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Abstract

Scholars in inter-disciplinary fields like the
Digital Humanities are increasingly interested
in semantic annotation of specialized corpora.
Yet, under-resourced languages, imperfect or
noisily structured data, and user-specific clas-
sification tasks make it difficult to meet their
needs using off-the-shelf models. Manual an-
notation of large corpora from scratch, mean-
while, can be prohibitively expensive. Thus,
we propose an active learning solution for
named entity recognition, attempting to maxi-
mize a custom model’s improvement per addi-
tional unit of manual annotation. Our system
robustly handles any domain or user-defined
label set and requires no external resources,
enabling quality named entity recognition for
Humanities corpora where such resources are
not available. Evaluating on typologically dis-
parate languages and datasets, we reduce re-
quired annotation by 20-60% and greatly out-
perform a competitive active learning baseline.

1 Introduction

Reaping the benefits of recent advances in Named
Entity Recognition (NER) is challenging when
dealing with under-resourced languages, niche do-
mains, imperfect or noisily structured data, or
user-specific classification tasks. Scholars in inter-
disciplinary fields like the Digital Humanities
(DH) are increasingly interested in semantic an-
notation of specialized corpora that invoke many
of these challenges. Thus, such corpora cannot
easily be annotated automatically with blackbox,
off-the-shelf NER models. Manual annotation of
large corpora from scratch, meanwhile, can be
prohibitively costly. Successful DH initiatives like
the Pelagios Commons (Simon et al., 2016), which
collects geospatial data from historical sources,
often require extensive funding, relying on con-
siderable manual annotation (Simon et al., 2017).

To this end, we introduce the Humanities Entity
Recognizer (HER),1 a whitebox toolkit for build-
your-own NER models, freely available for public
use. HER robustly handles any domain and user-
defined label set, guiding users through an active
learning process whereby sentences are chosen for
manual annotation that are maximally informative
to the model. Informativeness is determined based
on novel interpretations of the uncertainty, repre-
sentativeness, and diversity criteria proposed by
Shen et al. (2004). In contrast to literature em-
phasizing the disproportionate or exclusive impor-
tance of uncertainty (Shen et al., 2017; Zhu et al.,
2008; Olsson, 2009), we observe significant im-
provements by integrating all three criteria.

In addition to a robust active learning based
NER toolkit, we also contribute a novel evalua-
tion framework. This inclusive framework con-
siders the accuracy with which an entire corpus is
annotated, regardless of which instances are an-
notated manually versus automatically, such that
no instance is held out when the active learn-
ing algorithm considers candidates for annotation.
The standard, exclusive evaluation framework, by
contrast, only measures the accuracy of the final
trained model’s predictions on a held out test set.
Thus, the inclusive framework is relevant to the
user who wants to annotate a finite corpus as fast
and as accurately as possible by any means neces-
sary, whereas the exclusive framework is relevant
to the user who wants to build an NER tool that
can generalize well to other corpora.

We conduct extensive experiments comparing
several combinations of active learning algorithms
and NER model architectures in both frame-
works across many typologically diverse lan-
guages and domains. The systematic differences
between inclusive and exclusive results demon-
strate that while deep NER model architectures

1github.com/alexerdmann/HER.

github.com/alexerdmann/HER
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(Lample et al., 2016) are highly preferable for
tagging held out sentences, shallow models (Laf-
ferty et al., 2001) perform better on sentences
that could have been chosen for manual annota-
tion but were not selected by the active learning
algorithm. We argue for the importance of con-
sidering both frameworks when evaluating an ac-
tive learning approach, as the intended application
determines which framework is more relevant and
thus, which model should be employed. Control-
ling for the NER model, HER’s active learning sen-
tence ranking component achieves significant im-
provement over a competitive baseline (Shen et al.,
2017). Because HER does not reference the infer-
ence model during sentence ranking, this provides
counter evidence to Lowell et al. (2018)’s hypoth-
esis that non-native active learning is suboptimal.

2 Related Work

The best known NER systems among humanists
are Stanford NER (Finkel et al., 2005), with pre-
trained models in several languages and an in-
terface for building new models, and among re-
searchers interested in NER for spatial research,
the Edinburgh Geoparser (Grover et al., 2010),
with fine grained NER for English. Erdmann
et al. (2016) and Sprugnoli (2018), among oth-
ers, have shown that such off-the-shelf models can
be substantially improved on DH-relevant data.
Work such as Smith and Crane (2001) and Simon
et al. (2016) represent a large community mining
such data for geospatial entities. Additional DH
work on NER concerns the impact of input data
structure and noisy optical character recognition
(Van Hooland et al., 2013; Kettunen et al., 2017).

