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Abstract

A growing number of state-of-the-art trans-
fer learning methods employ language mod-
els pretrained on large generic corpora. In this
paper we present a conceptually simple and
effective transfer learning approach that ad-
dresses the problem of catastrophic forgetting.
Specifically, we combine the task-specific op-
timization function with an auxiliary language
model objective, which is adjusted during the
training process. This preserves language reg-
ularities captured by language models, while
enabling sufficient adaptation for solving the
target task. Our method does not require pre-
training or finetuning separate components of
the network and we train our models end-to-
end in a single step. We present results on a va-
riety of challenging affective and text classifi-
cation tasks, surpassing well established trans-
fer learning methods with greater level of com-
plexity.

1 Introduction

Pretrained word representations captured by Lan-
guage Models (LMs) have recently become pop-
ular in Natural Language Processing (NLP). Pre-
trained LMs encode contextual information and
high-level features of language, modeling syntax
and semantics, producing state-of-the-art results
across a wide range of tasks, such as named entity
recognition (Peters et al., 2017), machine transla-
tion (Ramachandran et al., 2017) and text classifi-
cation (Howard and Ruder, 2018).

However, in cases where contextual embed-
dings from language models are used as additional
features (e.g. ELMo (Peters et al., 2018)), results
come at a high computational cost and require
task-specific architectures. At the same time, ap-
proaches that rely on fine-tuning a LM to the task
at hand (e.g. ULMFiT (Howard and Ruder, 2018))
depend on pretraining the model on an exten-
sive vocabulary and on employing a sophisticated

slanted triangular learning rate scheme to adapt the
parameters of the LM to the target dataset.

We propose a simple and effective transfer
learning approach, that leverages LM contextual
representations and does not require any elaborate
scheduling schemes during training. We initially
train a LM on a Twitter corpus and then transfer
its weights. We add a task-specific recurrent layer
and a classification layer. The transferred model
is trained end-to-end using an auxiliary LM loss,
which allows us to explicitly control the weighting
of the pretrained part of the model and ensure that
the distilled knowledge it encodes is preserved.

Our contributions are summarized as follows:
1) We show that transfer learning from language
models can achieve competitive results, while also
being intuitively simple and computationally ef-
fective. 2) We address the problem of catastrophic
forgetting, by adding an auxiliary LM objective
and using an unfreezing method. 3) Our results
show that our approach is competitive with more
sophisticated transfer learning methods. We make
our code widely available. !

2 Related Work

Unsupervised pretraining has played a key role in
deep neural networks, building on the premise that
representations learned for one task can be use-
ful for another task. In NLP, pretrained word vec-
tors (Mikolov et al., 2013; Pennington et al., 2014)
are widely used, improving performance in vari-
ous downstream tasks, such as part-of-speech tag-
ging (Collobert et al., 2011) and question answer-
ing (Xiong et al., 2016). These pretrained word
vectors serve as initialization of the embedding
layer and remain frozen during training, while our
pretrained language model also initializes the hid-
den layers of the model and is fine-tuned to each
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classification task.

Aiming to learn from unlabeled data, Dai and
Le (2015) use unsupervised objectives such as se-
quence autoencoding and language modeling for
as pretraining methods. The pretrained model is
then fine-tuned to the target task. However, the
fine-tuning procedure of the language model to the
target task does not include an auxiliary objective.
Ramachandran et al. (2017) also pretrain encoder-
decoder pairs using language models and fine-tune
them to a specific task, using an auxiliary lan-
guage modeling objective to prevent catastrophic
forgetting. This approach, nevertheless, is only
evaluated on machine translation tasks; moreover,
the seq2seq (Sutskever et al., 2014) and language
modeling losses are weighted equally throughout
training. By contrast, we propose a weighted sum
of losses, where the language modeling contribu-
tion gradually decreases. ELMo embeddings (Pe-
ters et al., 2018) are obtained from language mod-
els and improve the results in a variety of tasks
as additional contextual representations. However,
ELMo embeddings rely on character-level models,
whereas our approach uses a word-level LM. They
are, furthermore, concatenated to pretrained word
vectors and remain fixed during training. We in-
stead propose a fine-tuning procedure, aiming to
adjust a generic architecture to different end tasks.

Moreover, BERT (Devlin et al., 2018) pretrains
language models and fine-tunes them on the tar-
get task. An auxiliary task (next sentence predic-
tion) is used to enhance the representations of the
LM. BERT fine-tunes masked bi-directional LMs.
Nevertheless, we are limited to a uni-directional
model. Training BERT requires vast computa-
tional resources, while our model only requires 1
GPU. We note that our approach is not orthogo-
nal to BERT and could be used to improve it, by
adding an auxiliary LM objective and weighing its
contribution.

