VQD: Visual Query Detection in Natural Scenes
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Abstract

We propose Visual Query Detection (VQD), a
new visual grounding task. In VQD, a system
is guided by natural language to localize a vari-
able number of objects in an image. VQD is
related to visual referring expression recogni-
tion, where the task is to localize only one ob-
ject. We describe the first dataset for VQD and
we propose baseline algorithms that demon-
strate the difficulty of the task compared to re-
ferring expression recognition.

1 Introduction

In computer vision, object detection is the task of
identifying all objects from a specific closed-set
of pre-defined classes by putting a bounding box
around each object present in an image, e.g., in the
widely used COCO dataset there are 80 object cat-
egories and an algorithm must put a box around all
instances of each object present in an image (Lin
et al., 2014). Recent deep learning based models
have significantly advanced the state-of-the-art in
object detection (Ren et al., 2015b); however, many
applications demand more nuanced detection of ob-
jects with specific attributes or objects in relation to
each other. Here, we study goal-directed object de-
tection, where the set of possible valid objects is far
greater than in the typical object detection problem.
Specifically, we introduce the Visual Query Detec-
tion (VQD) task (see Fig. 1). In VQD, a system
is given a query in natural language and an image
and it must produce 0—N boxes that satisfy that
query. VQD has numerous applications, ranging
from image retrieval to robotics.

VQD is related to the visual referring expres-
sion recognition (RER) task (Kazemzadeh et al.,
2014); however, in RER every image has only a
single correct box. In contrast, in VQD there could
be no valid outputs for a query or multiple valid
outputs, making the task both harder and more use-
ful. As discussed later, existing RER datasets have
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Figure 1: Unlike VQD, object detection cannot deal
with attributes and relations. In VQA, often algorithms
produce the right answers due to dataset bias without
‘looking’ at relevant image regions. RER datasets have
short and often ambiguous prompts, and by having only
a single box as an output, they make it easier to exploit
dataset biases. VQD requires goal-directed object de-
tection and outputting a variable number of boxes that
answer a query.

multiple annotation problems and have significant
language bias problems. VQD is also related to
Visual Question Answering (VQA), where the task
is to answer questions about images in natural lan-
guage (Malinowski and Fritz, 2014; Antol et al.,
2015). The key difference is that in VQD the al-
gorithm must generate image bounding boxes that
satisfy the query, making it less prone to the forms
of bias that plague VQA datasets.

We make the following contributions:

1. We describe the first dataset for VQD, which
will be publicly released.

2. We evaluate multiple baselines on our VQD
dataset.
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2 Related work

Over the past few years, a large amount of work
has been done at the intersection of computer vi-
sion and natural language understanding, including
visual madlibs (Yu et al., 2015; Tommasi et al.,
2018), captioning (Farhadi et al., 2010; Kulkarni
et al., 2013; Johnson et al., 2016; Liu et al., 2018),
and image retrieval (Wan et al., 2014; Li et al.,
2016). For VQD, the most related tasks are VQA
and RER, which we review in detail.

2.1 Visual Question Answering

VQA systems take in an image and open-ended
natural language question and then generate a text-
based answer (Antol et al., 2015; Goyal et al.,
2017; Acharya et al., 2019; Kafle et al., 2018).
Many VQA datasets have been created. How-
ever, initial datasets, e.g., VQAv1 (Antol et al.,
2015) and COCO-QA (Ren et al., 2015a), exhib-
ited significant language bias in which many ques-
tions could be answered correctly without looking
at the image, e.g., for VQAvI it was possible to
achieve 50% accuracy using language alone (Kafle
and Kanan, 2016). To address the bias issue, the
VQAUV?2 dataset was created with a more balanced
distribution for each possible answer to make al-
gorithms analyze the image (Goyal et al., 2017),
but it still had bias in the kinds of questions asked,
with some questions being scarce, e.g., reasoning
questions. Synthetic datasets such as the CLEVR
dataset (Johnson et al., 2017) addressed this by
being synthetically generated to emphasize hard
reasoning questions that are rare in VQAv1 and
VQAvV2. The TDIUC dataset addresses bias us-
ing both synthetically generated and human gath-
ered questions about natural images, with perfor-
mance evaluated for 12 kinds of questions (Kafle
and Kanan, 2017a). While the state-of-the-art has
rapidly increased on both synthetic and natural im-
age VQA datasets, many models do not generalize
across datasets (Shrestha et al., 2019).

2.2 Referring Expression Recognition

Unlike VQA, RER algorithms must produce evi-
dence to justify their outputs. A RER algorithm
outputs a box around the image location matching
the input string, making it easier to tell if an algo-
rithm is behaving correctly. The RefCOCO and
RefCOCO+ datasets for RER were collected from
the two-player ‘Referlt’ Game (Kazemzadeh et al.,
2014). The first player is asked to describe an out-

lined object and the second player has to correctly
localize it from player one’s description. The test
datasets are futher split into the ‘testA’ and ‘testB’
splits. The split ‘testA’ contains object categories
sampled randomly to be close to the original data
distribution, while ‘testB’ contains objects sampled
from the most frequent object categories, excluding
categories such as ‘sky’, ‘sand’, ‘floor’, etc. Since,
there is a time limit on the game, the descriptions
are short, e.g., ‘guy in a yellow t-shirt,” ‘pink, etc.