Low Resource NER Language agnostic NER
is highly desirable, yet limited by the data avail-
able in the least resourced languages. Curran and
Clark (2003) demonstrate that careful feature en-
gineering can be typologically robust, though data
hungry neural architectures have achieved state-
of-the-art performance without feature engineer-
ing (Lample et al., 2016). To enable neural ar-
chitectures in low resource environments, many
approaches leverage external resources (Al-Rfou
et al., 2015). Cotterell and Duh (2017), for in-
stance, harvest silver annotations from structured
Wikipedia data and build models for typologically
diverse languages, though their approach is lim-
ited to specific domains and label sets. Lin and
Lu (2018) adapt well-resourced NER systems to

low resource target domains, given minimal anno-
tation and word embeddings in domain. Several
translation-based approaches leverage better re-
sourced languages by inducing lexical information
from multi-lingual resources (Bharadwaj et al.,
2016; Nguyen and Chiang, 2017; Xie et al., 2018).
In a slightly different vein, Shang et al. (2018) use
dictionaries as distant supervision to resolve entity
ambiguity. Unfortunately, external resources are
not always publicly available. It is in fact impossi-
ble to replicate many of the above studies without
a government contract and extensive knowledge of
linguistic resources, limiting their applicability to
many DH scenarios. Mayhew et al. (2017) suggest
manually building bilingual dictionaries when no
other translation resources are available to facili-
tate their method, though active learning provides
a more direct means of improving NER quality.

Active Learning Active learning seeks to max-
imize the performance of a model while mini-
mizing the manual annotation required to train it.
Shen et al. (2004) define three broad criteria for
determining which data will be most informative
to the model if annotated: uncertainty, where in-
stances which confuse the model are given prior-
ity; diversity, where instances that would expand
the model’s coverage are prioritized; and repre-
sentativeness, prioritizing instances that best ap-
proximate the true distribution over all instances.
Uncertainty-based approaches outperform other
single-criterion approaches, though many works,
primarily in Computer Vision, demonstrate that
considering diversity reduces repetitive training
examples and representativeness reduces outlier
sampling (Roy and McCallum, 2001; Zhu et al.,
2003; Settles and Craven, 2008; Zhu et al., 2008;
Olsson, 2009; Gu et al., 2014; He et al., 2014;
Yang et al., 2015; Wang et al., 2018b).

For active learning in NER, Shen et al. (2017)
propose the uncertainty-based metric maximized
normalized log-probability (MNLP). It priori-
tizes sentences based on the length normalized
log probability of the model’s predicted label se-
quence. To make neural active learning tractable,
they shift workload to lighter convolutional neu-
ral networks (CNN) and update weights after each
manual annotation batch instead of retraining from
scratch. They demonstrate state-of-the-art perfor-
mance with MNLP, though Lowell et al. (2018)
show its improvement above random sampling to
be less dramatic, as do our experiments. Low-
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Figure 1: High level HER system architecture. Unla-
beled sentences in U are manually labeled and moved
to L, enabling iterative updates of gazetteers, the NER
model, and the informativity ranking of sentences in U .

ell et al. (2018) compare calculating MNLP from
the native inference model and from a non-native
model with a separate architecture. They con-
clude that non-native models are ill-suited to ac-
tive learning, which our findings using more ro-
bust informativeness criteria contradict.

3 The Humanities Entity Recognizer

As illustrated in Figure 1, HER consists of three
components: (1) a human User who provides an
unlabeled corpus U at state 0 and annotates se-
lected sentences in state 1, thus moving them from
U to the labeled corpus L, (2) an active learn-
ing engine, Ranker, that ranks sentences from U
in state 2 for User to annotate based on how in-
formative they might be to (3), the NER model,
Tagger, to be trained on L in state 3.2

All states are linked by an interface that “white-
boxes” the process. It advises User on quali-
tative observations which might improve perfor-
mance by manually interacting withRanker, e.g.,
removing problematic gazetteer entries, or with
Tagger, e.g., forcing it to sample some known
minority labels. The contributions of the interface
will not be reflected in our human-out-of-the-loop
experiments on standard datasets, as these evalu-
ate only the contributions ofRanker and Tagger.
Thus, reported performances should be considered
a lower bound that can often be improved with
minimal human intervention.

