examples in which our rule-based
baseline fails include relative clauses (when the
verb is the root of a relative clause) and conjunc-
tions (when the subject is a conjunction). A se-
cond major cause of failure is ambiguous verbs,
i.e., verb forms that can also be nouns (ambiguous
PoS, e.g., “need”, “stop”, “point”, etc.), and sub-
jects which are singular nouns describing groups
of people or things (collective nouns, e.g., “team”,
“family”, “staff”, etc.). The following examples
illustrate these cases (underlined):

(3) a. The church and the cathedral are very in-
teresting [. . . ] (conjunction)
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Figure 3: SVA error rates on the PTB data for complex
syntactic structures and ambiguous cases.

b. If there is someone who doesn’t agree
with me, he or she [. . . ] (relative clause)

c. It is said that the majority of the citizens
has got a car [. . . ] (collective noun)

d. [. . . ] and police officer walk around the
building as well. (ambiguous PoS)

We evaluate our models on the PTB data and re-
port the error rate (the lower the better) on pre-
sent tense verbs (Figure 3). Overall, results show
that all models are negatively affected when they
encounter complex syntactic structures and ambi-
guous cases. Figure 3 also confirms that the rule-
based baseline is the most sensitive one to com-
plex structures. Especially in comparison with
the LSTMESL+art model, the rule-based system
achieves good scores on verbs which are not part
of complex structures, but performs significantly
worse on difficult cases. The LSTMESL model
is the worst across almost all cases, while the
LSTMESL+art shows significant improvements
over the baselines, in particular for the difficult ca-
ses.

9 Conclusion

In this paper, we argue for artificial error gene-
ration as an effective approach to learning more
robust neural models for subject–verb agreement
detection. We demonstrate that error generation

is much less sensitive to parsing errors and ir-
regularities than rule-based systems for detecting
subject–verb agreement. On the other hand, arti-
ficial error generation enables us to utilise much
more training data, and therefore can develop
more robust neural models for SVA error detec-
tion that do not overfit the available, manually an-
notated training data. Our simple approach to de-
tecting subject–verb agreements achieves a new
state of the art on three out of four available ben-
chmarks, and, on average, is better than previous
approaches on the task. We show that, in particu-
lar, models trained on large volumes of artificia-
lly generated errors become more robust to other
errors in the surrounding context of SVA, long-
distance dependencies, and other challenging lin-
guistic phenomena.
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