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Abstract

Over the last few years, there has been grow-
ing interest in learning models for physically
grounded language understanding tasks, such
as the popular blocks world domain. These
works typically view this problem as a single-
step process, in which a human operator gives
an instruction and an automated agent is eval-
uated on its ability to execute it. In this pa-
per we take the first step towards increasing
the bandwidth of this interaction, and suggest
a protocol for including advice, high-level ob-
servations about the task, which can help con-
strain the agents prediction. We evaluate our
approach on the blocks world task, and show
that even simple advice can help lead to sig-
nificant performance improvements. To help
reduce the effort involved in supplying the ad-
vice, we also explore model self-generated ad-
vice which can still improve results.

1 Introduction

The problem of constructing an artificial agent ca-
pable of understanding and executing human in-
structions is one of the oldest long-standing Al
challenges (Winograd, 1972). This problem has
numerous applications in various domains (plan-
ning, navigation and assembly) and can help ac-
commodate seamless interaction with personal as-
sistants in many environments. Due to its central
role in Al and wide applicability, this problem has
seen a surge of interest recently (MacMahon et al.,
2006; Branavan et al., 2009; Chen and Mooney,
2011; Tellex et al., 2011; Matuszek et al., 2012;
Kim and Mooney, 2013; Misra et al., 2017).

Recent works (Bisk et al., 2016; Tan and
Bansal, 2018) focus on exploring deep learning
methods for grounding spatial language. In this
popular setup, human communication with robots
is viewed as a single-step process, in which a nat-
ural language (NL) instruction is provided, and an
outcome is observed.
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Locate the top-most block and
place it directly below the right-
most tower.

I—. The target is in the lower left. —,

Figure 1: Based on the instruction (upper sentence) the
model predicts the coordinates of the block and its tar-
get location. The ‘x’ represents an incorrect prediction,
corrected by the provided advice (lower sentence).

Our goal in this paper is to explore different ap-
proaches for relaxing the single step assumption,
and present initial results which we hope would
motivate future work in this direction. Similar to
interactive dialog systems (Allen et al., 1995; Ryb-
ski et al., 2007; Wen et al.), we view this problem
as an interactive process, in which the human op-
erator can observe the agents’ response to their in-
struction and adjust it by providing advice, a form
of online feedback. Specifically, the advice con-
sists of a short sentence, simplifying the user’s in-
tent. We utilize two types of advice, one restrict-
ing the agent’s search space to a general region
(restrictive advice), and the other telling the agent
the appropriate direction (up, down, left, right) to
adjust its current prediction (corrective advice).

Our focus is on the challenging task of mov-
ing blocks on a grid (Winograd, 1972), in which
the agent is given only an instruction and the state
of the grid, and must predict the coordinates of
where a block must be moved. We follow the
difficult experimental settings suggested by (Bisk
et al., 2016), in which the blocks are unlabeled
and can only be referenced by their spatial prop-
erties. Fig. 1 describes our settings and uses the
advice “the target is in the lower left”, to restrict
the agents search space after observing the incor-
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rect prediction placed the target block in the top
half of the board.

To accommodate these settings, we take a two
step approach. First, we ground the advice text in
the simulated blocks-world environment by train-
ing a neural network. In the second step, we in-
tegrate the trained advice network into the end-to-
end neural model proposed by Bisk et al. Our ar-
chitecture is described in Fig. 2. The experiments
we run show that this end-to-end advice model
successfully grounds the meaning of our advice.

We propose four novel interactive advice-based
protocols that can be applied on any robot commu-
nication architecture, ordered in terms of decreas-
ing human effort. As expected, as human effort
lessens, performance does worsen, but all proto-
cols outperform Bisk et al. (whom our model is
identical to besides the inclusion of advice).

Most notably, we explore the notion of model
self-generated advice, which significantly re-
duces/eliminates human effort. In this approach,
a model is trained to automatically generate re-
strictive advice for a given scenario, based on the
assumption that it is easier to predict a region con-
taining the target coordinates rather than their ex-
act location. We validate this assumption by devel-
oping a neural architecture to predict the restrictive
advice and show it can help improve the overall
prediction quality, despite having no human assis-
tance.