2In our experiments, we assume no previous annotation or
pre-existing gazetteers at state 0, though, in practice, HER ro-
bustly leverages non-empty L0 and/or Gaz0 when available.

3.1 Ranking Sentences by Informativeness
At state 1 with i=0, User is prompted to an-
notate randomly ordered sentences until 50-100
named entities are labeled. We use a 200-sentence
seed for all experiments except that of Section
4.1, where an entity-sparse corpus requires a 300-
sentence seed. Such a small seed, often anno-
tated in less than 30 minutes, is sufficient to sup-
port Ranker’s Pre-Tag DeLex (PTDL) algorithm
in state 2. PTDL uses only shallow, fast Con-
ditional Random Fields (CRF) to avoid delaying
manual annotation. As demonstrated on a sam-
ple corpus in Figure 2, PTDL involves four sub-
tasks: pre-tagging, delexicalized tagging, vocabu-
lary weighting and sentence ranking.

Pre-tagging We naively and greedily pre-tag
U with binary entity–non-entity labels based on
gazetteer matches. Hence, every n-gram in U
matching a named entity from a gazetteer gets pre-
tagged as such unless it overlaps with a longer
named entity. State 2 cannot occur until the seed
has been annotated, soGaz will never be empty, as
entities are automatically extracted into gazetteers
after each annotation batch in state 1.

Delexicalized Tagging Upre−tagged is divided
into UNE , containing sentences with at least one
pre-tagged named entity, and its complement,
UnoNE . We train a trusted NER model (t) on L
and two biased models (b1 and b2) on L plus ran-
dom mutually exclusive halves of UNE . b1 and b2
are biased in that they use non-gold data (UNE)
exhibiting an exaggerated density of named en-
tities. Models are trained using only delexical-
ized features, which, unlike character n-grams
for example, do not directly reference the focal
word or its form. Many delexicalized features
are context-based, like preceding and following
words. Trained thus, models are less hampered by
the class imbalance problem (Japkowicz, 2000),
more likely to predict more named entities, and
more capable of determining which Out Of Vocab-
ulary (OOV) lexical items (in U but not L) make
good named entity candidates.

Vocabulary Weighting After tagging U with
delexicalized models, t, b1, and b2, OOVs are
scored by weighted frequency. Weights are sums
determined by which models tagged the OOV in
an entity at least once. t contributes 1 to the sum
and each biased model, 1

2 . OOVs not tagged by
any model recieve a negligible positive weight, ε.
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Figure 2: Step-by-step example outputs from ranking unlabeled sentences in a sample corpus with PTDL.

This motivates PTDL to target frequent OOVs after
exhausting OOVs more likely to be named entities.

Sentence Ranking As shown in Figure 2, sen-
tences in U are ranked by the sum of scores of
unique OOVs therein, normalized by the word
length of the sentence. OOVs occurring in higher
ranked sentences do not count toward this sum.

While typical active learning strategies for NER
rely on the inference model’s output probabili-
ties, these are noisy, especially given scarce an-
notation. Data-scarce models lexically memorize
training instances, yielding high precision at the
expense of recall. They struggle to model non-
lexical features more subtly correlated with en-
tity status but also more likely to occur on OOVs.
Hence, data-scarce models know what they know
but are somewhat equally perplexed by everything
else (Li et al., 2008). For this reason, uncertainty-
based active learners can suffer from problemati-
cally weak discriminative power in addition to re-
dundant and outlier-prone sampling.

By forcing reliance on delexicalized features
and biasing models toward recall, our three-
criteria approach identifies frequent (representa-
tiveness) OOV words (diversity) that are plausible
candidate members of named entities. These make
for better indicators of where the model may fail
(uncertainty) because named entities are minority
labels in NER and minority labels are challenging.