Towards the same direction, ULMFiT (Howard
and Ruder, 2018) shows impressive results on a
variety of tasks by employing pretrained LMs.
The proposed pipeline requires three distinct steps,
that include (1) pretraining the LM, (2) fine-tuning
it on a target dataset with an elaborate schedul-
ing procedure and (3) transferring it to a classifica-
tion model. Our proposed model is closely related
to ULMFiT. However, ULMFiT trains a LM and
fine-tunes it to the target dataset, before transfer-
ring it to a classification model. While fine-tuning

the LM to the target dataset, the metric (e.g. ac-
curacy) that we intend to optimize cannot be ob-
served. We propose adopting a multi-task learning
perspective, via the addition of an auxiliary LM
loss to the transferred model, to control the loss
of the pretrained and the new task simultaneously.
The intuition is that we should avoid catastrophic
forgetting, but at the same time allow the LM to
distill the knowledge of the prior data distribution
and keep the most useful features.

Multi-Task Learning (MTL) via hard parame-
ter sharing (Caruana, 1993) in neural networks
has proven to be effective in many NLP prob-
lems (Collobert and Weston, 2008). More re-
cently, alternative approaches have been suggested
that only share parameters across lower layers (So-
gaard and Goldberg, 2016). By introducing part-
of-speech tags at the lower levels of the network,
the proposed model achieves competitive results
on chunking and CCG super tagging. Our auxil-
iary language model objective follows this line of
thought and intends to boost the performance of
the higher classification layer.

3 Our Model

We introduce SiATL, which stands for Single-step
Auxiliary loss Transfer Learning. In our proposed
approach, we first train a LM. We then transfer its
weights and add a task-specific recurrent layer to
the final classifier. We also employ an auxiliary
LM loss to avoid catastrophic forgetting.

LM Pretraining. We train a word-level language
model, which consists of an embedding LSTM
layer (Hochreiter and Schmidhuber, 1997), 2 hid-
den LSTM layers and a linear layer. We want to
minimize the negative log-likelihood of the LM:

N "

R 1 ACom|om n
L(p) = N ZZlng(l’t 2T, .. xig) (D)

n=1 t=1

where p(z}|xT, ..., 2} ;) is the distribution of the
t*" word in the n*"* sentence given the t — 1 words
preceding it and N is total number of sentences.

Transfer & auxiliary loss. We transfer the
weights of the pretrained model and add one
LSTM with a self-attention mechanism (Lin et al.,
2017; Bahdanau et al., 2015).

In order to adapt the contribution of the pretrained
model to the task at hand, we introduce an auxil-
iary LM loss during training. The joint loss is the
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chitecture. We transfer the pretrained LM add an extra
recurrent layer and an auxiliary LM loss.
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weighted sum of the task-specific loss L;,s; and
the auxiliary LM loss Lr s, where v is a weight-
ing parameter to enable adaptation to the target
task but at the same time keep the useful knowl-
edge from the source task. Specifically:

L = Lygsk, +vLm ()

Exponential decay of v. An advantage of the pro-
posed TL method is that the contribution of the
LM can be explicitly controlled in each training
epoch. In the first few epochs, the LM should con-
tribute more to the joint loss of SiATL so that the
task-specific layers adapt to the new data distribu-
tion. After the knowledge of the pretrained LM
is transferred to the new domain, the task-specific
component of the loss function is more important
and y should become smaller. This is also crucial
due to the fact that the new, task-specific LSTM
layer is randomly initialized. Therefore, by back-
propagating the gradients of this layer to the pre-
trained LM in the first few epochs, we would add
noise to the pretrained representation. To avoid
this issue, we choose to initially pay attention to
the LM objective and gradually focus on the clas-
sification task. In this paper, we use an exponential
decay for ~y over the training epochs.

Sequential Unfreezing. Instead of fine-tuning all
the layers simultaneously, we propose unfreezing

them sequentially, according to Howard and Ruder
(2018); Chronopoulou et al. (2018). We first fine-
tune only the extra, randomly initialized LSTM
and the output layer for n — 1 epochs. At the nt
epoch, we unfreeze the pretrained hidden layers.
We let the model fine-tune, until epoch k£ — 1. Fi-
nally, at epoch k, we also unfreeze the embedding
layer and let the network train until convergence.
The values of n and & are obtained through grid
search. We find the sequential unfreezing scheme
important, as it minimizes the risk of overfitting to
small datasets.

