
Proceedings of NAACL-HLT 2019, pages 1968–1976
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1968

Generating Knowledge Graph Paths from Textual Definitions
using Sequence-to-Sequence Models

Victor Prokhorov,1 Mohammad Taher Pilehvar1,2 and Nigel Collier1

1Department of Theoretical and Applied Linguistics, University of Cambridge
2School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

vp361@cam.ac.uk, pilehvar@iust.ac.ir, nhc30@cam.ac.uk

Abstract

We present a novel method for mapping un-
restricted text to knowledge graph entities by
framing the task as a sequence-to-sequence
problem. Specifically, given the encoded state
of an input text, our decoder directly predicts
paths in the knowledge graph, starting from
the root and ending at the target node fol-
lowing hypernym-hyponym relationships. In
this way, and in contrast to other text-to-entity
mapping systems, our model outputs hierar-
chically structured predictions that are fully in-
terpretable in the context of the underlying on-
tology, in an end-to-end manner. We present
a proof-of-concept experiment with encourag-
ing results, comparable to those of state-of-
the-art systems.

1 Introduction

Text-to-entity mapping is the task of associating
a text with a concept in a knowledge graph (KG)
or an ontology (we use two terms, interchange-
ably). Recent works (Kartsaklis et al., 2018; Hill
et al., 2015) use neural networks to project a text
to a vector space where the entities of a KG are
represented as continuous vectors. Despite being
successful, these models have two main disadvan-
tages. First, they rely on a predefined vector space
which is used as a gold standard representation for
the entities in a KG. Therefore, the quality of these
algorithms depends on how well the vector space
is represented. Second, these algorithms are not
interpretable; hence, it is impossible to understand
why a certain text was linked to a particular entity.

To address these issues we propose a novel tech-
nique which first represents an ontology concept
as a sequence of its ancestors in the ontology (hy-
pernyms) and then maps the corresponding textual
description to this unique representation. For ex-
ample, given the textual description of the concept
swift (“small bird that resembles a swallow and is

noted for its rapid flight”), we map it to the hier-
archical sequence of entities in a lexical ontology:
animal→ chordate→ vertebrate→ bird→ apod-
iform bird. This sequence of nodes constitutes a
path.1

Our model is based on a sequence-to-sequence
neural network (Sutskever et al., 2014) coupled
with an attention mechanism (Bahdanau et al.,
2014). Specifically, we use an LSTM (Hochre-
iter and Schmidhuber, 1997) encoder to project
the textual description into a vector space and an
LSTM decoder to predict the sequence of entities
that are relevant to this definition. With this frame-
work we do not need to rely on the pre-existing
vector space of the entities, since the decoder ex-
plicitly learns topological dependencies between
the entities of the ontology. Furthermore, the pro-
posed model is more interpretable for two rea-
sons. First, instead of the closest points in a vector
space, it outputs paths; therefore, we can trace all
predictions the model makes. Second, the atten-
tion mechanism allows to visualise which words in
a textual description the model selects while pre-
dicting a specific concept in the path. In this paper,
we consider rooted tree graphs2 only and leave the
extension of the algorithm for more generic graphs
to future work.

We evaluate the ability of our model in generat-
ing graph paths for previously unseen textual def-
initions on seven ontologies (Section 3). We show
that our technique either outperforms or performs
on a par with a competitive multi-sense LSTM
model (Kartsaklis et al., 2018) by better utilising
external information in the form of word embed-
dings. The code and resources for the paper can

1We only consider hypernymy relations, from the root to
the parent node (apodiform bird) of the entity swift.

2Only single root is allowed. If a tree has more than one
root, one can create a dummy root node and connect the roots
of the tree to it.

1969

be found at https://github.com/VictorProkhorov/
Text2Path.

2 Methodology

We assume that an ontology is represented as a
rooted tree graph G = (V,E, T), where V is a
set of entities (e.g. synsets in WordNet), E is a
set of hyponymy edges, and T is a set of textual
descriptions such that ∀v ∈ V there is a tv ∈ T .