3.2 Sentence Tagging Architectures

User can stop iteratively annotating and re-
ranking U at any time to train a Tagger on L
to perform the full NER task on U (state 3).
L is combined with Tagger’s predictions on U
(Pred) to form PredL, from which an imperfect
gazetteer is extracted (PredGaz). User must in-
spect these to determine if additional annotation is
required. We explore three Tagger architectures:

CRF For tagging with Okazaki (2007)’s feature-
based CRF, Tagger first trains preliminary mod-
els on L, cross-validating on folds of the random
seed. Each model leverages a unique permuta-
tion drawn from a universal set of features. The
best performing feature set is used to train the fi-
nal model. Training and inference are fast, even
with preliminary cross-validation. In the exclu-
sive evaluation, CRF is the best tagger until about
40K tokens of training data are acquired. In the
inclusive evaluation, CRF’s tendency to overfit is
rewarded, as it outperforms both deep models re-
gardless of corpus size.

CNN-BiLSTM The near state-of-the-art archi-
tecture proposed by Shen et al. (2017) aims to re-
duce training with minimal harm to accuracy. It
leverages CNNs—as opposed to slower recurrent
networks—for character and word encoding, and
a bidirectional long short-term memory network
(BiLSTM) for tags. CNN-BiLSTM outperforms
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all other models in the exclusive evaluation for a
stretch of the learning curve between about 40K
tokens acquired and 125K. While faster than the
other deep model considered here, training time is
slower than the CRF and computationally costly.

BiLSTM-CRF The state-of-the-art BiLSTM-
CRF architecture of (Lample et al., 2016) projects
a sequence of word embeddings to a character
level BiLSTM which in turn projects into a CRF
at the tag level, with an additional hidden layer be-
tween the BiLSTM and CRF. In our experiments,
BiLSTM-CRF surpasses CNN-BiLSTM perfor-
mance once about 125K tokens are acquired.

3.3 HER in the Digital Humanities

HER was developed to benefit diverse DH projects.
It is currently facilitating three such ventures.

The Herodotos Project (u.osu.edu/
herodotos) aims at cataloguing ancient
ethnogroups and their interactions (Boeten,
2015; de Naegel, 2015). HER is used to iden-
tify such groups in Classical Greek and Latin
texts. Manually annotated data as well as a
trained NER tagger are freely available from
github.com/alexerdmann/Herodotos-
Project-Latin-NER-Tagger-
Annotation.

Artl@s artlas.huma-num.fr is a global
database of art historical catalogs from the 19th
and 20th centuries for the scholarly study of the
diffusion and globalization of art. HER serves as
a method for mining semi-structured texts char-
acterized by noisy OCR and recurrent patterns of
granular named entities.

Visualizing Medieval Places Wrisley (2017)
concerns the study of recurrent places found
within a mixed-genre corpus of digitized medieval
French texts. NER has heretofore been chal-
lenged by sparsity from the unstandardized or-
thography. The related Open Medieval French
project (github.com/OpenMedFr) benefits
from HER’s robust handling of sparsity, using the
system to create open data regarding people and
places referenced in medieval French texts.

4 Experiments

We now describe several experiments evaluating
HER’s performance on diverse corpora. When a
standard test set is available, we perform inclusive

evaluation on the combined train and dev sets and
evaluate exclusively on test. Otherwise, we only
evaluate inclusively. In both settings, we compare
multiple combinations of ranking systems and tag-
gers over a learning curve, reporting F1 exact
match accuracy of identified entities. In all fig-
ures, line dashing (contiguous, dashed, or dotted)
denotes inference model (CRF, BiLSTM-CRF, or
CNN-BiLSTM), whereas line accents (stars, cir-
cles, triangles, or squares) denotes active learning
method. Besides PTDL, we also consider a random
active learning method (RAND), MNLP, and Erd-
mann et al. (2016)’s CAP algorithm. Like PTDL,
CAP ranks sentences based on frequency weighted
OOVs, but calculates weights based on capitaliza-
tion patterns, prioritizing capitalized OOVs occur-
ring in non-sentence initial position.

Quantity of training data is reported as percent-
age of the entire corpus for inclusive evaluations,
and as tokens actively annotated (i.e., not counting
the random seed sentences) for exclusive evalua-
tions. For consistency, following seed annotation,
we always fetch additional annotation batches at
the following intervals, in tokens: 1K, 4K, 5K,
10K, 20K until we reach 100K total tokens, 50K
until 300K total, 100K until 500K total, and 250K
from there. For all experiments leveraging neural
taggers, we use freely available pretrained embed-
dings (Grave et al., 2018), except for Latin, where
we train fasttext (Bojanowski et al., 2017) em-
beddings on the Perseus (Smith et al., 2000) and
Latin Library collections with default parameters
(using pretrained embeddings yield small perfor-
mance boosts that decrease with additional train-
ing data). We conclude this section with a direct
comparison to the recently proposed active learn-
ing pipeline of Shen et al. (2017) and their MNLP

ranking algorithm.