Optimizers. While pretraining the LM, we use
Stochastic Gradient Descent (SGD). When we
transfer the LM and fine-tune on each classifica-
tion task, we use 2 different optimizers: SGD for
the pretrained LM (embedding and hidden layer)
with a small learning rate, in order to preserve its
contextual information. As for the new, randomly
initialized LSTM and classification layers, we em-
ploy Adam (Kingma and Ba, 2015), in order to al-
low them to train fast and adapt to the target task.

Dataset Domain #classes  # examples
Irony18 Tweets 4 4618
Sent17 Tweets 3 61854
SCv2 Debate Forums 2 3260
SCvl Debate Forums 2 1995
PsychExp Experiences 7 7480

Table 1: Datasets used for the downstream tasks.

4 Experiments and Results

4.1 Datasets

To pretrain the language model, we collect a
dataset of 20 million English Twitter messages,
including approximately 2M unique tokens. We
use the 70K most frequent tokens as vocabu-
lary. We evaluate our model on five datasets:
Sentl7 for sentiment analysis (Rosenthal et al.,
2017), PsychExp for emotion recognition (Wall-
bott and Scherer, 1986), Ironyl8 for irony detec-
tion (Van Hee et al., 2018), SCvI and SCv2 for
sarcasm detection (Oraby et al., 2016; Lukin and
Walker, 2013). More details about the datasets can
be found in Table 1.

4.2 Experimental Setup

To preprocess the tweets, we use Ekphra-
sis (Baziotis et al., 2017). For the generic datasets,
we use NLTK (Loper and Bird, 2002). For the
NBoW baseline, we use word2vec (Mikolov et al.,
2013) 300-dimensional embeddings as features.
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Irony18 Sent17 SCv2 SCvl PsychExp
BoW 43.7 61.0 65.1 60.9 25.8
NBoW 45.2 63.0 61.1 51.9 20.3
P-LM 42.7 £ 0.6 612 +£0.7 694+ 04 485+1.5 383+03
P-LM + su 418+ 1.2 62.1£0.8 69.9 £ 1.0 484 + 1.7 38.7+£ 1.0
P-LM + aux 45.5£0.9 65.1 £0.6 72.6 = 0.7 558+ 1.0 | 409405
SiATL (P-LM + aux + su) 47.0 + 1.1 66.5+ 0.2 75.0 £ 0.7 56.8+20 | 458+ 1.6
ULMFiT (Wiki-103) 236+ 1.6 60.5 + 0.5 68.7 £ 0.6 56.6 = 0.5 21.8£0.3
ULMFIT (Twitter) 41.6 +£ 0.7 65.6 £ 0.4 67.2+0.9 440+0.7 | 402+ 1.1
State of the art 53.6 68.5 76.0 69.0 57.0
(Baziotis et al., 2018) | (Cliche, 2017) | (Ilic et al., 2018) (Felbo et al., 2017)

Table 2: Ablation study on various downstream datasets. Average over five runs with standard deviation. BoW
stands for Bag of Words, NBoW for Neural Bag of Words. P-LM stands for a classifier initialized with our
pretrained LM, su for sequential unfreezing and aux for the auxiliary LM loss. In all cases, F7 is employed.

For the neural models, we use an LM with an em-
bedding size of 400, 2 hidden layers, 1000 neurons
per layer, embedding dropout 0.1, hidden dropout
0.3 and batch size 32. We add Gaussian noise of
size 0.01 to the embedding layer. A clip norm of
5 is applied, as an extra safety measure against ex-
ploding gradients. For each text classification neu-
ral network, we add on top of the transferred LM
an LSTM layer of size 100 with self-attention and
a softmax classification layer. In the pretraining
step, SGD with a learning rate of 0.0001 is em-
ployed. In the transferred model, SGD with the
same learning rate is used for the pretrained layers.
However, we use Adam (Kingma and Ba, 2015)
with a learning rate of 0.0005 for the newly added
LSTM and classification layers. For developing
our models, we use PyTorch (Paszke et al., 2017)
and Scikit-learn (Pedregosa et al., 2011).

5 Results & Discussion

Baselines and Comparison. Table 2 summarizes
our results. The top two rows detail the baseline
performance of the BoW and NBoW models. We
observe that when enough data is available (e.g.
Sentl7), baselines provide decent results. Next,
the results for the generic classifier initialized from
a pretrained LM (P-LM) are shown with and with-
out sequential unfreezing, followed by the results
of the proposed model SiATL. SiATL is also di-
rectly compared with its close relative ULMFiT
(trained on Wiki-103 or Twitter) and the state-of-
the-art for each task; ULMFiT also fine-tunes a
LM for classification tasks. The proposed SiATL
method consistently outperforms the baselines, the
P-LM method and ULMFiT in all datasets. Even
though we do not perform any elaborate learn-
ing rate scheduling and we limit ourselves to pre-

training in Twitter, we obtain higher results in two
Twitter datasets and three generic.

