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Abstract

Recent research has discovered that a shared
bilingual word embedding space can be in-
duced by projecting monolingual word embed-
ding spaces from two languages using a self-
learning paradigm without any bilingual super-
vision. However, it has also been shown that
for distant language pairs such fully unsuper-
vised self-learning methods are unstable and
often get stuck in poor local optima due to re-
duced isomorphism between starting monolin-
gual spaces. In this work, we propose a new ro-
bust framework for learning unsupervised mul-
tilingual word embeddings that mitigates the
instability issues. We learn a shared multilin-
gual embedding space for a variable number
of languages by incrementally adding new lan-
guages one by one to the current multilingual
space. Through the gradual language addition
our method can leverage the interdependencies
between the new language and all other lan-
guages in the current multilingual hub/space.
We find that it is beneficial to project more
distant languages later in the iterative pro-
cess. Our fully unsupervised multilingual em-
bedding spaces yield results that are on par
with the state-of-the-art methods in the bilin-
gual lexicon induction (BLI) task, and simul-
taneously obtain state-of-the-art scores on two
downstream tasks: multilingual document clas-
sification and multilingual dependency pars-
ing, outperforming even supervised baselines.
This finding also accentuates the need to es-
tablish evaluation protocols for cross-lingual
word embeddings beyond the omnipresent in-
trinsic BLI task in future work.

1 Introduction

The ubiquitous use and success of word embed-
dings in monolingual tasks inspired further re-
search on inducing cross-lingual word embeddings
for two or more languages in the same vector space.
Embeddings of translations and words with simi-
lar meaning are geometrically close in the shared

cross-lingual vector space. This property makes
them effective features for cross-lingual NLP tasks
such as cross-lingual document classification (Kle-
mentiev et al., 2012), cross-lingual information re-
trieval (Vuli¢ and Moens, 2015), bilingual lexicon
induction (Mikolov et al., 2013b; Gouws et al.,
2015; Heyman et al., 2017), and (unsupervised)
machine translation (Artetxe et al., 2017b; Lample
et al., 2018; Artetxe et al., 2018c¢).

Most prior work has focused on methods for
constructing bilingual word embeddings (BWEs),
yielding word representations for exactly two lan-
guages. For problems such as multilingual docu-
ment classification, however, it is highly-desirable
to represent words in a multilingual space. A
favourable property is that it enables fitting a single
classifier on the union of training datasets in many
languages, which results in 1) knowledge transfer
across languages that may lead to better classifica-
tion performance, and 2) a setup that is easier to
maintain as it is no longer required to train many
different monolingual or bilingual classifiers.

Multilingual word embedding (MWE) meth-
ods typically generalize existing BWE methods
by mapping multiple source language spaces to
the space of one target language (Ammar et al.,
2016), which is used as a pivot/hub language. This
approach may lead to suboptimal solutions as it
does not account for interdependencies between
the source languages. Most BWE and MWE meth-
ods rely on cross-lingual supervision to some ex-
tent: e.g., bilingual lexicons (Mikolov et al., 2013a),
parallel corpora (Gouws et al., 2015), or subject-
aligned document pairs (Vuli¢ and Moens, 2016).
In such paradigms, modeling dependencies be-
tween all languages is impractical as it requires
supervision for all language pair combinations.

Recent research has shown that BWEs can also
be learned without cross-lingual supervision and
can even outperform supervised BWE variants
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on bilingual lexicon induction benchmarks (Con-
neau et al., 2018; Artetxe et al., 2018a). Chen and
Cardie (2018) took a first step towards learning
multilingual spaces without supervision while in-
corporating dependencies between all languages
but their approach extends the work of Conneau
et al. (2018), which has known limitations con-
cerning optimization stability with distant language
pairs (Sggaard et al., 2018). In this work, we in-
vestigate robust methods to induce MWEs without
any cross-lingual supervision. The robustness of
our approach is illustrated in good performance for
distant languages such as Finnish and Bulgarian.
This paper makes the following contributions.

First, based on a reformulation of the BWE
method of Artetxe et al. (2018a), we propose two
novel methods for inducing MWEs: 1) the single
hub space model (SHS) uses the classical idea of
mapping source languages to a single hub language;
2) the incremental hub space model (IHS) incor-
porates dependencies between all languages by in-
crementally expanding the multilingual space by
one language in each step. IHS results in mappings
that are more robust and coherent across languages.
Both SHS and IHS only require monolingual data.

Second, we evaluate our method on benchmarks
for bilingual lexicon induction (BLI), multilingual
document classification, and dependency parsing.
We find that the IHS method is competitive with
state-of-the-art BWE methods on the bilingual lexi-
con induction benchmarks, while yielding the high-
est scores on the multilingual document classifica-
tion and dependency parsing benchmarks.

Third, unlike the majority of prior work (Con-
neau et al., 2018; Artetxe et al., 2018a; Chen and
Cardie, 2018, inter alia), we do not limit our evalu-
ation to the intrinsic BLI task only. Consequently,
we investigate if embedding reweighting, a recently
proposed best practice for BWEs, is useful for ex-
trinsic tasks such as document classification and
dependency parsing in multilingual settings.

2 Related Work

Cross-lingual word embeddings have received a
lot of attention in recent years. Most methods con-
struct a space shared between two languages using
cross-lingual supervision in the form of bilingual
lexicons (Mikolov et al., 2013a; Artetxe et al., 2016;
Smith et al., 2017), parallel corpora (Klementiev
et al., 2012; Faruqui and Dyer, 2014; Gouws et al.,
2015; Luong et al., 2015) or subject-aligned doc-

ument pairs (Vuli¢ and Moens, 2016). See Ruder
et al. (2018) for a full overview of BWE model
typology in relation to the required supervision.