4.1 Consistency of Non-deterministic Results
Because the active learning pipeline involves tak-
ing a random seed and many of the experiments on
larger corpora could not be averaged over several
runs, we first measure performance variation as a
function of ranking algorithm and quantity of an-
notation. Figure 3 displays our findings on a sam-
ple corpus of about 250K tokens3 in five diverse,
pre-1920 prose genres extracted from the FranText
corpus (www.frantext.fr) and annotated for

3HER considers sentence boundaries to be tokens, as this
helps users locate words, i.e., the line number will correspond
to token number when rendered in CoNLL format.

u.osu.edu/herodotos
u.osu.edu/herodotos
github.com/alexerdmann/Herodotos-Project-Latin-NER-Tagger-Annotation
github.com/alexerdmann/Herodotos-Project-Latin-NER-Tagger-Annotation
github.com/alexerdmann/Herodotos-Project-Latin-NER-Tagger-Annotation
artlas.huma-num.fr
github.com/OpenMedFr
www.frantext.fr
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Figure 3: ±1 standard deviation bands around the mean
performance of each sentence ranking algorithm using
the CRF tagger over 100 inclusive evaluations on our
FranText corpus.

geospatial entities. Our sample covers topics from
gastronomy to travel, exhibiting inconsistent en-
tity density characteristic of DH corpora.

Noise is much higher for the first few batches
of annotation, particularly due to the low recall of
data scarce models. Reluctant to generalize, they
behave more like look-up tables extracted from
the seed, exacerbating the effect of random seed
variation. After about 20K tokens annotated or
10% of the corpus, performance becomes much
more predictable. All algorithms start with about
a 5 point spread for ±1 standard deviation, with
means around 70 F, and all exhibit the diminishing
variation trend, though RAND does less so. Unlike
CAP and PTDL, subsequent annotation batches in
RAND are not predictable from previous annota-
tion batches. This results in a spread of 0.76 af-
ter annotating 12.33% of the corpus, whereas the
other algorithms are close to 0.4.

While we only tested variation on one corpus,
multiple runs on other corpora tended to reflect the
same diminishing variation trends despite marked
differences in entity granularity, density or corpus
size. Switching to the exclusive evaluation only
minimally increases variation. It was not feasible
to rigorously test variation using neural taggers,
though we note that they are somewhat more prone
to seed related noise which does not diminish as
rapidly as it does for CRF with more annotation.

In terms of performance, random annotation re-
quires one to label between 23% and 31% of the
corpus to achieve the performance of PTDL after
labeling just 12%. For this corpus, PTDL reduces

annotation time between 46% and 60%, requiring
only 32K tokens from annotators instead of 60-
80K. CAP’s competitiveness with PTDL is not sur-
prising given that French uses the capitalization
standards it is designed to exploit. Both algorithms
achieve 15% error reduction above RAND after the
first post-seed annotation batch (left edge of Fig-
ure 3), increasing monotonically to 55% error re-
duction after the fifth batch (right edge).

4.2 Inclusive Versus Exclusive Evaluation

Figure 4: Comparing shallow and deep learning archi-
tectures on inclusive and exclusive evaluations with the
CoNLL Spanish corpus.

Using the Spanish CoNLL corpus (Tjong
Kim Sang and De Meulder, 2003) with canoni-
cal train, dev, test splits, we examine the relation-
ship between evaluation framework, Ranker, and
Tagger in Figure 4.4 For the inclusive frame-
work, Ranker selects sentences from train+dev
for Tagger to train on, and the performance
is calculated over the combination of those se-

4Lample et al. (2016) achieve 85.75 F on the exclusive
evaluation, slightly beating our best BiLSTM-CRF models
which sacrifice some performance for speed, switching to
Adam optimization limited to 5 epochs.
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lected sentences (trivially all correct) and trained
Tagger’s predictions on the rest of train+dev. By
reporting results over a learning curve, this evalu-
ation framework is meaningful to the user whose
primary goal is to produce a finite annotated cor-
pus as efficiently and accurately as possible, a
frequent concern in DH. The standard exclusive
framework also gives Ranker access to train+dev
sentences, but calculates accuracy from Tagger’s
predictions on the held out test set. The exclu-
sive framework is thus more meaningful for future
users of Tagger who need the tool to generalize
to sentences outside of train+dev.