2 Model

This section describes the architecture we devel-
oped for understanding advice, and how to in-
corporate it into the original Bisk et al. model
to make better predictions. We begin by defin-
ing the Blocks World task and the types of advice
we use. We then introduce a model for ground-
ing the advice and a method for incorporating the
pre-trained advice understanding module into the
original model. Finally, we discuss an architecture
for advice generation, a method for self-predicting
the advice to avoid any human intervention. Fur-
ther details of our models and advice generation
process are in the Appendix.

2.1 Blocks World Task Definition

Given an input state, consisting of all the block po-
sitions on a board, and a NL instruction, the model
has to predict the coordinates of the source block
to be moved and its target location. We follow the

definition by (Bisk et al., 2016) and due to space
constraints refer the reader to that paper.

2.2 Advice

The two types of advice we devise in this paper
are designed to assist the prediction agent by pro-
viding simpler instructions in addition to the orig-
inal input. The first, restrictive advice, informs the
agent about the general region of the source / target
coordinates, such as top left. These regions are de-
termined by dividing the board into equally sized
sections (two halves, four quadrants). The sec-
ond type of advice, corrective advice, observes the
agents' predictions and determines which direction
(up, down, left, right) they must be adjusted to get
closer to the target. Both of these are representa-
tive of information a human could easily provide
to a robot in various ways (speech, using assisted
devices, etc.), to help correct its predictions. Spe-
cific examples are shown below.

Predicted Target Adyvice
- (-0.5,0.5, 0.5) | In the top left.
(-0.5,0.5,0.9) | (-0.5,0.5,0.5) | Move down.

2.3 Advice Grounding

We pre-train a neural network model to accu-
rately understand the advice. For both types of
advice, a LSTM-RNN (Hochreiter and Schmid-
huber, 1997) is used to read the advice sentence
§ = wi,ws,...,w, and output the hidden state
representations { h,, }. Prior to this, a word embed-
ding layer is used to project the input words into
high-dimension vectors {w; }.

For restrictive advice, the last state from the
LSTM h,, is fed along with a random coordinate
into a Fully Connected (FC) layer. The network
must output a positive prediction if the random co-
ordinate is in the region described by the advice
sentence, and negative otherwise.

For corrective advice, the last state from the
LSTM h,, is fed along with a random coordinate
into a FC layer, and the network must output a co-
ordinate that follows the advice. For example, if
the advice is move the block down, the predicted
coordinate must be below the random input coor-
dinate. If the advice is followed, the network re-
ceives 0 loss, otherwise a MSE regression loss.

2.4 End-to-End Training

The pre-trained model from Section 2.3 that un-
derstands various advice text is incorporated into
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Figure 2: Our advice architectures. (a) Pre-Trained Advice Understanding Model. (b) (Bisk et al., 2016) End-to-
End architecture with our pre-trained model. World represents the board state, while offset and reference represent
fully connected layers used to identify the offset and reference blocks.

Source Target
Model Median | Mean | Median | Mean
M1 : Bisk et al. 3.29 3.47 3.60 3.70
M2 : Our Replication of Bisk et al. 3.13 342 3.29 3.50
M3 : Tan and Bansal - 2.21 2.78 3.07
M4 : Restrictive Advice w/o Pre-Trained Model 3.88 3.83 3.56 3.43
M5 : 4 Regions Restrictive Advice 2.23 221 2.18 2.19
M6 : Corrective Advice 2.76 2.94 2.72 3.06
M7 : 4 Regions Retry Advice 241 3.02 242 3.14
M8 : 2 Regions Model Self-Generated Advice 3.01 3.31 3.08 3.36
M9 : Input-Specific Model Self-Generated Advice 2.87 3.12 2.99 3.26

Table 1: Results for our models compared to previous models evaluated as distance from gold prediction normal-
ized by block length for source and target coordinate prediction.

Instruction —> LSTM-RNN — FC —

FC — Softmax

World  —» —

FC

Figure 3: Model for Generating Advice.

the best performing End-to-End RNN architecture
proposed in (Bisk et al., 2016) by adding a FC
layer to the pre-trained LSTM state h,, and sum-
ming it with the LSTM hidden state of the origi-
nal model (as shown in Figure 2b). We load and
freeze the best performing parameters from our
pre-trained model into the relevant portion of this
end-to-end architecture, and train it on the origi-
nal task of predicting the coordinates of the source
/ target location, with the addition of advice input.

