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Abstract

We consider the problem of making efficient
use of heterogeneous training data in neu-
ral machine translation (NMT). Specifically,
given a training dataset with a sentence-level
feature such as noise, we seek an optimal
curriculum, or order for presenting examples
to the system during training. Our curricu-
lum framework allows examples to appear
an arbitrary number of times, and thus gen-
eralizes data weighting, filtering, and fine-
tuning schemes. Rather than relying on prior
knowledge to design a curriculum, we use re-
inforcement learning to learn one automati-
cally, jointly with the NMT system, in the
course of a single training run. We show
that this approach can beat uniform baselines
on Paracrawl and WMT English-to-French
datasets by +3.4 and +1.3 BLEU respectively.
Additionally, we match the performance of
strong filtering baselines and hand-designed,
state-of-the-art curricula.

1 Introduction

Machine Translation training data is typically het-
erogeneous: it may vary in characteristics such
as domain, translation quality, and degree of dif-
ficulty. Many approaches have been proposed to
cope with heterogeneity, such as filtering (Duh
et al., 2013) or down-weighting (Wang et al.,
2017) examples that are likely to be noisy or out
of domain. A powerful technique is to control the
curriculum—the order in which examples are pre-
sented to the system—as is done in fine-tuning
(Freitag and Al-Onaizan, 2016), where training
occurs first on general data, and then on more
valuable in-domain data. Curriculum based ap-
proaches generalize data filtering and weighting1

by allowing examples to be visited multiple times

1Assuming integer weights.

or not at all; and they additionally potentially en-
able steering the training trajectory toward a better
global optimum than might be attainable with a
static attribute-weighting scheme.

Devising a good curriculum is a challenging
task that is typically carried out manually using
prior knowledge of the data and its attributes.
Although powerful heuristics like fine-tuning are
helpful, setting hyper-parameters to specify a cur-
riculum is usually a matter of extensive trial and
error. Automating this process with meta-learning
is thus an attractive proposition. However, it
comes with many potential pitfalls such as failing
to match a human-designed curriculum, or signif-
icantly increasing training time.

In this paper we present an initial study on
meta-learning an NMT curriculum. Starting from
scratch, we attempt to match the performance of
a successful non-trivial reference curriculum pro-
posed by Wang et al. (2018), in which train-
ing gradually focuses on increasingly cleaner
data, as measured by an external scoring func-
tion. Inspired by Wu et al. (2018), we use a
reinforcement-learning (RL) approach involving a
learned agent whose task is to choose a corpus
bin, representing a given noise level, at each NMT
training step. A challenging aspect of this task is
that choosing only the cleanest bin is sub-optimal;
the reference curriculum uses all the data in the
early stages of training, and only gradually anneals
toward the cleanest. Furthermore, we impose the
condition that the agent must learn its curriculum
in the course of a single NMT training run.

We demonstrate that our RL agent can learn a
curriculum that works as well as the reference,
obtaining a similar quality improvement over a
random-curriculum baseline. Interestingly, it does
so using a different strategy from the reference.
This result opens the door to learning more so-
phisticated curricula that exploit multiple data at-
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Figure 1: The agent’s interface with the NMT system.

tributes and work with arbitrary corpora.

2 Related Work

Among the very extensive work on handling het-
erogeneous data in NMT, the closest to ours are
techniques that re-weight (Chen et al., 2017) or
re-order examples to deal with domain mismatch
(van der Wees et al., 2017; Sajjad et al., 2017) or
noise (Wang et al., 2018).

The idea of a curriculum was popularized by
Bengio et al. (2009), who viewed it as a way to
improve convergence by presenting heuristically-
identified easy examples first. Several recent pa-
pers (Kocmi and Bojar, 2017; Zhang et al., 2019;
Platanios et al., 2019) explore similar ideas for
NMT, and verify that this strategy can reduce
training time and improve quality.

Work on meta-learning a curriculum originated
with Tsvetkov et al. (2016), who used Bayesian
optimization to learn a linear model for ranking
examples in a word-embedding task. This ap-
proach requires a large number of complete train-
ing runs, and is thus impractical for NMT. More
recent work has explored bandit optimization for
scheduling tasks in a multi-task problem (Graves
et al., 2017), and reinforcement learning for select-
ing examples in a co-trained classifier (Wu et al.,
2018). Finally, Liu et al. (2018) apply imitation
learning to actively select monolingual training
sentences for labeling in NMT, and show that the
learned strategy can be transferred to a related lan-
guage pair.