In the inclusive framework, regardless of corpus
size, BiLSTM-CRFs do not surpass CRFs until the
accuracy is so high that the distinction is negligi-
ble. Promoting overfitting by reducing dropout did
not significantly affect this result. In the exclusive
framework, BiLSTM-CRF surpasses CRF around
50K tokens annotated. This holds for all languages
and corpora we investigate, suggesting quantity of
data annotated is more predictive of exclusive per-
formance trends, whereas proportion of the corpus
annotated better predicts inclusive trends.

4.3 Typology, Granularity, and Corpus Size

We consider the effect of language typology, label
scheme granularity, and corpus size on inclusive
and exclusive evaluations of taggers and rankers.

4.3.1 Insights from German
We repeat our experiments from Section 4.2 on the
German NER corpus, GermEval (Benikova et al.,
2014), to determine how robust our findings are
to a larger corpus with finer label granularity and
different capitalization standards. Our results in
Figure 5 confirm many of our previous findings,
with BiLSTM-CRFs overtaking CRFs of the same
ranker after 50K tokens annotated on the exclu-
sive evaluation. Shallow CRFs again dominate
inclusively, and again, exclusive performance is
less predictable, though the contribution of PTDL

is more obvious.
GermEval contains over 520K tokens to Span-

ish CoNLL’s 321K, showing that deep models
are not just slower to overtake shallow models in
the inclusive evaluation, but they only asymptot-
ically approach shallow performance.5 Further-
more, the finer grained named entity distinctions

5Our evaluation is equivalent to metric 3 from the shared
task (Benikova et al., 2014), though our results are not com-
parable as we did not leverage nested labels.

Figure 5: A comparison of shallow and deep learn-
ing architectures on inclusive and exclusive evaluations
with the GermEval corpus.

in GermEval do not seem to affect our previ-
ous findings, but do cause BiLSTM-CRF to start
slowly, as the model does not begin training un-
til all possible labels manifest in the training set.
While this is merely an effect of programming
choices, it provides interesting insights. For in-
stance, BiLSTM-CRF CAP models consistently
start later than RAND which starts later than PTDL,
meaning that PTDL is doing well on the diver-
sity criteria, whereas CAP likely struggles because
it relies on English-like capitalization standards.
Since German capitalizes all nouns, CAP struggles
here, having to search through many capitalized
OOVs before finding named entities of each cat-
egory. By not considering uncapitalized OOVs
as named entity candidates, it can systematically
avoid entire labels which do not take capitaliza-
tion, such as dates. Thus, while PTDL performs
robustly on the GermEval dataset, CAP is only
weakly superior to RAND due to the weak corre-
lation between entity status and capitalization.
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4.3.2 Insights from Latin
Latin presents an opportunity to explore the im-
pact of capitalization on ranking algorithms more
thoroughly. Erdmann et al. (2016) selected their
Latin corpus because English capitalization stan-
dards had been imposed during digitization, mak-
ing CAP more likely to succeed. Figure 6 demon-
strates that it even marginally outperforms PTDL

on the corpus (left pane). However, capitaliz-
ing proper nouns is not a native attribute of Latin
orthography and is not available in all digitized
manuscripts, limiting the Latin texts in which CAP

will succeed. The right pane in Figure 6 demon-
strates this, as the same evaluation from the left
pane is repeated on a lower cased version of the
same corpus. The minuscule error reduction CAP

achieves over RAND in this environment is due
to its general preference for OOVs. Meanwhile,
despite suffering from weaker named entity sig-
nals without capitalization, PTDL still manages to
robustly identify what non-capitalization features
are relevant, maintaining 25% error reduction over
RAND. Finally, in German, where capitalization is
a weak signal of entity status, PTDL is similarly
better equipped to incorporate the weak signal, re-
ducing error twice as much as CAP. Interestingly,
PTDL performance in the lower cased Latin cor-
pus almost exactly matches RAND performance on
the capitalized version. This suggests the benefits
of PTDL are comparable to the benefits of having
English-like capitalization to mark entities.

