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Abstract

Graph Convolutional Networks (GCNs) are
a class of spectral clustering techniques that
leverage localized convolution filters to per-
form supervised classification directly on
graphical structures. While such methods
model nodes’ local pairwise importance, they
lack the capability to model global importance
relative to other nodes of the graph. This
causes such models to miss critical informa-
tion in tasks where global ranking is a key
component for the task, such as in keyphrase
extraction. We address this shortcoming by
allowing the proper incorporation of global
information into the GCN family of models
through the use of scaled node weights. In the
context of keyphrase extraction, incorporating
global random walk scores obtained from Tex-
tRank boosts performance significantly. With
our proposed method, we achieve state-of-the-
art results, bettering a strong baseline by an ab-
solute 2% increase in F; score.

1 Introduction

Learning directly on a graphical structure is a
crucial requirement in many domains. These
graphs represent information in many forms, rang-
ing from interconnected user groups to contextu-
ally linked documents to a central document by
shared vocabulary. Learning on graphs has been
studied extensively in the form of spectral cluster-
ing (Ng et al., 2002). The potential of learning
directly on graphs has realized in semi-supervised
settings where labels for only a few of the nodes
are available. Some prior work formulates such
setup as propagating the label information using
some form of graph-based regularization (Kipf
and Welling, 2016). Recently proposed works
have updated such methods to be end-to-end learn-
able in the deep learning style by employing gra-
dient descent on nodes within a fixed neighbor-
hood, approximating spectral clustering’s means

of approximating the graph’s eigenvectors (Bron-
stein et al., 2017) by aggregating neighborhood
features. Recent advancements in normalizing the
gradient range further improve the efficiency of
such solutions (Kipf and Welling, 2016). How-
ever, these techniques can only exploit local fea-
tures within the neighborhood of individual nodes.
For some tasks, such simplified local feature ag-
gregation may be sufficient, but insufficient for
tasks that need global relative importance informa-
tion.

One such important graph-based task is
keyphrase extraction. In this task, individual
words or phrases serve as graph nodes, and edges
represent some form of co-occurrence. Keyphrase
extraction has been extensively studied, in both su-
pervised (classification) and unsupervised (rank-
ing) modes. Depending on the length of the text
and the final application of the task, solutions
can be sample-based classification, pairwise rank-
ing or sequential labeling. For example, Kim
et al.(2010) explore the case of extracting top
keyphrases from complete documents for down-
stream indexing, while Augenstein et al.(2017)
connects its usage for knowledge base generation,
aiming to extract all plausible keyphrases within a
short excerpt. Treating a full-text scenario is ar-
guably more challenging than the treatment of an
excerpt scenario, as it requires the understanding
of the much larger scale of text and extracting its
most salient aspects.

Traditional supervised models employ a host
of hand-engineered features — ¢f.idf, candi-
date length, POS tags, sectional information,
frequency, among others (Kim et al., 2013;
Hasan and Ng, 2010) — trained with a wide
range of classifiers. As they typically model
the task as a binary classification task (i.e.,
keyphrase, —=keyphrase), they suffer severely
from class imbalance as keyphrases are the excep-
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tion among most plausible candidates.

Unsupervised methods use co-occurrence as
a signal for the labels. Under the hypothesis
that keyphrase saliency is strongly correlated with
repetition, graphical methods for unsupervised
keyphrase extraction employ centrality measures
and random walk techniques to rank prospective
keyphrases (Mihalcea and Tarau, 2004). This hy-
pothesis is widely exploited, with proposed exten-
sions further enriching the graph by incorporating
topic, section and/or position information (Flo-
rescu and Caragea, 2017b,a; Jiang et al., 2018),
among other forms of side information.

With these in mind, we make two important ob-
servations about the existing keyphrase extraction
techniques:

o In the supervised setting, word importance is
captured in metrics and engineered features,
as is local random walk scores. However, the
structure of the graph formed by the text is
not exploited.

o In the unsupervised setting, most techniques
do not tightly incorporate the rich semantic
features common in the supervised setting.
Furthermore, random walk scores are used
as-is, without the capability of being fine-
tuned by downstream supervision.