2.1 Node representation
We assume that an ontological concept can be de-
fined by either using a textual description from a
dictionary or hypernyms of the defining concept in
the ontology. For example, to define the noun swift
one can use the dictionary definition mentioned
previously. Alternatively, the concept of swift can
be understood from its hypernyms, e.g. in the triv-
ial case one can say that swift is an animal. This
definition is not very useful since animal is a hy-
pernym for many other nouns. To provide a more
specific definition, one can use a sequence of hy-
pernyms e.g. animal→ chordate→ vertebrate→
bird→ apodiform bird starting from the most ab-
stract node (root of an ontology) to the most specif
(parent node of the noun).

More formally, for each entity v 6= vroot ∈ V
we create a path pv. Each pv starts from vroot and
ends with a hypernym of v, i.e., the hierarchical
order of entities is preserved. Then the path pv is
aligned with tv such that each node is defined by
a textual definition and a path. This set of aligned
representations is used to train the model.

The path representation of an entity ends with
its parent node. Therefore, a leaf node will not be
present in any of the paths. This is problematic if
a novel definition should be attached to a leaf. To
alleviate this issue we employ the “dummy source
sentences” technique from neural machine trans-
lation (NMT) (Sennrich et al., 2016). We create
an additional set of paths from the root node to
each leaf. As for the textual definition we leave it
empty.

2.2 Model
We use a sequence-to-sequence model with an at-
tention mechanism to map a textual description of
a node to its path representation.

Encoder. To encode a textual definition tv =
(wi)

N
i=1, where N is sentence length, we first map

each word wi to a dense embedding ewi and then

use a bi-directional LSTM to project the sequence
into a latent representation. The final encoding
state is obtained by concatenating the forward and
backward hidden states of the bi-LSTM.

Decoder. Decoding the path representation of a
node from the latent state of the textual descrip-
tion is done again with an LSTM decoder. Sim-
ilarly to the encoding stage, we map each sym-
bol in the path pv = (sj)

M
j=1 to a dense em-

bedding esj , where M is the path length. To
calculate the probability of the path symbol sj
at time step j we first represent the path se-
quence as h∗j = LSTM(ejs, h

∗
j−1). Then, we

concatenate h∗j with the context vector cj (de-
fined next) and pass the concatenated repre-
sentation [h∗j ; cj] through the softmax function,
i.e. sj = max(softmax(W[h∗j ; cj])), where
W is a weight parameter. To calculate the
context vector cj we use an attention mecha-
nism, eji = vTa tanh(Wahi + Uah

∗
j) and cj =∑N

i softmax(eji)hi, where va, Wa and Ua are
the weight parameters, over the words in the text
description.

3 Experimental Setup

Ontologies. We experimented with seven graphs
four of which are related to the bio-medical do-
main: Phenotype And Trait Ontology3 (PATO),
Human Disease Ontology (Schriml et al., 2012,
HDO), Human Phenotype Ontology (Robinson
et al., 2008, HPO) and Gene Ontology4 (Ash-
burner et al., 2000, GO). The other three graphs,
i.e. WNanimal.n.01

5, WNplant.n.02 and WNentity.n.01
are subgraphs of the WordNet 3.0 (Fellbaum,
1998). We present the statistics of the graphs in
Table 1.

Ontology Preprocessing. All the ontologies we
experimented with are represented as directed
acyclic graphs (DAGs). This creates an ambiguity
for node path definitions since there are multiple
pathways from a root concept to other concepts.
We have assumed that a single unambiguous path-
way will reduce the complexity of the problem and
leave the comparison with ambiguous pathways
(which would inevitably involve a more complex
model) to future work. To convert a DAG to a tree

3http://www.obofoundry.org
4After prerocessing GO we took its largest connected

component.
5The subscript in ‘WN’ indicates the name of the root

node of the graph.