Instead of playing a timed game, to create the
RefCOCOg dataset for RER, one set of Amazon
Mechanical Turk (AMT) users were asked to gen-
erate a description for a marked object in an image
and other users marked the region corresponding to
the description (Mao et al., 2016). This resulted in
more descriptive prompts compared to RefCOCO
and RefCOCO+.

The Visual7W dataset for VQA includes a ‘point-
ing’ task that is closely related to RER (Zhu et al.,
2016). Pointing questions require choosing which
box of the four given boxes correctly answered a
query. Systems did not generate their own boxes,
and there is always one correct box.

Cirik et al. (2018) showed that RER datasets
suffer from biases caused by their dataset collec-
tion procedure. For RefCOCOg, they found that
randomly permuting the word in the referring ex-
pression caused only about a 5% drop in perfor-
mance, suggesting that instead of relying on lan-
guage structure, systems may be using some hidden
correlations in language. They further showed that
an image only model that ignores the referring ex-
pression yielded a precision of 71.2% for top-2 best
predictions. They also found that predicting the ob-
ject category given the image region produced an
accuracy of 84.2% for top-2 best predictions. By
having 0O—N boxes, VQD is harder for an image-
only model to perform well.

3 The VQD 1.0 Dataset (VQDv1)

We created VQDvl1, the first dataset for VQD.
VQDvl is created synthetically using annotations
from Visual Genome (VG), COCO, and COCO
Panoptic. While this limits variety, it helps combat
some kinds of bias and serves as an initial version
of the dataset. VQDv1 has three distinct query
categories:

1. Object Presence (e.g., ‘Show the dog in the

image’)
2. Color Reasoning (e.g., “Which plate is white
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Type # Questions
Simple 391,628
Color 172,005
Positional 57,904
Total 621,537

Table 1: VQDv1 Query Types

Dataset #Images # Questions
RefCOCO 19,994 142,209
RefCOCO+ 19,992 141,564
RefCOCOg 26,711 85,474
VQDvl1 123,287 621,537

Table 2: VQDvI1 compared to RER datasets.

in color?’)
3. Positional Reasoning (e.g., ‘Show the cylinder
behind the girl in the picture’)
The number of queries per type are given in the
Table 1. The dataset statistics and example images
and are shown in Fig. 2 and Fig. 3, respectively.
We show statistics for VQDv1 compared to RER
datasets in Table 2.

All images in VQDv1 are from COCO. The
ground truth bounding box annotations are derived
from the COCO Panoptic annotations dataset (Kir-
illov et al., 2018). The questions are generated
using multiple templates for each question type,
which is an approach that has been used in earlier
work for VQA (Kafle and Kanan, 2017a; Kafle
et al., 2017). The query objects and their attributes
are extracted by integrating the annotations from
images that have both COCO and VG annotations.
COCO annotations are focused on objects, while
VG also has attribute and relationship information,
e.g., size, color, and actions for scene objects.

3.1 Object Presence

Object presence questions require an algorithm to
determine all instances of an object in an image
without any relationship or positional attributes,
for example, ‘Show me the horse in the image’ or
‘Where is the chair?” We use all of the COCO
‘things’ labels and half of the COCO °‘stuft” labels
to generate these questions, making this task test
the same capabilities as conventional object detec-
tion. We filter some ‘stuff’ categories that do not
have well defined bounding boxes such as ‘water-
other’, ‘floor-stone’, etc. We use multiple templates
to create variety, e.g., ‘Show the <object> in the
image’, ‘Where are the <object> in the picture?’
etc.

3.2 Color Reasoning

Color questions test the presence of objects mod-
ified by color attributes, e.g., ‘Show me the cat
which is grey in color’ or “Which blanket is blue in
color?’ Since, COCO has only object annotations,
color attributes are derived from VG’s attribute an-
notations. We align every VG image annotation
with COCO annotations to obtain (object, color)
annotations for each bounding box. When multiple
color attributes for an object are present, the object
is assigned a single color from that attribute set.

3.3 Positional Reasoning

Positional reasoning questions test the location of
objects with respect to other objects, e.g., ‘Show
the building behind horses’, ‘Which people are
in front of the lighthouse?’, and ‘Show the rhino
behind elephant.” We again use VG’s relationship
and attribute annotations to create these questions.

3.4 Generating Counter-Concept Questions

Counter-concept questions have no valid boxes as
outputs, and we endeavor to create hard counter-
concept questions for each category. We ask ‘Show
me the zebra’ only if there is a similar animal
present (e.g., a cow), which was done by using
COCQ'’s super-categories. Likewise, ‘Show me
the donut that is brown in color’ is only asked if a
brown donut does not exist in the image.

4 Experiments

Our experiments are designed to probe the behavior
of models on VQD compared to RER datasets. To
facilitate this, we created a variant of our VQDv1
dataset that had only a single correct bounding box.