From this dichotomy, we see there is a gap to
close in merging the advantages of both. We pro-
pose a Glocal (global-local portmanteau) tech-
nique which incorporates both components di-
rectly over the word—graph. Specifically, we con-
tribute a neural model that elegantly incorporates
the random walk scores, while incorporating pa-
rameters to fit keyphrase labels. To the best of our
knowledge, our model is the only supervised full-
text keyphrase extraction model that operates di-
rectly on the word—graph.

2 Related Work

Our work draws motivation from the introduc-
tion of random walks to NLP. In this regard, Tex-
tRank (Mihalcea and Tarau, 2004), is a central rep-
resentative work that serves as a basis for many
text extraction modeling techniques used in en-
tity extraction and extractive summarization (we
use random walk and TextRank interchangeably in
this paper). The success of the application of such
random walks in text extraction is based on the hy-
pothesis that the important nodes aggregate more

mass and are thereby representative of the graph as
a whole. Importantly, TextRank can be viewed as
a ranking model, as it induces a ranking of graph
nodes via its centrality calculation. However, as
noted, supervised techniques for properly incorpo-
rating this information natively within the model,
in our opinion, has yet to be explored.

Recently, neural models have been developed to
work on graphs. These models port the ideas of
spectral clustering into the deep learning modality,
allowing direct computation on graphs. Methods
such as Graph Convolution Network (or GCN) can
then be applied to many different task scenarios
which natively feature graphical structures such as
citation and community graphs, which are com-
mon in the database, information retrieval, and
digital library domains (Kipf and Welling, 2016;
Hamilton et al., 2017). They enrich the graph
by aggregating features with information gathered
from the neighborhood of the node to be classified.
Enhancements to the model introduce much so-
phisticated local information aggregation between
the node pairs as in Graph Attention Networks
(GAT) Velickovié et al.. However, we note that
such prior methods fall inherently into the classi-
fication paradigm, and hence focus on only local
aggregation; i.e., to pull in the most significant fea-
ture from its neighbors.

In the context of keyphrase extraction, Zhang
et al. (2017) is a recent work that learns directly
on the graph. Their method, MIKE, determines
the weight of edges and nodes in a supervised
manner, rather than just utilizing co-occurrence
statistics. Their work features 5 orthogonal fea-
tures, one of which is topic distribution. They
consider the prominence of the tokens per topic
as the surrogate for ranking, utilized for model
training, by minimizing the difference in predicted
and gold-standard rank between iterations. MIKE
can be employed only when topic information is
available, but unfortunately, does not generalize to
the more common case where only gold-standard
keyphrases are available for training.

In Augenstein et al.(2017) benchmarking, state-
of-the-art rich semantic embeddings deep learn-
ing and handcrafted feature—based statistical se-
quential labeling models used LSTM (Ammar
et al., 2017) and CRF (Prasad and Kan, 2017)
models respectively. Meng et al.(2017) uses an
encoder—decoder model with a copy mechanism
for keyphrase extraction (as a special case of

1838



hs ’ hs ’

... Pshs )
hg s hg s

GCN

hy 12
A a2 P a/|4 ay P2z
hy Bahy 4
hs - :

16 fishs

ﬁlhl 12

j33hx"

GAT Glocal Convolution

Figure 1: Graph Convolution Model Architectures. Illustrations of the Graph Convolution Network (GCN, left),
Graph Attention Network (GAT, center) and our proposed Glocal technique (right), centered on node h; within its
1—hop neighborhood. TextRank on the complete graph is used to compute parameter 3;. GAT parameterizes the
edge weights based on gradients («;, also represented by the differing edge widths). Our Glocal technique adds
the TextRank score (represented by different scaling of nodes), which is not derived from the gradient.