1970

Graphs |V| Depth Branch A.D

PATO 1742 (4.94,10) (3.95,92) 20
WNanimal.n.01 3999 (6.94,12) (3.79,52) 26
WNplant.n.02 4487 (4.70,9) (5.91,357) 28
HDO 9095 (5.92,12) (4.59,222) 27
HPO 13348 (6.95,14) (3.40,32) 24
GO 29682 (6.40,14) (3.28,172) 21
WNentity.n.01 74374 (8.01,18) (4.52,402) 36

Table 1: Statistics of the Graphs. |V| is the number of
nodes, depth is the path length from the root of a graph
to a node, branch is the number of neighbours a node
has (leaves were removed from the calculation). The
first value in the parentheses corresponds to the average
and the second to the maximum value. A.D stands for
average number of decisions the model makes to infer
a path, i.e A.D = average depth × average branch.

we constrain each entity to have only one parent
node. The edges between the other parent nodes
are removed.6

Path Representations. We also experiment
with two path representations. Our first approach,
text2nodes, uses the label of an entity (cf. Section
1) to represent a path. This is not efficient since the
decoder of the model needs to select between all of
the entities in an ontology and also requires more
parameters in the model. Our second approach,
text2edges, to reduce the number of symbols for
the model to choose from, uses edges to represent
the path. To do this we create an artificial vocabu-
lary of the size ∆(G), where ∆(G) corresponds to
the maximum degree of a node. Each edge in the
graph is labeled using the artificial vocabulary. For
the example in Section 1, the path would be an-
imal −[a]→ chordate −[b]→ vertebrate −[c]→
bird −[d]→ apodiform bird where {a,b,c,d} is the
artificial vocabulary. In the resulting path we dis-
card labels for the entities; therefore, the path re-
duces to: [a]→ [b]→ [c]→ [d].

3.1 Baselines
Bag-of-Words Linear Regression (BOW-LR):
To represent a textual definition in a vector space
we first use a pre-trained set of word embeddings
(Speer et al., 2017) to represent words in the def-
inition and then find the mean of the word em-
beddings. As for the ontology, we use node2vec
(Grover and Leskovec, 2016), to represent each
entity in a vector space. To align the two vector
spaces we use linear regression.

6The choice of an edge is performed on random basis.

Multi-Sense LSTM (MS-LSTM): Kartsaklis
et al. (2018) proposed a model that achieves state-
of-the-art results on the text-to-entity mapping on
the Snomed CT7 dataset. The approach uses a
novel multi-sense LSTM, augmented with an at-
tention mechanism, to project the definition to the
ontology vector space. Additionally, for a better
alignment between the two vector spaces, the au-
thors augmented the ontology graph with textual
features.

3.2 Evaluation Metric
To perform evaluation of the models described
above we used Ancestor-F1 score (Mao et al.,
2018). This metric compares the ancestors (is −
amodel) of the predicted node with the ancestors
(is− agold) of the gold node in the taxonomy.

P =
|is− amodel ∧ is− agold|

|is− amodel|
,

R =
|is− amodel ∧ is− agold|

|is− agold|
,

where P and R are precision and recall, respec-
tively. The Ancestor-F1 is then defined as:

2× P ×R
P +R

.

3.3 Intrinsic Evaluation
To verify the reliability of our model on text-to-
entity mapping we did a set of experiments on the
seven graphs (Section 3) where we map a textual
definition of a concept to a path.

To conduct the experiments we randomly sam-
pled 10% of leaves from the graph. From this
sample, 90% are used to evaluate the model and
10% are used to tune the model. The remaining
nodes in the graph are used for training. We sam-
ple leaves for two reasons: (1) to predict a leaf,
the model needs to make the maximum number of
(correct) predictions and (2) this way we do not
change the original topology of the graph. Note
that the sampled nodes and their textual definitions
are not present in the training data.

Both baselines predict a single entity instead of
a path. To have the same evaluation framework
for all the models, for each node predicted by the
baselines we create8 a path from the root of the
node to the predicted node. However, we want

7https://www.snomed.org/snomed-ct
8We used NetworkX (https://networkx.github.io) to find a

path from predicted node to the root of a graph.