To evaluate performance for the RER and ‘1 Obj’
version of the VQDv1 dataset, systems only out-
put a single bounding box during test time, so the
Precision@1 metric is used. For the ‘0-N Obj’
version of the VQDv1 dataset, we use the stan-
dard PASCAL VOC metric AP/°U="0 from object
detection, which calculates the average precision
across the dataset using an intersection over union
(IoU) greater than 0.5 criteria for matching with
the ground truth boxes.

4.1 Models Evaluated

We implemented and evaluated four models for
VQD. All models are built on top of Faster R-CNN
with a ResNet-101 backbone whose output bound-
ing boxes pass through Non-Maximal Suppression
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RefCOCO RefCOCO+ RefCOCOg VQDvl

val testA  testB val testA  testB val test | 1 Obj. 0-NN Ob;.
DETECT 38.63 37.82 3832 | 38.85 37.85 3898 | 50.13 50.03 | 30.44 26.94
RANDOM 16.51 1430 19.81 | 16.67 14.10 2045 | 19.87 19.76 9.77 2.38
Query-Blind 3395 37.28 31.58 | 34.06 37.34 3246 | 39.79 2334 | 23.34 6.80
Vision+Query | 69.41 7552 65.28 | 59.83 6521 53.02 | 62.52 62.06 | 37.55 31.03
SLR 6948 73771 6496 | 55.71 60.74 48.80 | 60.21 59.63 - -
SLR 68.95 73.10 64.85 | 5489 60.04 49.56 | 59.33 59.21 - -

Table 3: Results on RER datasets and two versions of our VQD dataset. The ‘1 Obj’ version is trained and evaluated
on queries with only a single box, analogous to RER, and the 0—N version contains the entire VQD dataset. All

models use the same object proposals and visual features.

with a threshold of 0.7. This acts as a region pro-
posal generator that provides CNN features for
each region.

The four models we evaluate are:

1. DETECT: A model that uses the full Faster
R-CNN system to detect all trained COCO
classes, and then outputs the boxes that have
the same label as the first noun in the query.

2. RANDOM: Select one random Faster R-
CNN proposal.

3. Query-Blind: A vision only model that does
binary classification of each region proposal’s
CNN features using a 3 layer MultiLayer Per-
ceptron(MLP) with 1024-unit hidden ReLU
layers.

4. Vision+Query (V+Q): A model that does bi-
nary classification of each region proposal.
The query features are obtained from the last
hidden layer of a Gated Recurrent Unit (GRU)
network, and then they are concatenated with
the CNN features and fed into a 3 layer MLP
with 1024-unit hidden ReL U layers.

The primary reason for providing VQDv1 (1
obj.) and the RER results is to put the benefits of
the VQD task in context. To aid in this endeavor,
we also include comparison results directly from
the SLR models (Yu et al., 2017) for RER, which
is a recent system for that task.

4.2 Training Details

The Query-Blind and Vision+Query models are
trained with binary cross-entropy loss. We use
a learning rate of 0.0004, and perform learning
rate decay of 0.8 when the training loss plateaus
continuously for five epochs. The best model is
selected based on the validation loss after training
for 50 epochs.

4.3 Results

Our main results are given in Table 3. Although
simple, our Vision+Query model performs well
across RER datasets, but it can also be applied
to VQD tasks. As expected, RANDOM performs
poorly on both VQDv1 datasets. DETECT beats
RANDOM in the single object VQD setting by a
large margin. Since, most of the questions in the
RER datasets ask about common COCO categories,
choosing one of those objects might be enough to
get decent performance; however, DETECT per-
forms poorly when evaluated under 0-/N object
settings in VQDv1. To handle queries in VQD,
models must be able to understand the context and
comprehend multiple objects in isolation.

5 Conclusion

In this paper, we described our VQDv1 dataset as
a test for visual grounding via goal-directed object
detection. VQDv1 has both simple object presence
and complex questions with 0—N bounding boxes.
While VQDv1 contains only synthetically gener-
ated questions, this can help mitigate some forms of
bias present in other VQA and RER datasets (Cirik
et al., 2018; Kafle and Kanan, 2017b). While it
would be expensive, a large, carefully filtered, and
well designed human annotated VQD dataset is
the next step toward advancing visual grounding
research.

Compared to VQA, we argue that it is harder
to be right for the wrong reasons in VQD because
methods must generate bounding boxes. Compared
to RER, we argue that it is harder to exploit bias
in VQD since there are a variable number of boxes
per image, making it considerably more difficult,
as demonstrated by our experiments. We believe
the VQD approach has considerable value and can
be used to advance visual grounding research.
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Figure 2: Distribution statistics for the VQD dataset.

(a) Where is the bird? (b) Show me the van which is white in

color.
“‘8‘ %
4

(d) Which glass is on the top of the head (e) Show the lamp beside bed in the (f) Where is the sink in the picture?
of the women? image. Where is the toaster in the image?

Figure 3: Example query-detection pairs from the VQD dataset. Counter context questions that do not have a
bounding box as an answer are generated in such a way that they are still relevant to the scene context. For
example, in Fig. [3f] both questions pertain to the context ‘kitchen’.
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