To enable knowledge transfer across an arbi-
trary number of languages, multilingual methods
have been introduced. Huang et al. (2015), pro-
pose decomposing a matrix with multilingual co-
occurrence counts weighted by probabilistic dictio-
naries. Ammar et al. (2016) compare this method
to three other MWE models: MultiCluster, Multi-
CCA, and MultiSkip. MultiCluster uses bilingual
dictionaries to cluster translations and then train
the monolingual Skip-gram model (SG) (Mikolov
et al., 2013a) on a union of monolingual corpora
where they replace words with their cluster id such
that words in the same cluster get the same repre-
sentation. MultiCCA is the multilingual extension
of the method of Faruqui and Dyer (2014): Using
canonical correlation analysis (CCA) and dictio-
naries with English as the target language, mono-
lingual embeddings are projected to the English
vector space. MultiSkip is a straightforward exten-
sion of the BiSkip method (Luong et al., 2015)
which generalizes the monolingual SG objective
to account for word alignments in parallel corpora.
Similarly, Duong et al. (2017), extend CBOW to
multiple languages. All these methods learn multi-
lingual embeddings using bilingual dictionaries of
parallel corpora: This limits their applicability for
many languages.

More recently, Conneau et al. (2018); Artetxe
et al. (2018a) showed that BWEs can be effectively
induced without any cross-lingual supervision. The
approaches are based on the assumption that mono-
lingual embedding spaces are approximately iso-
morphic.! Improving on earlier attempts (Cao et al.,
2016; Zhang et al., 2017), Conneau et al. (2018)
propose a two-step framework to map two mono-
lingual spaces to the shared space. First, they use
an adversarial objective to get an initial bilingual
space in which the discriminator can no longer
distinguish to which language a given word em-
bedding belongs. They then fine-tune the initial
solution. An important limitation is that the adver-
sarial objective is prone to converge to degenerate
solutions. Furthermore, Sggaard et al. (2018) em-
pirically prove that the method typically fails for
distant language pairs such as English-Finnish.

In parallel, Artetxe et al. (2018a) proposed an-

'One of the necessary conditions for this assumption to

hold is that the monolingual corpora on which the embeddings
are trained are comparable (Sggaard et al., 2018).
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other framework with the same goal. Expanding
on their earlier work (Artetxe et al., 2017a, 2018b),
they use an unsupervised heuristic to obtain a noisy
initial seed lexicon which is used to obtain an ini-
tial bilingual space. This solution is iteratively im-
proved similar to Artetxe et al. (2017a) and Con-
neau et al. (2018) while using value dropping reg-
ularization to escape early convergence to local
minima. Their method is the starting point for this
work, and it is discussed in detail in §3.

The two unsupervised approaches are limited to
finding mappings between a pair of languages. To
the best of our knowledge, Chen and Cardie (2018)
is the only unsupervised method that constructs a
multilingual embedding space. Their method ex-
tends the adversarial pre-training and iterative re-
finement steps of Conneau et al. (2018) to the multi-
lingual setting. Their work does not investigate the
limitations of Conneau et al. (2018)’s method: Less
stable optimization and difficulties with mapping
spaces with reduced isomorphism. Furthermore,
their generalization turns the iterative refinement
into a non-convex optimization problem. In con-
trast, our multilingual methods proposed in this
work are applicable to distant language pairs and
decompose every iteration in the refinement step
in multiple convex optimization problems, making
them very robust and widely applicable.

3 Unsupervised Bilingual Embeddings

We now summarize mapping-based approaches to
learning BWESs, which serve as the backbone of
our multilingual approach. These methods rely on
a mapping procedure, that is, a way to transform
two monolingual spaces such that translations and
similar words obtain similar representations. Su-
pervised approaches take translations from readily
available seed training dictionaries. Unsupervised
approaches construct a seed lexicon from scratch,
and use an iterative procedure to refine the seed
lexicon and the mapped bilingual space.

Mapping Procedure. Various mapping proce-
dures have been proposed in the literature (Mikolov
et al., 2013b; Dinu et al., 2015; Lazaridou et al.,
2015; Vuli¢ and Korhonen, 2016). These meth-
ods can be seen as variants of a a single frame-
work (Artetxe et al., 2018b), summarized here.

At its core, each mapping procedure learns the
orthogonal transformations W, and W, for the
monolingual embedding spaces X and Z that min-
imize the distance between embeddings of transla-

tions in the mapped spaces X W, and ZW,. The
orthogonality constraint ensures that the transfor-
mations preserve the monolingual constellation of
embeddings. Formally, let D be a matrix repre-
senting a bilingual dictionary s.t. D;; = 1 if the ith
source word is translated by the ;j*" target word and
D;; = 0 otherwise, then W, and W, are found by
solving the following optimization problem:

arg max Z Z Dij (X . Wy) - (Z;. W)

W W, 5
= argmax tr(XW,(DZW,)T) (1)
Wi, W

subjectto W, W] =1 , W,W] =1

where tr(-) denotes the trace operator.

Eqg. (1) has a closed-form solution based on the sin-
gular vectorsof XTDZ: W, =U, W, =V with
USVT =SVD(XTDZ). In addition to the trans-
formation, there are several optional pre-processing
(S1-S2) and post-processing (S3-S5) steps:

S1. Normalization: apply length normalization
(normalizing X and Z such that all embeddings
have a unit Euclidean norm), or mean centering, or
a combination of both;

S2. Whitening: apply ZCA whitening (Bell and Se-
jnowski, 1997) on X and Z which transforms the
monolingual embedding matrices such that each
dimension/component has unit variance and such
that the dimensions are uncorrelated (see Eq. (2)
later). The intuition is that it is easier to align the
vector spaces along directions of high variance;

S3. Re-weighting the components according to the
singular value matrix S of XTDZ: This is an at-
tempt to further align the embeddings in the multi-
lingual space as each singular value measures how
well a dimension in the multilingual space corre-
lates across languages for the given dictionary;

S4. De-whitening, the inverse transformation of S2:
After the mapping, it was shown as important to
restore the variance information in case whitening
was applied (Artetxe et al., 2018c);

SS5. Dimensionality reduction truncates the embed-
ding vectors such that only components with the
highest singular values are kept.