3 Methods

The attribute we choose to learn a curriculum
over is noise. To determine a per-sentence noise
score, we use the contrastive data selection (CDS)
method defined in Wang et al. (2018). Given the
parameters θn of an NMT model trained on a noisy
corpus, and parameters θc of the same model fine-
tuned on a very small trusted corpus, the score

Figure 2: Linearly-decaying ε-greedy exploration.

s(e, f) for a translation pair e, f is defined as:

s(e, f) = log pθc(f |e)− log pθn(f |e) (1)

Wang et al. (2018) show that this correlates very
well with human judgments of data quality. They
use the CDS score in a heuristic, online schedule
that slowly anneals from sampling mini-batches
from all the training data to sampling only from
the highest-scoring (cleanest) data. Our goal is
to replace this heuristic curriculum with a learned
one.

Q-learning for NMT Curricula
Our agent uses deep Q-learning (DQN) (Mnih
et al., 2015) which is a model-free reinforcement
learning procedure. The agent receives an obser-
vation from the environment and conditions on it
to produce an action which is executed upon the
environment. It then receives a reward represent-
ing the goodness of the executed action. The agent
chooses actions according to a state-action value
(Q) function, and attempts to learn the Q-function
so as to maximize expected total rewards.

In our setup, the environment is the NMT sys-
tem and its training data, as illustrated in Figure 1.
We divide the training data into a small number of
equal-sized bins according to CDS scores. At each
step, the agent selects a bin (action) from which a
mini-batch is sampled to train the NMT system.

Our RL agent must balance exploration (choos-
ing an action at random) versus exploitation
(choosing the action which maximizes the Q-
function). In our setup, this is done using a
linearly-decaying ε-greedy exploration strategy
(Figure 2). This strategy has three phases: (1)
The warmup period where we always explore; (2)
the decay period where the probability of explo-
ration decreases and exploitation increases; (3) the
floor where we almost always exploit. Since we
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do not want to exploit an uninformed Q-function,
the duration of exploration needs to be set care-
fully. In our experiments, we found that longer
decays were useful and the best performance was
achieved when the decay was set to about 50% of
the expected NMT training steps.

Observation Engineering
The observation is meant to be a summary of the
state of the environment. The NMT parameters
are too numerous to use as a sensible observation
at each time step. Inspired by Wu et al. (2018),
we propose an observation type which is a func-
tion of the NMT system’s current performance at
various levels of noise. We first create a prototype
batch by sampling a fixed number of prototypical
sentences from each bin of the training data. At
each time step, the observation is the vector con-
taining sentence-level log-likelihoods produced by
the NMT system for this prototype batch.

Since the observations are based on likelihood,
a metric which aggressively decays at the begin-
ning of NMT training, we use an NMT warmup
period to exclude this period from RL training.
Otherwise, the initial observations would be un-
like any that occur later.

Reward Engineering
Our objective is to find a curriculum which maxi-
mizes the likelihood of the NMT system on a de-
velopment set. The RL reward that directly cor-
responds to this goal would be the highest likeli-
hood value reached during an NMT training run.
However, as we use only one NMT training run,
having a single reward per run is infeasible. To
provide a denser signal to the RL agent, we de-
fine the reward at a step to be the change in likeli-
hood since the most recent previous step for which
development-set likelihood is available. This has
the desired property that the sum of per-step re-
wards maximized by the RL agent is equal to the
NMT maximum-likelihood objective (on develop-
ment data). We rely on the WMT warmup period
described in the previous section to eliminate spu-
riously large rewards at the beginning of training.

4 Experimental Setup

Our NMT model is similar to RNMT+ (Chen
et al., 2018), but with only four layers in both
encoder and decoder. Rewards (dev-set log-
likelihood) are provided approximately every 10
training steps by an asynchronous process.

We use the DQN agent implementation in
Dopamine,2 which includes an experience replay
buffer to remove temporal correlations from the
observations, among other DQN best practices.
Due to the sparse and asynchronous nature of our
rewards, we store observation, action transitions
in a temporary buffer until a new reward arrives.
At this point, transitions are moved from the tem-
porary buffer to the DQN agent’s replay buffer.
The RL agent is trained after each NMT training
step by sampling an RL mini-batch from the re-
play buffer. Our RL hyper-parameter settings are
listed in the appendix.