1971

Models PATO WNanimal.n.01 WNplant.n.02 HDO HPO GO WNentity.n.01

BOW-LR 0.79 0.75 0.65 0.55 0.63 0.32 0.41
MS-LSTMλ = 0 0.77 0.73 0.62 0.70 0.72 0.69 0.51
MS-LSTMλ = 0.5 0.80 0.76 0.65 0.70 0.73 0.70 0.57
MS-LSTMλ = 1 0.75 0.66 0.57 0.65 0.63 0.62 0.51
text2nodes 0.75 0.66 0.66 0.69 0.62 0.67 0.60
text2edges 0.76 0.68 0.66 0.69 0.69 0.69 0.61
MS-LSTM∗

λ=0.5 0.81 0.76 0.66 0.71 0.74 0.71 0.58
text2nodes∗ 0.83 0.71 0.68 0.71 0.69 0.70 0.62
text2edges∗ 0.83 0.77 0.70 0.73 0.74 0.72 0.65

Table 2: Ancestor F1 results. Numbers in bold represent the best performing system on a graph. Models marked
with ∗ make use of pre-trained word embedding in their encoder. Lambda (λ) is defined in Section 3.1. We
use the same number of epochs, batch size and number of latent dimensions both for MS-LSTM and our models
(Appendix C).

to emphasize that this is disadvantageous for our
model, since all the symbols in the path are pre-
dicted by it and in the case of the baselines only a
single node is predicted.

The results are presented in Table 2. Mod-
els that are in the last three rows of Table 2
use pre-trained word embeddings (Speer et al.,
2017) in the encoder. MS-LSTM and our mod-
els that are above the last three rows use ran-
domly initialised word vectors. We had four ob-
servations: (1) without pre-trained word embed-
dings in the encoder our model outperforms the
best MS-LSTMλ = 0.5 only on two of the seven
graphs, (2) the text2edges∗ model outperforms all
the other models including MS-LSTM∗

λ=0.5, (3)
the text2edges model can better exploit pre-trained
word embeddings than MS-LSTM, (4) our model
performs better when the paths are represented us-
ing edges (rather than nodes). We also found that
there is a strong negative correlation (Spearman:
−0.75, Pearson: −0.80) between A.D. (Table 3)
and the Ancestor F1 score for the text2edges∗

model, meaning that with an increase in A.D. the
Ancestor F1 score decreases.

3.4 Error Analysis

We carried out an analysis on the outputs of
our best-performing model, i.e. text2edges∗ with
pre-trained word embeddings. One factor that
affects the performance is the number of in-
valid sequences predicted by the text2nodes and
text2edges models. An invalid sequence is the
path that does not exist in the original graph. This
happens because at each time step the decoder out-
puts a distribution over all the nodes/edges and
not just over possible children nodes. We there-

fore performed a count of the number of invalid
sequences produced by the model. The percent-
age of invalid sequences is in the range of 1.82% -
8.50% (Appendix B), which is relatively low. This
analysis was also performed by J. Kusner et al.
(2017). To guarantee that the model always pro-
duces valid graphs, they use a context-free gram-
mar. A similar method can be adapted in our work.

0 1 2 3 4 5 6 7 8 9 10
Length of Sequence

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

PATO graph

2 3 4 5 6 7 8
Gold Sequence Length

2

3

4

5

6

7

8

D
ec

od
ed

 S
eq

ue
nc

e
Le

ng
th

PATO graph
gold performance

Figure 1: The graph on top shows the length of se-
quence vs length frequency on a training set. The graph
on the bottom shows the length of the gold sequence vs
mean length of decoded sequence on the test set.

1972

Another factor that affects the performance is
the length of the generated paths which is expected
to match the length of the gold path. To test this,
we compared the mean length of the generated se-
quences with the length of the gold path (the graph
on the bottom of Figure 1). Also, in the training
set, we associate the length of the sequences with
their frequencies (the graph on the top of Figure
1). We found that (1) the length of the generated
paths are biased towards the more frequent paths
in the training data, (2) if the length of a path is
not frequent in the training data, the model either
under-generates or over-generates the length (Ap-
pendix D).