2.5 Adyvice Generation

We use a neural network model to self-generate
restrictive advice (as shown in Figure 3), passing
the instruction into an embedding layer followed
by a LSTM, the board state into a FC layer, con-
catenating these into a FC layer, and finally using
a softmax to classify the input example into a re-

gion. We train this architecture and then run it on
the test set, generate the appropriate advice based
on the region the data is classified in, and use that
as test advice input for the end-to-end architecture
from section 2.4.

3 Experiments

Next, we present our experiments over our four
different advice protocols, each with decreasing
human effort and overall performance. In each
protocol, we provide advice to the end-to-end
model from Section 2.4, whether it is given by a
human user or model self-generated. Our results,
evaluated on each model’s mean and median pre-
diction error, are presented in Table 1. We always
compare to the baseline Bisk et al. model, which
our model is identical to besides the addition of
advice (and we always beat), and the state-of-the-
art best non-ensemble Tan and Bansal architec-
ture. Note that Tan and Bansal use an advanced
neural architecture and a different training proce-
dure (source prediction trained as classification).
We hypothesize that using the advice mechanism
over this more complex architecture would lead to
further improvements, and leave it for future work.
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The pre-trained advice grounding models from
Section 2.3 achieve 99.99% accuracy, and are vi-
tal, as shown by the poor performance without
them (M4 vs M5). These grounding models al-
low the end-to-end architecture to generalize to the
variability in advice utterances.

3.1 Restrictive Advice

When training the end-to-end model from Sec-
tion 2.4, we provide restrictive advice at training
time for only half the examples. For every epoch,
a different half set of examples (determined ran-
domly) receive advice. This mechanism gives the
model a chance to learn to interpret each example
with and without advice, so that it can handle the
interactivity without overfitting to one setup. This
setup also gave the best performance.

At test time, the advice is provided only when-
ever the predictions fall in the wrong general re-
gion, just like a human would. As seen in Ta-
ble 1, this model (M5) significantly outperforms
both baselines (M1, M3). We note that the perfor-
mance did not improve much when advice was al-
ways provided, showing that this model was able
to perform well in its absence and does not rely on
it (due to our choice not to provide advice all the
time in training). In fact a human would only have
to provide restrictive advice for 395/720 examples,
and the model always follows it.!

3.2 Corrective Advice

We train corrective advice identically to restrictive
advice from Section 3.1, except we train in two
separate iterations. This is necessary as the model
must learn to adjust its predictions based on the
advice, which is why it is first trained to make the
normal prediction (first iteration), then trained to
adjust the prediction (second iteration).

In the first iteration, we train identically to (Bisk
etal., 2016) with no advice, but in the second itera-
tion corrective advice is generated based on which
direction the predictions must be adjusted to be
more accurate. This case is simpler than restrictive
advice, since the human operator just has to pro-
vide the direction to adjust the predictions, rather
than the precise region of the coordinates. How-
ever, the performance does worsen (M5 vs M6).

'We note that the performance does not improve from
Bisk et al. if advice is only provided at train time.

3.3 Retry Advice

In Section 2.5, we introduced a model that was
able to self-generate restrictive advice by predict-
ing the general region of the block coordinates
given the NL instruction and blocks world. Table 2
shows this model’s accuracy on that task when the
board is split into 4 regions. As this is a hard
problem with low accuracy (A1), we instead gener-
ate advice for the top 2 most confident predictions
(determined by the softmax scores) (A2).

We now introduce a new multi-step retry advice
protocol. In the first step, the model from Sec-
tion 2.5 self-generates restrictive advice based on
the most confident predicted region, which it uses
as input in the end-to-end model. If the user be-
lieves the coordinate prediction based on this ad-
vice is wrong, it can tell the model to “retry”, and
then the second most likely restrictive advice will
be used. Thus, the only human feedback needed
now is telling the model to “retry”, rather than ac-
curate advice as before. The performance of this
(M7) still significantly outperforms Bisk et al. and
is close to Tan and Bansal on target prediction.