Refinement Procedure. The refinement aims
at iteratively improving the seed dictionary and
the bilingual space with Expectation Maximiza-
tion (Dempster et al., 1977). In each iteration, the
mapping procedure is executed using the dictionary
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from the previous iteration to obtain a new bilingual
space, and then a new dictionary is induced using
nearest neighbor retrieval in the cross-lingual simi-
larity matrix M . This is repeated until the (unsuper-
vised) training objective Y_; 3~ Dy (X Wy) -
(Z;.W.)) stops increasing.

The matrix M is calculated using cross-domain
similarity local scaling (CSLS; Conneau et al.
(2018)), an extended variant of cosine similarity
that avoids the hubness problem (Radovanovic¢
et al., 2010; Dinu et al., 2015).2 In particular, the
element m;; at row ¢ and column j of M cor-
responds to the CSLS value between the cross-

lingual vectors mZCL and zJCL of the i*" source

word and the j*" target word respectively: m;; =
CSLS(z¢'E, szL); CSLS(x,z) = 2cos(x,z) —
rzi(x) — rxg(z). rxi(x) and rzx(z) calculate
the average cosine similarity of a vector with its
k nearest neighbors (measured by cosine) in the
mapped spaces of X, Z, respectively. It is also ben-
eficial to jointly infer dictionaries source-to-target
and target-to-source (Artetxe et al., 2018a).3 The
mapping is then learned from the concatenation of
these two dictionaries.*

To avoid suboptimal local minima, Artetxe et al.
(2018a) propose to randomly drop values from the
matrix M with probability 1 — p (further value
dropping). The value of p is exponentially in-
creased as training progresses. p is initialized to
a small value (e.g., 0.1). Whenever the objective
stops improving for Npatience refinement steps, p is
multiplied with a given factor (e.g., 2) until p > 1
after which all values in M are kept. Value drop-
ping was shown to be crucial when constructing
bilingual spaces between distant language pairs.
We later analyze its impact on the proposed multi-
lingual methods.

Inducing a Seed Lexicon. Artetxe et al. (2018a)

obtain a seed lexicon based on the assumption that
X .7

for a translation pair w;" , w7, the monolingual sim-

ilarity vectors, v/ X;XT and \/ Z;Z7 of transla-
tions %, j are (approximately) equal up to a permu-

"Hubness is the phenomenon observed in a high-
dimensional vector space where there are vectors, called hubs,
which are the nearest neighbors to many vectors in the space.

3Note that sz L being the nearest neighbor of 2L does
not imply that the inverse is also true.

“Due to the large search space, limiting the search space by
truncating both vocabularies and their corresponding embed-
ding matrices to the Cre finement most frequent words results
in better solutions and speeds up computation.

tation.” Therefore, seed translations for a source
word ¢ are generated by finding the nearest neigh-
bor based on similarity of monolingual similarities.
This heuristic yields a very noisy seed lexicon, but
it was proven to contain a sufficiently strong bilin-
gual signal to bootstrap the refinement procedure.
The seed lexicon is inferred symmetrically (i.e.,
by concatenating respective source-to-target and
target-to-source seed lexicons) and the vocabular-
ies are truncated to the C's..q most frequent words.

4 Unsupervised Multilingual
Embeddings: Methodology

We now present two models for learning unsuper-
vised multilingual word embedding spaces: the sin-
gle hub space model (SHS) and the incremental
hub space model (IHS). The methods generalize
the bilingual framework described in §3, and rely
on (a subset of) preprocessing and postprocessing
steps S1-S5 in the multilingual setting.

Single Hub Space (SHS). The SHS model de-
fines one language as the hub language Ly and
projects the embedding spaces Z1, ..., Zy of all
other languages L1, ..., L (further secondary lan-
guages) to the hub space X. Hence, we reduce
the construction of a multilingual space of IV lan-
guages to the alignment of N — 1 vector spaces.
Learning these projections is similar to the bilin-
gual case: We use the unsupervised iterative refine-
ment procedure and seed lexicon heuristic from §3.
However, we require the orthogonal mapping to be
asymmetric: The hub language space should either
remain unchanged or it should be transformed with
the same operation for each of the N — 1 language
pairs. We therefore derive an asymmetric version
of the mapping framework from §3 that yields the
exact same solution as the original.

Let X be the embedding matrix of the, Z1,.. .,
Zy the embedding matrices of the secondary lan-
guages, and D*! the dictionary between languages
Ly and L;. We induce a multilingual space X™,

1", ..., Z3; in three main steps. First, the embed-
dings of each language are preprocessed by normal-
izing and whitening the embeddings, as described
by Egs. (2)-(6). Normalization consists of subse-
quently performing length normalization, mean

5The square root in the formulas is empirically motivated.
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centering, and then again length normalization.

ZCAwhiten(W) = W(WTW) %5 (2)

X = normalize(X) (3)
X" = 7ZCAwhiten(X')  (4)
Zl/ = normalize(Z;) (5)
Z, = ZCAwhiten(Z,)  (6)

After preprocessing, we rotate each secondary lan-
guage L; to a bilingual space between the hub
language space and its own embedding space, as
described by Eqgs. (7)-(10). The calculations are
analogous to the bilingual mapping procedure:
the left and right singular vectors U; and V; of
X"DVlZ ZHT are the rotation matrices that project
the preprocessed matrices X "and Z l" to their bilin-
gual space; this is formulated in Egs. (7)-(8). The
bilingual projection of Zl” can be reweighted by
multiplying it with a given power ¢ of the singu-
lar values matrix S; of X TD%'Z, | Eq. (9). Intu-
itively, the reweighting operation makes the dimen-
sions that correlate better across languages more
important. Next, we restore the variance informa-
tion of Z, l/ by performing a dewhitening operation:
we project back to the monolingual space, multiply
with the inverse of the whitening matrix, and then
project back to the bilingual space (Eq. (10)).6

U,S,V;T = SVD(X TD% 7)) (7)
Zy iy = Z, Vi (8)
le,bi(l) = Z,1i)S} ©)

Zl,bi(l) = Zl,bi(l)VET(ZlTZl)O'SVZ (10)
Finally, we project Z lubz‘(l) to the space of the hub
language in Eq. (11)). The multilingual space for
the hub language is simply the monolingual embed-
ding space after preprocessing, see Eq. (12).