4 Related Work

Text-to-entity mapping is an essential component
of many NLP tasks, e.g. fact verification (Thorne
et al., 2018) or question answering (Yih et al.,
2015). Previous work has approached this prob-
lem with pairwise learning-to-rank method (Lea-
man et al., 2013) or phrase-based machine transla-
tion (Limsopatham and Collier, 2015). However,
these methods generally ignore ontology’s struc-
ture. More recent work has viewed the problem
of text-to-entity mapping as a projection of a tex-
tual definition to a single point in a KG (Kartsak-
lis et al., 2018; Hill et al., 2015). However, de-
spite potential advantages, such as being more in-
terpretable and less brittle (model predicts multi-
ple related entities instead of one), path-based ap-
proaches have received relatively little attention.
Instead of predicting a single entity, path-based
models, such as the one we proposed in this paper,
try to map a textual definition to multiple relevant
entities in an external resource.

5 Conclusion and Future Work

We presented a model that maps textual defini-
tions to interpretable ontological pathways. We
evaluated the proposed technique on seven seman-
tic graphs, showing that it can perform competi-
tively with respect to existing state-of-the-art text-
to-entity systems, while being more interpretable
and self-contained. We hope this work will en-
courage further research on path-based text-to-
entity mapping algorithms. A natural next step
will be to extend our framework to DAGs. Fur-
thermore, we plan to constrain our model to al-
ways predict paths that exist in the graph, as we
discussed above.

Acknowledgments

We would like to thank the anonymous reviewers
for their comments. Also, we would like to thank
Dimitri Kartsaklis and Ehsan Shareghi for helpful
discussions and comments. This research was sup-
ported by an EPSRC Experienced Researcher Fel-
lowship (N. Collier: EP/M005089/1) and an MRC
grant (M.T. Pilehvar: MR/M025160/1). We grate-
fully acknowledge the donation of a GPU from the
NVIDIA Grant Program.

References
Michael Ashburner, Catherine A. Ball, Judith A. Blake,

David Botstein, Heather Butler, J. Michael Cherry,
Allan P. Davis, Kara Dolinski, Selina S. Dwight,
Janan T. Eppig, Midori A. Harris, David P. Hill, Lau-
rie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis,
John C. Matese, Joel E. Richardson, Martin Ring-
wald, Gerald M. Rubin, and Gavin Sherlock. 2000.
Gene ontology: tool for the unification of biology.
Nature Genetics, 25(1):25–29.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Database. MIT Press, Cambridge, MA.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. CoRR,
abs/1607.00653.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2015. Learning to understand
phrases by embedding the dictionary. CoRR,
abs/1504.00548.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Matt J. Kusner, Brooks Paige, and Jos Miguel
Hernndez-Lobato. 2017. Grammar variational au-
toencoder.

Dimitri Kartsaklis, Mohammad Taher Pilehvar, and
Nigel Collier. 2018. Mapping text to knowledge
graph entities using multi-sense lstms. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1959–1970.
Association for Computational Linguistics.

Robert Leaman, Rezarta Dogan, and Zhiyong lu. 2013.
Dnorm: Disease name normalization with pairwise
learning to rank. Bioinformatics (Oxford, England),
29.

1973

Nut Limsopatham and Nigel Collier. 2015. Adapt-
ing phrase-based machine translation to normalise
medical terms in social media messages. CoRR,
abs/1508.02285.

Yuning Mao, Xiang Ren, Jiaming Shen, Xiaotao Gu,
and Jiawei Han. 2018. End-to-end reinforcement
learning for automatic taxonomy induction. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2462–2472. Association for Compu-
tational Linguistics.