Following Wang et al. (2018), we use the
Paracrawl and WMT English-French corpora for
our experiments. These contain 290M and 36M
training sentences respectively. WMT is relatively
clean, while a large majority of Paracrawl sentence
pairs contain noise. We process both corpora with
BPE, using a vocabulary size of 32k. Both cor-
pora are split into 6 equal-sized bins according to
their noise level, as provided by CDS score. In
both settings, the WMT newstest 2010-2011 cor-
pus is used as trusted data for CDS scores, which
are computed using the models and procedure de-
scribed in Wang et al. (2018). For the prototype
batch used to generate observations, we extracted
the 32 sentences whose CDS scores are closest to
the mean in each bin, giving a total of 192 sen-
tences. We use WMT 2012-2013 for development
and WMT 2014 for test, and report tokenized,
naturally-cased BLEU scores from the test check-
point closest to the highest-BLEU dev checkpoint.
To combat variance caused by sampling different
batches per bin (which produces somewhat differ-
ent results even when bins are visited in fixed or-
der), all models were run twice with different ran-
dom seeds, and the model with the best score on
the dev set was chosen.

5 Results

Our results are presented in Table 1. Uniform
baselines consist of:

• Uniform – standard NMT training

• Uniform (6-bins) – sample a bin uniformly at
random, and then sample a mini-batch from
that bin

2github.com/google/dopamine
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Paracrawl WMT
Uniform baselines

Uniform 34.1 37.1
Uniform (6-bins) 34.8 -

Uniform (bookends) 35.0 34.8
Heuristic baselines

Filtered (20%/33%) 37.0 38.3
Fixed ε-schedule 36.9 37.7

Online 37.5 37.7
Learned curricula

Q-learning (bookends) 36.8 36.3
Q-learning (6-bins) 37.5 38.4

Table 1: BLEU scores on Paracrawl and WMT En-Fr
datasets with uniform, heuristic and learned curricula.

• Uniform (bookends) – as Uniform (6-bins)
but uniformly sampling over just the best and
worst bin.

Surprisingly, 6-bins performs better than the stan-
dard NMT baseline. We hypothesize that this can
be attributed to more homogeneous mini-batches.

Heuristic baselines are:

• Filtered – train only on the highest-quality
data as determined by CDS scores: top 20%
of the data for Paracrawl, top 33% for WMT.

• Fixed ε-schedule – we use the ε-decay strat-
egy of our best RL experiment, but always
choose the cleanest bin when we exploit.

• Online – the online schedule from Wang et al.
(2018) adapted to the 6-bin setting. We
verified experimentally that our performance
matched the original schedule, which did not
use hard binning.

Learned curricula were trained over 2 book-
end (worst and best) bins and all 6 bins. On the
Paracrawl dataset, in the 2-bin setting, the learned
curriculum beats all uniform baselines and almost
matches the optimized filtering baseline.3 With
6-bins, it beats all uniform baselines by up to
2.5 BLEU and matches the hand-designed online
baseline of Wang et al. (2018). On WMT, with 2
bins, the learned curriculum beats the 2-bin base-
line, but not the uniform baseline over all data.

3The clean data available in the 2-bin setup is limited to
the best bin (16%), while filtering uses slightly more data
(20%).

Reward
Observation

Default Fixed

Default 37.5 37.5
Fixed 32.5 -

Table 2: BLEU scores on ablation experiments with
fixed rewards or observations on the Paracrawl En-Fr
dataset.

With 6 bins, the learned curriculum beats the uni-
form baseline by 1.5 BLEU, and matches the fil-
tered baseline, which in this case outperforms the
online curriculum by 0.6 BLEU.

Our exploration strategy for Q-learning (see
Figure 2) forces the agent to visit all bins dur-
ing initial training, and only gradually rely on its
learned policy. This mimics the gradual anneal-
ing of the online curriculum, so one possibility is
that the agent is simply choosing the cleanest bin
whenever it can, and its good performance comes
from the enforced period of exploration. However,
the fact that the agent beats the fixed ε-schedule
(see Table 1) described above on both corpora
makes this unlikely.

6 Analysis

Task-specific reward and observation engineering
is critical when building an RL model. We per-
formed ablation experiments to determine if the
rewards and observations we have chosen contain
information which aids us in the curriculum learn-
ing task. Table 2 shows the results of our exper-
iments. The fixed reward experiments were con-
ducted by replacing the default delta-perplexity
based reward with a static reward which returns a
reward of one when the cleanest bin was selected
and zero otherwise. The fixed observation experi-
ments used a static vector of zeroes as input at all
time steps. Using fixed observations matches the
performance of dynamic observations, from which
we can draw two conclusions. First, the agent’s
good performance is due to associating higher re-
wards with better bins, but it learns to do so slowly
(partly modulated by its ε-greedy schedule) so that
it avoids the sub-optimal strategy of choosing only
the best bin. Second, its ability to distinguish
among bins is not impeded by the use of an ob-
servation vector that slowly evolves through time
and never returns to previous states.
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(a) Online (b) RL learned

Figure 3: Online policy from Wang et al. (2018) compared to the RL policy. Each color/pattern represents a bin
(blue is the noisiest bin, dark red is the cleanest; bins lower on the vertical axis contain more noise) and length
along the vertical axis is proportional to the number of times each bin was selected at a given step during training.