Z" = Z o\ U]

X"m=X

(11
(12)

For the bilingual case this formulation is equivalent
to the symmetric mapping introduced in §3: one
can easily verify that the dot products between the
mapped spaces simplify to the same formula.

SNote that the projection matrices that map from the bilin-
gual to the monolingual spaces are given by the inverses of U;
and V. Since the matrices are orthogonal their inverses are
equal to their transposes.

Incremental Hub Space (IHS). SHS enables
language interactions only indirectly through the
hub language. Ideally, a multilingual method
should incorporate interdependencies between all
languages. We hypothesize that, especially when
mapping a language distant to the hub language,
it is beneficial to incorporate the structural simi-
larities with all other languages as a regularization
mechanism to find a more robust mapping.

We therefore propose the incremental hub space
(IHS) model. It incrementally expands the mul-
tilingual space X™ and takes into account all
languages in the current multilingual space when
adding a new language. First, we define a language
order and initialize the space to the preprocessed
embedding space of language Lg. Next, following
the order, we gradually add new languages to the
space: in each iteration we rotate the preprocessed
embedding space Zl” of language [ to the multilin-
gual space by minimizing the dot product between
embeddings of the translations between language
[ and all the languages in the multilingual space.
The recipe to calculate the cross-lingual embedding
Z[" is similar to the SHS model: the preprocess-
ing and postprocessing steps are the same, but the
projection matrices are calculated with Eq. (14) in-
stead of Eq. (7) and conform with the new objective
from Eq. (13). After convergence, Z;" is added to
the multilingual space X™: X" = Z".

-1

arg max E
Wei,W2i k=0

subject to Wy W) = I, W, W] =1
U;SV;T = SVD(C) (14)
C = (Xg")'™D"Z/|| ... |(X]",)' D" Z/

where | | denotes concatenation along the row axis

tr( X[ Wa (DM 2, W.p)T) (13)

In supervised settings this approach would be im-
practical as it requires bilingual dictionaries D"
for all language pairs k,, and not only with the
hub language. However, within an unsupervised
framework this constraint is lifted.

5 Experimental Setup

Tasks and Datasets. The induced embeddings
are evaluated in three tasks: bilingual lexicon in-
duction (BLI), multilingual dependency parsing,
and multilingual document classification. BLI is
currently the most widely used method to evaluate
bilingual embedding spaces. Although BLI perfor-
mance is not the primary goal of our multilingual
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embedding spaces, it provides a fast means to ad-
dress the following questions: 1) Is the incremen-
tal construction of multilingual embedding spaces
indeed an effective regularization method? Is it
still necessary to perform value dropping in this
case?’; 2) Is the reweighting of embedding spaces
also beneficial for BLI in multilingual settings?;
3) Does multilingual training improve bilingual
lexicon induction performance? How do our mul-
tilingual models compare to each other and to the
state-of-the-art unsupervised BLI methods?

We report Precision@] (P@]) BLI perfor-
mance on two standard BLI datasets. 1) DIN-
UARTETXE is the extended version of Dinu
et al. (2015)’s dataset, used by Artetxe et al.
(2018a).% It consists of bilingual dictionaries for
English-German, English-Italian, English-Spanish
and English-Finnish. Monolingual embeddings are
provided, based on the CBOW model trained on the
WaCKy corpora for English, Italian and German
(Baroni et al., 2009), the monolingual WMT Com-
mon Crawl corpus for Finnish, and the WMT News
Crawl for Spanish (Bojar et al., 2015). The test dic-
tionary sizes are between 1.869 and 1,993 word
pairs for each language pair. As our methods are
unsupervised, we do not use the provided training
dictionaries. 2) EURMUSEWIKI is the dataset com-
piled from dictionaries for all combinations of the
following European languages: English, German,
Spanish, French, Italian, and Portuguese. The test
set sizes range between 1,513 and 3,660 word pairs.
We rely on publicly available monolingual fastText
embeddings (Bojanowski et al., 2016).° All mono-
lingual word embeddings are 300-dimensional and
represent the 200k most frequent words as in prior
work (Dinu et al., 2015; Conneau et al., 2018).

Multilingual dependency parsing and multilin-
gual document classification tasks assess the em-
beddings w.r.t. their actual goal: enabling transfer
learning across multiple languages. The word em-
beddings are used as feature vectors for classifiers
in the respective downstream tasks. We address the
following research questions: 4) Is reweighting of
embedding spaces also beneficial in downstream
tasks?; 5) How do our methods compare against

"Value dropping significantly slows down training time
and leads to non-deterministic outcomes. However, it has
been shown to be crucial in the bilingual setting to obtain
good results when mapping distant language pairs in previous
work (Artetxe et al., 2018a).

dhttps://github.com/artetxem/vecmap/

‘nttps://fasttext.cc/docs/en/
pretrained-vectors.html

supervised multilingual embedding models?

We rely on the evaluation platform of Ammar
et al. (2016) for the downstream tasks'?: the users
submit their multilingual embeddings and obtain
the final scores, which ensures that the classifiers
we use are identical to the ones used in prior work
(Ammar et al., 2016; Duong et al., 2017).

REUTERSMLDC is a multilingual document
classification dataset covering seven languages: En-
glish, German, French, Italian, Spanish, Danish,
and Swedish. The final performance is reported as
the average accuracy across all languages. The re-
spective training and test set consist of 7,000 and
13,058 documents. The dataset is well balanced in
the number of documents per language.!' The ar-
chitecture of the document classifier is the average
perceptron used by Klementiev et al. (2012).