Regions Source | Target
Al:4 47% 40%
A2 : 4, Top 2 Confidence | 73% 70%
A3 : 4, Input-Specific 67% 62%

Table 2: Accuracy of model self-generated advice.

3.4 Model Self-Advice Generation

We now aim to avoid any human interaction, by
letting the model completely self-generate the ad-
vice. Accomplishing it would allow us to im-
prove the model’s performance without additional
human effort. We experimented with two ap-
proaches. In the first, we generate advice as de-
scribed in Section 3.3. However, instead of hav-
ing the user ask the model to “retry”, we treat the
top 2 confidence regions as a general region, and
provide that as advice input as described in Sec-
tion 3.1. In this case, there is a performance im-
provement over Bisk et al. with no human effort
required (M8 in Table 1).

Our second approach for self-generated advice
aims to improve on some of the shortcomings of
the first approach. Previously, when generating the
advice, we had decided on four coarse-grained re-
gions, and trained a model to classify each input
example into one of these regions. In many cases,
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(b)

Figure 4: Benefit of Input-Specific Model Self-
Generated Advice

(a) The Bisk et al. model would have made a prediction
(‘x’) close to the true block (square). However, the ad-
vice region (blue) was incorrect (due to the true block
being close to the edge of it) and this led to a signifi-
cantly worse prediction (circle).

(b) In the input-specific self-generated advice model,
the advice region (blue) is centered at the incorrect
coordinate prediction (‘x’), leading to the true source
block being included and a correct prediction (circle).

the true coordinate lay close to the boundary of
one of these regions, often resulting in the model
predicting the wrong region when self-generating
the advice. This incorrect prediction would lead to
significantly worse performance (when compared
to the model without advice) when running the
end-to-end model from Section 3.1, as the advice
was incorrect (remember that the model always
follows our advice, and the true coordinate is not
in the advice region due to the mistake). However,
if we had instead chosen our regions to be cen-
tered at the true coordinate of each input example,
it would be less likely that the model would make
an incorrect region prediction (since a small error
would still lead to the region containing the cor-
rect coordinate). Figure 4 provides a visual expla-
nation of this.

For this reason, we now introduce input-specific
model self-generated advice. In this case, we run
the Bisk et al. coordinate prediction model in two
iterations. In the first iteration, we use the predic-
tion to generate advice for a region (of the same
size as in the case of 4 quadrants) centered at the
predicted coordinate (see Figure 4b).2 In the sec-
ond iteration, we feed in this generated advice just
like Section 3.1. This model (M9) achieves perfor-
mance slightly worse than retry advice, and sig-
nificantly better than Bisk et al., all with no hu-
man effort.> Table 2 shows the accuracy increase

2We make sure the advice region doesn’t exceed the board
boundaries.
3Note that we must re-train the model from Section 2.3

in predicting the advice now (A3 vs Al). It is un-
surprising that this approach to self-generating ad-
vice performs better, as now the regions are more
specific to each coordinate (so there is a higher
probability that the true coordinate is actually in
the predicted region - see Figure 4).

We hypothesize that the performance improve-
ments in self-generated advice happen since it is
easier to predict the general region used to gen-
erate the advice rather than the specific coordi-
nates. Previously, we have also shown the benefit
of restrictive advice in improving overall coordi-
nate prediction, so it is unsurprising that a high
accuracy of advice generation leads to better over-
all performance. Due to this, we propose that fu-
ture robot communication works take advantage of
predicting and then using model self-generated ad-
vice in their end-to-end training procedure.

4 Summary

This paper takes a first step towards a stronger in-
teraction between automated agents and their hu-
man operators, for physically grounded language
understanding tasks. We focus on the popular
blocks task and introduce the notion of advice,
Natural Language hints provided by the human
operator, correcting the model’s predictions. We
show that using four versions of this interactive
advice driven protocol on an existing robot com-
munication architecture, we can obtain signifi-
cant performance improvements. The last method,
model self-generated advice, shows the benefit of
considering advice even when not designing an in-
teractive protocol. Our future work focuses on fur-
ther increasing the accuracy of the self-generated
advice model, so we can achieve better perfor-
mance with no human effort.
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