Peter N. Robinson, Sebastian Köhler, Sebastian B
Bauer, Dominik Seelow, Denise Horn, and Stefan
Mundlos. 2008. The human phenotype ontology: a
tool for annotating and analyzing human hereditary
disease. American journal of human genetics, 83
5:610–5.

Lynn M. Schriml, Cesar Arze, Suvarna Nadendla, Yu-
Wei Wayne Chang, Mark Mazaitis, Victor Felix,
Gang Feng, and Warren A. Kibbe. 2012. Disease
ontology: a backbone for disease semantic integra-
tion. In Nucleic Acids Research.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96. Association for Computational Linguistics.

Robert Speer, Joshua Chin, and Catherine Havasi.
2017. Conceptnet 5.5: An open multilingual graph
of general knowledge.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. CoRR, abs/1409.3215.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction
and verification. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 809–819. Association for Computational
Linguistics.

Wen-Tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In ACL.

A DAGs

Graphs Mult.P% AV.P
PATO 31.29 2.97
WNanimal.n.01 0.88 2.00
WNplant.n.02 0.16 2.00
HDO 16.23 2.13
HPO 23.24 2.23
GO 64.01 2.77
WNentity.n.01 1.91 2.03

Table 3: Statistics of nodes with multiple inheritance.
Mult.P% stands for percentage of nodes with more than
one parent node. AV.P stands for average number of
parents a node with multiple inheritance has.

B Invalid Sequences

Graphs Invalid% Ntotal
PATO 1.82 110
WNanimal.n.01 4.56 263
WNplant.n.02 2.23 314
HDO 4.02 622
HPO 7.08 847
GO 6.94 1845
WNentity.n.01 8.50 5191

Table 4: Statistics of invalid sequences. Invalid% is the
percentage of invalid sequences and Ntotal is the total
number of sequences that were tested.

C Settings for Models

BOW-LR: To represent an ontology in a vector
space we use node2vec https://snap.stanford.edu/
node2vec/. For all the graphs the following hyper-
parameters of the algorithm are the same: walk-
length= 5, window-size=5 and iter=40. As for the
number of dimensions we set it to 128 for PATO,
WNanimal.n.01, WNplant.n.02, HDO and HPO graphs.
For GO and WNentity.n.01 graphs we set it to 256.
All the other parameters of node2vec are default.

We do not modify the numberbatch em-
beddings https://github.com/commonsense/
conceptnet-numberbatch. If a word in a textual
definition is missing we initilised the embedding
for this word with zeros.

For all the graphs to map the textual vector
space into an ontology vector space we use the
linear regression model from the scikit-learn API
https://scikit-learn.org/stable/modules/generated/
sklearn.linear model.LinearRegression.html

1974

2 3 4 5 6 7 8
Gold Sequence Length

2

3

4

5

6

7

8

D
ec

od
ed

 S
eq

ue
nc

e
Le

ng
th

PATO graph
gold performance

0 1 2 3 4 5 6 7 8 9 10
Length of Sequence

0

100

200

300

400

500

600

700

800

Fr
eq

ue
nc

y

PATO graph

0 1 2 3 4 5 6 7 8 9 10 11
Gold Sequence Length

0
1
2
3
4
5
6
7
8
9

10

D
ec

od
ed

 S
eq

ue
nc

e
Le

ng
th

WordNet Animal graph
gold performance

0 1 2 3 4 5 6 7 8 9 10 11 12
Length of Sequence

0

200

400

600

800

1000

Fr
eq

ue
nc

y

WordNet Animal graph

0 1 2 3 4 5 6 7 8
Gold Sequence Length

2

3

4

5

6

D
ec

od
ed

 S
eq

ue
nc

e
Le

ng
th

WordNet Plant graph
gold performance

0 1 2 3 4 5 6 7 8 9
Length of Sequence

0

250

500

750

1000

1250

1500

1750

2000

Fr
eq

ue
nc

y

WordNet Plant graph

1 2 3 4 5 6 7 8 9 10 11
Gold Sequence Length

2

3

4

5

6

7

8

D
ec

od
ed

 S
eq

ue
nc

e
Le

ng
th

HDO graph
gold performance

0 1 2 3 4 5 6 7 8 9 10 11
Length of Sequence

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

HDO graph

Figure 2: On the left graphs show: length of gold sequence vs mean length of decoded sequence on a test set; On
the right graphs show: length of sequence vs length frequency on a training set.