MLPARSING is a multilingual dependency pars-
ing dataset sampled from the Universal Dependen-
cies 1.1 corpus (Agi¢ et al., 2015)!2. It contains
12 languages: English, German, French, Spanish,
Italian, Bulgarian, Czech, Danish, Swedish, Greek,
Finnish, and Hungarian. The respective training
and test set contain 6,748 and 1,200 sentences. The
test set contains 100 sentences for each language,
while for the training set the number of sentences
for a language ranges between 98 and 6,694. The
parser used is the stack-LSTM parser by Dyer et al.
(2015). The parser is not allowed to use any part-
of-speech and morphology features, and keeps the
input word embeddings fixed to isolate the effect
of the evaluated embeddings on the parsing perfor-
mance (Ammar et al., 2016). The reported scores
are UAS scores averaged across languages.

For comparison with related work, we train 512-
dimensional monolingual embeddings on the text
collections used by Ammar et al. (2016) and Duong
et al. (2017). The monolingual embeddings are
again trained using fastText.

Training Setup. In all experiments, we set the
following hyper-parameters to values that were
used in prior research (Conneau et al., 2018;
Artetxe et al., 2018a). When constructing the seed
lexicon the 4,000 most frequent words of each lan-
guage are considered (Cyeeq = 4,000), and during
the refinement step the 20,000 most frequent words

10 https://github.com/wammar/

multilingual-embeddings—eval-portal
" As the dataset is not publicly available this information
was provided by the first author of Ammar et al. (2016).
Phttp://hdl.handle.net/11234/LRT-1478
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Model Drop EN-DE EN-IT EN-ES EN-FI Avg

SHS no 48.00 4593 3653 0.14 32.65
SHS yes 47.51 45.60 3633 3192 40.34
IHS no 4793 4593 36.07 31.04 40.24
IHS yes 4745 4548 36.43 3097 40.08

Table 1: Comparison of P@ [ scores for SHS and THS
models with and without value dropping (Drop) on the
DINUARTETXE BLI dataset.

of each language are used (C'c finement = 20, 000).
When using value dropping, the keep probability p
is initialized is 0.1, Npatience 8 set to 50, and the
stochastic multiplier is set to 2. Dictionaries are
constructed symmetrically: from hub language(s)
to the secondary language and from the secondary
language to the hub language(s): during refinement
each dictionary consists of 2 x 20, 000 translation
pairs. We use CSLS with £ = 10 nearest neighbors
following the setup of Conneau et al. (2018).

6 Results and Discussion

Experiment 1: Value Dropping. In the first ex-
periment, we investigate if the expensive value
dropping procedure is a necessary condition for
mapping between distant language pairs in our mul-
tilingual framework. Table 1 provides results on the
DINUARTETXE dataset for SHS and IHS models.
For IHS we process the languages in the following
order: English, German, Italian, Spanish, Finnish.
When using value dropping we report the average
and best results across five runs.

We observe that value dropping is crucial for
SHS to succeed for English-Finnish. However, it is
not necessary for IHS. This supports our hypothe-
sis that mapping a language to a multilingual hub
space serves a type of regularization that can sub-
stitute value dropping. As validated later, it is still
important to avoid adding distant languages early
with the incremental THS procedure.!'3:14

Experiment 2: Comparative BLI Performance
and Reweighting. In this experiment, we test if
reweighting embedding spaces is beneficial for BLI
in our multilingual setup, and also compare our

BFor instance, when using THS with a language order that
starts with English and Finnish, value dropping still prevents
bad performance for Finnish. However, this is not a problem
in practice as the language order can be easily predetermined
according to various language similarity heuristics.

14We further validated the robustness of our approach on
other distant language pairs but moved this experiment to the
appendix due to space constraints.

methods against state-of-the-art BLI methods. Ta-
ble 2 and Table 3 show the results for SHS and
IHS with reweighting coefficients ¢ of 0, 0.5 and
1 on DINUARTETXE and EURMUSEWIKI, respec-
tively. We also include the state-of-the-art results
of Artetxe et al. (2018a) and Chen and Cardie
(2018) for reference. The EURMUSEWIKI bench-
mark evaluates BLI performance on all language
pair combinations of its six languages and does
this in both directions (EN-DE, DE-EN, EN-ES, ...
IT-PT, PT-IT) yielding 28 P@1 scores per model.
For clarity, we report the average PQ1 scores per
language as well as the global PQ1 average. Fol-
lowing Experiment 1, all results for SHS are ob-
tained using value dropping (again averaged across
5 different runs), while we do not use it with IHS.
The SHS hub language is English, and the lan-
guage orders for IHS are EN, DE, IT, ES, FI for
DINUARTETXE, and EN, DE, ES, FR, IT, PT for
EURMUSEWIKI.

The scores reveal that reweighting the embed-
ding spaces is indeed still beneficial for BLI when
mapping to a multilingual space. Both SHS and
IHS obtain best results with the reweighting coef-
ficient ¢ = 0.5. When comparing SHS and IHS,
we see that for language pairs involving English
(the SHS hub language) SHS obtains slightly better
results, but for the other language pairs IHS out-
performs SHS slightly. This is no surprise as IHS
by design incorporates dependencies between all
languages when learning the projection matrices,
though it is striking that mapping to a single hub
language is still a strong BLI baseline. For both
datasets IHS obtains BLI performance on par with
the state-of-the-art: on DINUARTETXE, SHS and
IHS (¢ = 0.5) obtain scores similar to (Artetxe
et al., 2018a); on EURMUSEWIKI IHS (¢ = 0.5)
slightly outperforms Chen and Cardie (2018) for
all languages except Spanish. Although optimizing
BLI performance is not the main goal of this work,
these results verify the soundness of our methods.