4.3.3 Insights from Arabic
Unlike the other corpora, the news domain ANER
Arabic corpus (Benajiba and Rosso, 2007) fea-
tures rich templatic morphology, frequent lexical
ambiguity, and an orthography lacking capitaliza-
tion. Hence, not only will feature-based signals be
more subtle, but the gazetteer-based pre-tagging
component of PTDL will suffer from low preci-
sion, because Arabic is written in an abjad orthog-
raphy where short vowels among other characters
are seldom marked, making many words polyse-
mous. Even so, PTDL significantly outperforms
RAND, likely due to its ability to shift reliance
to contextual features better suited for newswire,
where formulaic expressions are often used to re-
fer to certain entity types.

While PTDL compares well to RAND, it does not
approach 100% accuracy after annotating 50% of
the corpus as in Section 4.3.2. Besides ambigu-
ity and lack of capitalization, this could be due to

a typological bias in our “universal” feature set.
Contiguous character n-grams, for example, will
not capture non-concatenative subword phenom-
ena. Going forward, we will investigate which
feature sets were most useful as a function of lan-
guage typology to identify gaps in our coverage.

4.4 Comparing to MNLP

Shen et al. (2017) and Lowell et al. (2018) eval-
uate the purely uncertainty-based MNLP active
NER system on English corpora, reporting starkly
different results. We address discrepancies and
test the robustness of their findings by comparing
MNLP to PTDL and RAND on the GermEval cor-
pus. Results are displayed in Figure 8, with shaded
regions corresponding to the range of performance
over multiple runs. To compare fairly, we use
the same CNN-BiLSTM tagger for all rankers and
iteratively update weights instead of re-training
from scratch after each annotation batch, as in
Shen et al. (2017). We report results on our
previously mentioned batch annotation schedule,
though results were comparable using the batch
schedule of Lowell et al. (2018). Shen et al. (2017)
claim iterative updating does not affect accuracy
significantly, though the best performing active
CNN-BiLSTM in Figure 8 lags a few points be-
hind the BiLSTM-CRF after 150K tokens anno-
tated, with that gap reaching nearly 5 F when train-
ing on the whole corpus. Meanwhile, a CNN-
BiLSTM trained from scratch on the whole corpus
scores only 1 F less than the BiLSTM-CRF.

While Lowell et al. (2018) report improve-
ment over RAND using MNLP when training on
0-10% of the corpus, we see little improvement
after about 2%, and even then, PTDL greatly
outperforms both. The relationship between the
PTDL curves in the exclusive evaluation shows
that CNN-BiLSTM is actually the optimal tag-
ging architecture for a brief window, overtaking
CRF around 30K tokens and staying in front of
BiLSTM-CRF until about 125K tokens.

5 Conclusion and Future Work

We have presented the HER toolkit and its novel
active learning algorithm, demonstrating robust
handling of typological diversity, niche domains,
and minority labels. The algorithm addresses the
weak discriminative power of uncertainty-based
models caused by class imbalance and precision
bias. We also argued for the relevance of in-
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Figure 6: Percent error reduction over RAND in three corpora exhibiting typologically distinct capitalization stan-
dards. Corpora are presented in descending order of the correlation of capitalization with named entity status.

Figure 7: Effect of PTDL in the ANER Arabic corpus.

clusive evaluations, demonstrating that a shallow
CRF tagger outperforms deep taggers on sen-
tences which the active learner could have se-
lected for training. The CRF’s tendency to over-
fit is rewarded in this case, as the selected sen-
tences are especially representative of the remain-
ing sentences to be tagged. When tagging held out
test sets, CRFs are only optimal until about 30K
training tokens are acquired, then CNN-BiLSTMs
are preferable until 125K tokens when BiLSTM-
CRFs become the best high resourced tagger.

In future work, we will investigate sources of
noise in performance to see if these are due to
gaps in the model, idiosyncrasies of corpora, or
both. Additionally, we will expand HER to model
hierarchically nested entity labels. Named entities
are often difficult to label deterministically, invit-
ing a problematic level of subjectivity, which is
of crucial interest in DH and should not be over-
simplified. We will consider strategies such as
Wang et al. (2018a)’s shift-reduced-based LSTM
architecture or Sohrab and Miwa (2018)’s method
of modeling the contexts of overlapping potential
named entity spans with bidirectional LSTM’s.

Figure 8: Inclusive and exclusive comparisons of the
MNLP and PTDL rankers on GermEval.
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