1975

2 3 4 5 6 7 8 9 10 11 12 13
Gold Sequence Length

3

4

5

6

7

8

9

10

11

12

D
ec

od
ed

 S
eq

ue
nc

e
Le

ng
th

HPO graph
gold performance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Length of Sequence

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
eq

ue
nc

y

HPO graph

1 2 3 4 5 6 7 8 9 10 11 12
Gold Sequence Length

3

4

5

6

7

8

9

10

D
ec

od
ed

 S
eq

ue
nc

e
Le

ng
th

GO graph
gold performance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Length of Sequence

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y

GO graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Gold Sequence Length

4
5
6
7
8
9

10
11
12
13
14
15
16

D
ec

od
ed

 S
eq

ue
nc

e
Le

ng
th

WordNet Entity graph
gold performance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Length of Sequence

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

WordNet Entity graph

Figure 3: Continuation of Figure 2. On the left graphs show: length of gold sequence vs mean length of decoded
sequence on a test set; On the right graphs show: length of sequence vs length frequency on a training set.

MS-LSTM: There are only two hyper-
parameters that we vary during the embedding
of ontology concepts: λ (we report the values in
the paper) and the embedding size of the con-
cepts. We set it to 128 for PATO, WNanimal.n.01,
WNplant.n.02, HDO and HPO graphs. For GO and
WNentity.n.01 graphs we set it to 256.

For all the graphs the model is trained for 300
epochs, dimensions of word embeddings is set to
64 and bi-LSTM is used instead of LSTM. Batch
size is set to 16 and the number of latent dimen-
sions in bi-LSTM is set to 128 for the PATO,
WNanimal.n.01, WNplant.n.02, HDO and HPO graphs.
For GO and WNentity.n.01 graphs we set these pa-

rameters to 128 and 256 respectively. All the other
hyper-parameters are default.

When we use pre-trained word em-
beddings we reduce (with PCA https:
//scikit-learn.org/stable/modules/generated/
sklearn.decomposition.PCA.html) its dimensions
from 300 to 64.

Our Model: For all the graphs the model is
trained for 300 epochs, dimensions of word
embeddings (also for node/edges embeddings)
is set to 64 and bi-LSTM is used in the encoder
and LSTM in the decoder. Batch size is set
to 16 and the number of latent dimensions in
bi-LSTM encoder and LSTM decoder is set to

1976

128 for the PATO, WNanimal.n.01, WNplant.n.02,
HDO and HPO graphs. For GO and WNentity.n.01
graphs we set these parameters to 128 and 256
respectively. For optimizer we used RMSProp
(https://www.tensorflow.org/api docs/python/tf/
train/RMSPropOptimizer) with learning rate =
0.001.

When we use pre-trained word em-
beddings we reduce (with PCA https:
//scikit-learn.org/stable/modules/generated/
sklearn.decomposition.PCA.html) its dimensions
from 300 to 64.

D Length of Generated Path

In Figure 2 and 3 the blue line indicates the ideal
scenario i.e. mean length of the generated se-
quences is equal to the gold length. Black dot is
the mean of the length of decoded sequences and
the red bars are the standard deviation. One can
notice that the general trend is following: for short
sequences the mode generates (slightly) longer se-
quences and for the long sequences it generated
(slightly) shorter sequences than the gold standard.
Another trend is that the sequences of the certain
length are matching the gold standard. To under-
stand why this is happening one needs to look at
the graph which relate the length of the sequence
in the training corpus and the frequency of this
length in the corpus. It is become clear there is
a correlation between the two. Such as the model
tends to generate the sequence of the length that is
presented the most in the training data.