Experiment 3: Language Order. Next, we in-
vestigate 1) the influence of the hub language
choice for SHS, and 2) the impact of the language
order for IHS. We run both SHS and IHS with
reweighting 0.5 on DINUARTETXE. SHS is with
value dropping (results are again averaged over 5
runs), and for IHS we do not use value dropping.
We find that the SHS model is sensitive to the
hub language: the best average scores are obtained
when using English (41.6%) or German (41.0%).
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Model q EN-DE EN-IT EN-ES EN-FI All Model q PARSING MLDC
Artetxe  2x0.5 48.13 48.19 37.33 32.63 41.57 Invariance (Huang et al., 2015) 59.80 91.10
SHS 0 4751 4560 3633 3192 4034  MuluSkip (Luong etal.,2015) >7.70 - 90.40

MultiCluster (Ammar et al., 2016) 61.00 92.10
IHS 0 47.93 4593 36.07 31.04 40.24 .

MultiCCA (Ammar et al., 2016) 58.70 92.10
SHS 0.5 48.69 47.67 37.51 3240 41.57 (Duong et al., 2017) 61.20 90.80
IHS 0.5 48.60 47.73 37.53 31.74 4140 £ 2 ’ ’
SHS 1 47.77 4791 37.00 31.82 41.13 SHS 0 63.48 92.59
IHS 1 48.00 48.00 37.93 31.46 41.35 IHS 0 65.77 92.72

SHS 0.5 6223 92.63
IHS order 0.5 48.60 47.81 38.24 33.22 41.96 HS 05 6342 92 56

Table 2: BLI PQ@1 scores on DINUARTETXE: SHS and
IHS are evaluated for different values of the reweight-
ing parameter ¢q. The state-of-the-art results (Artetxe
et al., 2018a) are added as a reference. The result with
the highest average score obtained when trying differ-
ent language orders is in the bottom row.

EN DE ES FR IT PT Al
79.57 70.46 82.88 82.01 80.69 80.13 79.29

SHS 0 80.04 68.24 80.95 80.10 78.71 77.96 77.67
IHS 0 79.61 69.52 82.35 81.26 80.00 79.02 78.63
SHS 0.5 80.34 70.16 82.15 81.65 80.31 79.78 79.07
IHS 0.5 79.91 70.77 82.68 82.08 81.08 80.47 79.50
SHS 1 79.61 69.59 81.53 81.10 79.74 79.47 78.51
IHS 1 79.05 69.99 81.63 81.23 80.13 79.68 78.62

Model q
UME

Table 3: BLI P@1 scores on EURMUSEWIKI averaged
per language: SHS and IHS are tested for different val-
ues of the reweighting parameter ¢. The results of Chen
and Cardie (2018) (UME) are added as a reference.

With Italian, the average score drops to 40.4%,
mainly due to worse performance on English and
German. With Spanish, the average score further
drops to 31.6%, as Spanish and Finnish completely
fail to align even when using value dropping. With
Finnish, EN-ES alignment becomes unstable, while
P@1 for EN-DE and EN-IT drops 5.5% and 3.7%
compared to the case with English as the hub. These
results indicate that the hub language has to be cho-
sen carefully to avoid instability issues.

For IHS, we evaluate all 120 order permutations
on DINUARTETXE. The best performing order (EN-
DE-ES-FI-IT) achieves an average accuracy of
41.96%, see the last row in Table 2. The full results,
not reported due to space constraints'> confirm our
hypothesis that distant languages (Finnish) should
be mapped at the end: when using Finnish as one of
the first two languages performance drops signifi-
cantly. EN-FI scores drop below 1% and the results
for all other language pairs are also suboptimal.

Experiment 4: Downstream Tasks. In this ex-
periment, we investigate the effect of reweighting

'>The full results can be found in Appendix A.2.

Table 4: Results on the MLPARSING (dependency pars-
ing) and REUTERSMLDC (document classification)
benchmarks: SHS and IHS are compared with and with-
out reweighting and we show the state-of-the-art results
of supervised embedding mapping methods as a refer-
ence. The results for Invariance, MultiSkip, MultiClus-
ter, MultiCCA are from (Ammar et al., 2016).

input word embeddings on downstream model per-
formance, and compare SHS and IHS to several
supervised methods that use cross-lingual supervi-
sion. Table 4 reports the results for SHS and IHS
with g set to 0 and 0.5 on the REUTERSMLDC
and MLPARSING benchmarks,!® along with the
results from related work. For SHS the hub lan-
guage is English and for IHS the language order
is English, German, Spanish, Italian, French, Bul-
garian, Czech, Danish, Finnish, Greek, Hungarian,
and Swedish. We again use SHS with value drop-
ping and IHS without it. The results in Table 4
are comparable: all methods were trained on the
same text corpora (i.e., the collections of Ammar
et al. (2016)), but our methods do not use parallel
corpora nor bilingual dictionaries.

A first interesting result is that, contrary to the
BLI task, reweighting the embeddings is not bene-
ficial for multilingual dependency parsing and doc-
ument classification. This can be explained by the
fact that the reweighted embedding spaces are no
longer isomorphic to the original monolingual em-
bedding spaces, hence important patterns in the
embedding space could be distorted. Further, we
notice that both SHS and IHS improve over the
best reported results on the REUTERSMLDC and
MLPARSING benchmarks. This result is surprising
given that all the reported baselines require supervi-
sion to induce the multilingual embedding spaces.
Further, we again find that the best results are ob-
tained with IHS, most notably for dependency pars-
ing for which the difference in UAS scores between

'Since the languages covered in MLPARSING is a super-
set of the languages in REUTERSMLDC, we use the same
multilingual embedding space for both tasks.
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Figure 1: Training times for SHS and IHS for an in-
creasing number of languages.

the best IHS and SHS models is 2.29%.

Experiment 5: Time Complexity. In this exper-
iment, we study how training time of SHS and IHS
behaves as a function of the number of languages
that are mapped. The singular value decomposi-
tions are more expensive for IHS as the matrices
grow linearly with the number of languages (see
Eq. (14)) whereas for SHS they are constant. On
the other hand, IHS does not require the use of
value dropping. Figure 1 plots training time for
IHS and SHS conditioned on the number of lan-
guages. The estimates are based on training on a
single Nvidia Titan Xp GPU. We find that SHS
with value dropping and IHS without value drop-
ping have similar training times, IHS being a bit
more efficient when mapping 7 languages or less.
Mapping 12 languages takes approximately four
hours for both methods.