6.1 What did the agent learn?

Figure 3 shows a coarse visualization of the hand-
optimized policy of Wang et al. (2018), adapted
to our 6-bin scenario, compared to the Q-learning
policy on the same scenario. The former, by de-
sign, telescopes towards the clean bins. Note
that the latter policy is masked by the agent’s ex-
ploration schedule, which slowly anneals toward
nearly complete policy control, beginning at step
30,000. After this point, the learned policy takes
over and continues to evolve. This learned pol-
icy has little in common with the hand-designed
one. Instead of focusing on a mixture of the clean
bins, it focuses on the cleanest bin and the second-
to-noisiest. We hypothesize that returning to the
noisy bin acts as a form of regularization, though
this requires further study.

7 Conclusion

We have presented a method to learn a curriculum
for presenting training samples to an NMT sys-
tem. Using reinforcement learning, our approach
learns the curriculum jointly with the NMT system
during the course of a single NMT training run.
Empirical analysis on the Paracrawl and WMT
English-French corpora shows that this approach
beats the uniform sampling and filtering baselines.
In addition, we were able to match a state-of-the-
art hand designed curriculum on Paracrawl and
beat it on WMT.

We see this a first step toward enabling NMT
systems to manage their own training data. In
the future, we intend to improve our approach
by eliminating the static exploration schedule and

binning strategy, and extend it to handle additional
data attributes such as domain, style, and gram-
matical complexity.
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A Appendix

A.1 Q-learning hyper-parameters

• Observations: We sample 32 prototype sen-
tences from each bin to create a prototype
batch of 192 sentences.

• Q-networks: The two Q-networks were
MLPs with 2 x 512-d hidden layers each. A
tanh activation function was used.

• RL optimizer: We used RMSProp with a
learning rate of 0.00025 and a decay of 0.95
and no momentum.

• NMT warmup : 5000 steps (no transitions
from this period are recorded).

• Stack size: We do not stack our observations
for the RL agent (i.e., stack size = 1).

• Exploration strategy : We use a linearly de-
caying epsilon function with decay period set
to 25k steps. The decay floor was set to 0.01.

• Discount gamma : 0.99

• Update horizon : 2

• Minimum number of transitions in replay
buffer before training starts: 3000
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(a) Telescoping (b) RL learned

Figure 4: Policies learned by the RL agent on the Paracrawl En-Fr corpus compared against the telescoping policy
from Wang et al. (2018). Lower bins on the vertical axis contain more noise.

(a) Telescoping (b) RL learned

Figure 5: Policies learned by the RL agent on the WMT En-Fr corpus compared against the telescoping policy
from Wang et al. (2018). Lower bins on the vertical axis contain more noise.

• Update period (how often the online Q-
network is trained): 4 steps

• Target update period (how often the target Q-
network is trained): 100 steps

• The window for the delta-perplexity reward
was 1.

A.2 Learned Policies

Figures 4, 5 and 6 show coarse representations
of the policies learned by the Q-learning agent on
the Paracrawl and WMT English-French datasets.
Each column in the figures represents the relative
proportion of actions taken (bins selected) aver-
aged over a thousand steps and the actions go from
noisy to clean on the y-axis. Each policy starts
from a uniform distribution over actions. Some
salient aspects of the learned policies are listed be-
low.

1. All learned curricula differ significantly from
the hand-designed policies.

2. The RL curriculum learned for Paracrawl
(Figure 4) focus on two bins during ex-
ploitation (choose action using the trained Q-
function). Surprisingly, these are not the two
cleanest bins but a mixture of the cleanest and
the second-to-noisiest bin.

3. The RL curriculum learned for WMT (Fig-
ure 4) is closer to a uniform distribution over
actions for a long duration. This makes sense
since the data from WMT is mostly homoge-
neous with respect to noise. When the agent
does decide to exploit some bins more often,
they are not the cleanest ones, but the 1st and
4th bin instead.

4. Figure 6 shows the policies learned on the
bookend task for Paracrawl and WMT; the
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(a) RL Learned (Paracrawl) (b) RL learned (WMT)

Figure 6: Policies learned by the RL agent on the 2-bin task on the Paracrawl and WMT En-Fr datasets. Lower
bins on the vertical axis contain more noise.

only two bins available contain the noisiest
and cleanest portion of the corpus. The RL
agent very quickly learns that there is an op-
timal bin to choose in this task and converges
to consistently exploiting it. We consider this
a sanity check of curriculum learning meth-
ods.