Auxiliary LM objective. The effect of the auxil-
iary objective is highlighted in very small datasets,
such as SCvI, where it results in an impressive
boost in performance (7%). We hypothesize that
when the classifier is simply initialized with the
pretrained LM, it overfits quickly, as the target vo-
cabulary is very limited. The auxiliary LM loss,
however, permits refined adjustments to the model
and fine-grained adaptation to the target task.

Exponential decay of . For the optimal ~ in-
terval, we empirically find that exponentially de-
caying «v from 0.2 to 0.1 over the number of train-
ing epochs provides best results for our classifica-
tion tasks. A heatmap of ~y is depicted in Figure 3.
We observe that small values of v should be em-
ployed, in order to scale the LM loss in the same
order of magnitude as the classification loss over
the training period. Nevertheless, the use of ex-
ponential decay instead of linear decay does not
provide a significant improvement, as our model
is not sensitive to the way of decaying hyperpa-
rameter 7.

Sequential Unfreezing. Results show that se-
quential unfreezing is crucial to the proposed
method, as it allows the pretrained LM to adapt
to the target word distribution. The performance
improvement is more pronounced when there is
a mismatch between the LM and task domains,
i.e., the non-Twitter domain tasks. Specifically
for the PsychExp and SCv2 datasets, sequentially
unfreezing yields significant improvement in F}
building upon our intuition.

Number of training examples. Transfer learning
is particularly useful when limited training data
are available. We notice that for our largest dataset
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Figure 2: Results of SiATL, our proposed approach
(continuous lines) and ULMFIT (dashed lines) for dif-
ferent datasets (indicated by different markers) as a
function of the number of training examples.

Sent17, SiATL outperforms ULMFiT only by a
small margin when trained on all the training ex-
amples available (see Table 2), while for the small
SCv2 dataset, SIATL outperforms ULMFiT by a
large margin and ranks very close to the state-of-
the-art model (Ilic et al., 2018). Moreover, the
performance of SiATL vs ULMFiT as a function
of the training dataset size is shown in Figure 2.
Note that the proposed model achieves competi-
tive results on less than 1000 training examples for
the Ironyl8, SCv2, SCvl and PsychExp datasets,
demonstrating the robustness of SiATL even when
trained on a handful of training examples.
Catastrophic forgetting. We observe that SiATL
indeed provides a way of mitigating catastrophic
forgetting. Empirical results that are shown in Ta-
ble 2 indicate that by only adding the auxiliary lan-
guage modeling objective, we obtain better results
on all downstream tasks. Specifically, a compari-
son of the P-LM + aux model and the P-LM model
shows that the performance of SiATL on classifi-
cation tasks is improved by the auxiliary objective.
We hypothesize that the language model objective
acts as a regularizer that prevents the loss of the
most generalizable features.

6 Conclusions and Future Work

We introduce SiATL, a simple and efficient trans-
fer learning method for text classification tasks.
Our approach is based on pretraining a LM and

01 02 03 04 05
74.0
0.1 135
73.0
0.2
72.5
0.3 72.0
715
0.4
71.0
0.5 705
70.0

Figure 3: Heatmap of the effect of y to F}-score, eval-
uated on SCv2. The horizontal axis depicts the initial
value of v and the vertical axis the final value of ~.

transferring its weights to a classifier with a task-
specific layer. The model is trained using a task-
specific functional with an auxiliary LM loss.
SiATL avoids catastrophic forgetting of the lan-
guage distribution learned by the pretrained LM.
Experiments on various text classification tasks
yield competitive results, demonstrating the effi-
cacy of our approach. Furthermore, our method
outperforms more sophisticated transfer learning
approaches, such as ULMFiT in all tasks.

In future work, we plan to move from Twitter to
more generic domains and evaluate our approach
to more tasks. Additionally, we aim at exploring
ways for scaling our approach to larger vocabu-
lary sizes (Kumar and Tsvetkov, 2019) and for
better handling of out-of-vocabulary words (OOV)
(Mielke and Eisner, 2018; Sennrich et al., 2015) in
order to be applicable to diverse datasets.

Finally, we want to explore approaches for im-
proving the adaptive layer unfreezing process and
the contribution of the language model objective
(value of ) to the target task.
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