7 Conclusion

We proposed two novel methods for learning mul-
tilingual word embeddings (MWEs) without any
cross-lingual supervision. The better-performing
incremental hub space model (IHS) is the first un-
supervised MWE method that combines three de-
sirable properties: 1) It incorporates interdependen-
cies between all targeted languages; 2) It works
for distant language pairs; and 3) It is both deter-
ministic and robust, that is, it does not produce
degenerate solutions. Our evaluation on standard
benchmarks has proven that the IHS method in-
duces multilingual word embeddings that are com-
petitive with the state of the art in bilingual lexicon
induction. Moreover, we have shown that IHS out-
performs even supervised models on downstream
tasks of multilingual dependency parsing and doc-

ument classification, and this anomaly requires fur-
ther investigation in future work. Furthermore, we
looked at the influence of reweighting the dimen-
sions of the embedding spaces according to their
cross-correlations with the hub language space(s)
and found that, while it improves performance for
the BLI task, it is harmful to downstream cross-
lingual transfer tasks. These empirical observations
stress the requirement to include comprehensive
evaluation protocols for cross-lingual word embed-
ding models in future research.
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A Appendices

A.1 Experiment with Distant Language Pairs

In this section, we report an additional bilingual lex-
icon induction experiment that further supports our
claim that the IHS model is still applicable when
mapping languages with different characteristics,
we performed an additional bilingual lexicon induc-
tion experiment on the following language pairs:
Dutch-Turkish, Spanish-Hungarian, and Finnish-
Bulgarian. We induced multilingual spaces with
the IHS model and the model of Chen and Cardie
(2018) using the publicly available monolingual
embeddings trained with fastText. IHS is run with
reweighting (¢ = 0.5), without value dropping, and
with the following language order Dutch, Span-
ish, Bulgarian, Finnish, Hungarian, Turkish. The
model of Chen and Cardie (2018)!7 is run with
Dutch as the target language and with the recom-
mended hyper-parameters. For evaluation, we ob-
tained dictionaries for each language pair using
Panlex (Kamholz et al., 2014).

The results are reported in Table 5. We find av-
erage BLI accuracy scores of 28.24% (IHS) and
28.20% (Chen and Cardie, 2018). The fact that both
models are robust to distant languages without us-
ing value dropping further supports our hypothesis
that mapping multiple languages simultaneously is
an effective regularization mechanism.

A.2 Results Experiment 3

In this section, we report all the results of Experi-
ment 3 of the paper. In Table 6 we report the results
for the SHS model with different hub languages
and in Table 7 we report the performance for IHS

"https://github.com/ccsasuke/umwe
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Model NL-TR ES-HU FI-BG Avg Order EN-DE EN-ES EN-FI EN-IT Avg

IHS 22.67 30.21 31.84 2824 ITENFIDEES 47.00 3827 31.88 47.07 41.06
UME 2151 31.26 31.84  28.20 ENESDEITFI 4793 37.53 30.90 47.60 40.99
ESDEITENFI 46.67 3827 3195 47.07 40.99
ITENESDEFI 4720 37.93 31.74 47.07 40.99
ESITDEFIEN 4720 3740 3223 46.73 40.89

Table 5: Precision@1 scores for a bilingual lexicon ex-

periment on three distant language pairs. ITENFIESDE 4647 3800 31.88 47.07 40.86

ENESITFIDE 47.73 37.53 30.76 47.20 40.81
Hub language EN-DE EN-IT EN-ES EN-FI Average ITDEENES FI 47.00 3793 31.74 46.53 40.80

ENESITDEFI 4733 37.53 31.04 47.20 40.78
EN 43.69 47.67 37.51 3240 41.57 ITDEES ENFI 46.67 38.07 32.02 46.33 40.77
DE 47775 46.65 38.15 3147 41.01 ESITDEENFI 46.60 37.73 3146 4727 40.77
IT 45.88 47.15 37.88 30.65 40.39 ITDEFIESEN 46.80 37.73 3251 45.87 40.73
ES 43777 4527 36.63 057 31.56 ESDEITFIEN 4647 3727 3223 46.87 40.71
FI 43.15 4392 671 3320 31.74 ESDEENFIIT 46.67 37.67 3132 47.13 40.70

ITENESFIDE 4640 3793 31.11 47.07 40.63

Table 6: Influence of the hub language of the SHS ESDEENITFI 46.67 37.67 30.69 47.27 40.58
model on precision@]1 scores evaluated on the DIN- ITDEESFIEN 46.53  37.40 32024620 40.54
ITESDEFIEN 46.53 38.27 3132 4593 40.51
UARTETXE BLI dataset. ITDEFIENES 4627 37.60 3202 4593 40.46
ESITENDEFI 4620 37.20 31.18 46.93 40.38
ESENITFIDE 4687 36.80 30.83 46.67 40.29

with all possible language orders (sorted by preci- ESENDEFIIT 4640 36.80 31.32 46.53 40.26

: ESENDEITFI 4640 3680 3132 4647 4025
sion@1). Both the SHS and IHS models are run - g g\ mpEFL 4613 36.80 3101 4667 40.18

with reweighting (¢ = 0.5), SHS is run with value ~ ESITENFIDE 45.67 3720 30.55 46.93 40.09
dropping and THS is run without value dropping, ~ ESDEFIITEN 4567 3680 3083 4687 40.04

ITESENDEFI 4533 37.60 3027 4620 39.85
ITESENFIDE 4520 37.60 3034 4620 39.84
ESDEFIENIT 4520 37.07 3027 46.60 39.79
Order EN-DE EN-ES EN-FI EN-IT Avg ENESFIDEIT 4727 37.53 021 4733 33.09
ENDEESFIIT 48.60 3820 3322 47.80 41.96 DEFIITENES 48.07 3733 007 4680 33.07

ENDEFIESIT 4860 37.73 3350 47.93 41.94 Egggggﬁ; 32'32 ;;‘7‘2 8'13 i;'gz ;3'32
DEITENFIES 4840 38.07 3322 47.93 4191 : : : : :

ENDEESITFI 48.60 3820 3272 47.60 41.78 gggsl?ggg j;gg ;;33 8'3; ig'gg gigg
ENITDEESFI 4833 3873 3251 4753 41.78 : : : ' '

ENITESDEFI 48.07 3847 3301 4753 41.77 DEFIESENIT 4747 3740 007 4640 3284

DEFIESITEN 47.80 3720 007 4607 3279
ENDEITFIES 48.60 37.53 3322 4773 41.77

DEFIENITES 4673 3727 0.4 4660 32.69
ENDEFIITES 48.60 37.13 3350 47.67 41.73

DEFIENESIT 4673 3740 014 4633 32.65
ENITDEFIES 4833 3820 3279 47.53 4171

ITFIDEESEN 46.13 37.67 0.14 4620 32.54
DEITENES FI 4840 38.00 3251 47.93 4171

ESENFIDEIT 4660 3680 035 4620 3249
DEENFIITES 4840 37.60 3329 47.53 4171

ESFIDEITEN 44.67 3813 007 4693 32.45
DEENFIES IT 4840 3740 3329 47.67 41.69

ESENFIITDE 4660 3680 035 4547 3231
DEENITFIES 4840 3773 3322 4727 41.66

ITFIES DEEN 4560 3693 0.14 4647 32.29
DEENESITFI 4840 3820 3265 4733 41.65

ESFIITTDEEN 4560 3693 000 4653 3227
ENITFIDEES 4853 37.87 32.65 47.53 41.65

ITESFIDEEN 4500 37.60 021 4567 32.12
DEITESENFI 4827 3807 3230 47.73 4159

ITFIDEENES 4580 37.73 0.14 4480 32.12
DEENES FIIT 4840 3820 3237 4740 41.59

ENFIITDEES 4513 3660 014 4613 32.00
DEITFIESEN 47.80 37.93 3322 4740 4159

ENFIITESDE 4507 3633 0.14 4613 31.92
DEENITES FI 4840 37.53 33.08 4727 4157

ESFIDEENIT 4407 37.13 007 4607 31.84
ENITFIES DE 47.80 3807 3265 4753 4151

ESITFIDEEN 44.13 3660 007 4633 31.78
ENDEITES FI 48.60 37.67 3202 4773 4151

ESFIITENDE 4480 3673 000 4547 31.75
DEESITFIEN 4727 3833 3287 4740 4147

ITFIENESDE 4507 3620 0.14 4547 31.72
ITENDEFIES 4740 3847 32.65 47.07 41.40

ITFIES ENDE 4460 3653 0.14 4533 31.65
DEESFIITEN 4733 3853 3230 4733 4137

ITFIENDEES 4493 3580 0.4 4547 3159
DEESITENFI 4727 3840 31.88 47.80 41.34

ITESFIENDE 4420 3693 021 4493 31.57
DEESENFIIT 47.67 37.87 3202 47.67 4131

ESITFIENDE 4333 3613 007 4593 3137
DEITES FIEN 4740 3787 32.65 4727 41.30

FIDEITENES 4293 37.13 042 4473 31.30
ENESDEFIIT 47.93 3753 3209 4753 4127

FIDEITESEN 4320 36.67 028 4500 3129
ENITES FIDE 47.87 3847 31.18 47.53 4126

FIITDEENES 4440 3667 007 43.67 31.20
DEITFIENES 47.60 38.07 3237 4687 41.23

ESFIENDEIT 4373 3527 0.14 4500 31.04
DEESENITFI 47.67 3787 31.67 47.53 41.19 ST ENDEIL 2313 3527 04 200 3o
ITDEENFIES 47.00 38.00 33.15 4653 41.17 : : : : :
ITESDEENFI 47.53 3847 3237 4627 41.16
DEESFIENIT 4747 37.60 3244 46.87 41.10
ITENDEES FI 4740 3840 3139 47.07 41.07
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Order

EN-FI EN-IT Avg

FIDE ES IT EN
FIIT ES DE EN
FIDE EN IT ES
FIIT DE ES EN
FIES IT DE EN
FIDE EN ES IT
FIIT ES EN DE
FIES DE IT EN
FIDE ES EN IT
FIEN IT DE ES
FIES IT EN DE
FIES DE EN IT
FIEN IT ES DE
FIEN DE IT ES
FIEN DE ES IT
EN FIES DE IT
EN FIES IT DE
FIEN ES DE IT
FIIT EN DE ES
FIIT EN ES DE
FIES EN IT DE
FIES EN DE IT
FIEN ES IT DE

EN-DE EN-ES
4227  35.07
44.07  35.07
41.27  36.40
4333 35.40
43.60 33.60
41.27 3527
43.07 34.87
4213 32.67
4273 31.47
42.60 32.67
42.07 3193
42.00 29.13
40.80 31.33
3527 30.33
3527 29.40
46.53 0.73
47.00 0.73
17.27  0.07
9.13 6.60
5.20 3.93
0.33 0.13
0.27 0.13
0.33 0.07

0.14 4533 30.70
0.07 4333 30.64
0.14 4433 3054
0.07 43.13 30.48
021 4440 3045
0.14 44.60 30.32
0.14 4247 30.14
0.14  45.00 29.99
0.14 4547 2995
0.28 4153 29.27
021 4227 29.12
0.14 44.60 2897
0.28 4153 28.49
0.28 40.27 26.54
0.28 40.07 26.26
0.14 4713 23.63
0.14 4487 23.19
0.28 2033 9.49

0.00 253 457

0.00 253 292

035 0.67 037

035 047 031

028 0.13 0.20

Table 7: Influence of language order of the IHS model
on precision@1 scores evaluated on the DINUAR-
TETXE BLI dataset.
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