generation). This state-of-the-art technique ex-
ploits a complementary idea of sequential seman-
tic modeling focused on generating keyphrases
rather than merely extracting them. However,
their model does not address the common scenario
of keyphrase extraction from long documents but
only for short excerpts (namely, the abstract). This
assumption reduces the complexity of the prob-
lem for sequential models that can effectively en-
code short text spans but may be ineffective on
full-text. We suspect this is a current limitation
of the encoder—decoder based models, which nec-
essarily reduces the entire textual sequence into a
single vector during the encoding stage — mak-
ing it susceptible to the vanishing gradient and
representation underfitting on large text. Further
advances using the encoder—decoder framework
such as (Chen et al., 2018) further explore the se-
quential modeling architectures by improving the
attention mechanism with traditional features like
title guidance. Note that many forms of such struc-
tural information — such as sectional information
and citation graph co-occurrence — can enhance
basic models, however without loss of generality,
in this work we consider only text-based features
for all the models.

3 Method

Our proposed model exploits the strength of both
supervised and unsupervised modalities by com-
bining two baseline models. Our Glocal model has
two components:

e For learning directly over the graph (classi-
fication), we use the recently proposed GCN

as our baseline model.

e For incorporating global importance (rank-
ing), we use TextRank as our baseline model.

We will first introduce the preliminaries: e.g.,
Graph Convolution Network (GCN), followed
by the modifications that result in the Graph
Attention Network (GAT). We then explain how
we modify the local convolution operation, to
incorporate global importance scores.

3.1 The Graph Convolution Network (GCN)

Graph G = (V, A), where V is a a finite set of ver-
tices such that |V| = n and A € R™*" is an undi-
rected weighted adjacency matrix representing all
edges, assume x : V' — R"™ maps each node to
x;, which is a n-dimensional feature vector. Spec-
tral filtering on a signal x is then represented as
(Defferrard et al., 2016):

y=go(L)x = Ugp(M)U "z, (1)

where L = I, — D~Y/2AD~1/2 and where I,, is
the identity matrix and D;; = > j A;;. Further,
parameterization and simplification of the filter by
(Hammond et al., 2011) results in:

K-1
go(A) = Y 0:Ti(A), )
k=0

where the Chebyshev polynomial T} (z) is com-
puted recursively. Note that Eqn. 2 is K-localized;
i.e. it depends only on nodes that are at a maxi-
mum of K hops away from the target node.
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A linear model can approximate this (Kipf and
Welling, 2016) resulting in the simplified form:

SAD g ,
(3)
with two free, tunable parameters 6(, and ). Con-
straining § = 6, = —0] further simplifies the ap-
proximation to a single-parameter form:

y ~ Oyx+0) (L — In)z = 0yx—0,D~

yz@(I]\H—D_%AD_%)x. @)

Note Iy + D 2AD"2 has eigenvalues in
the range [0,2], so a re- normalization trick
was proposed previously Iy + D™ AD™E -

~3AD~ 2 with A = A+ Iy and D;; =
Z j AZJ to keep gradients stable. This formulation
(GCN) supports the following layer-wise propaga-
tion rule:

) — U(ﬁ—%jb—%;qﬂ)wﬂ)) NG)!

Here, A = A + Iy is the adjacency matrix of the
undirected graph GG with added self-connections
and W is the layer-specific set of weight param-
eters. o denotes an activation function; in the GCN
model, ReLU is preferred. H O is the matrix of
activation in the [*" layer; H 0 = x.

3.2 The Graph Attention Network (GAT)

Unfortunately, the expressive power represented
by A is also its biggest limitation: as such,
the model only incorporates features from the
neighborhood as weighted by the connecting
edge normalized to unit sum (c¢f. Fig. 1, left).
To address this, the Graph Attention Network
model (Velickovi¢ et al., 2018) incorporates learn-
able scaling for each edge. This introduces a local
function attn : RF' x RF' — R,

ai; = attn(Whg, Why), (6)

that computes a score (attention) per node pair (or
edge, inclusive of self-loops). Here, the attn op-
erator is a single feed-forward layer employing
Leaky ReLU activation. This attention is normal-
ized in GAT as:

(7

to smooth the gradients. In contrast to GCN, GAT
replaces the A with a learned A’ where each en-
try «;; is a normalized score computed on each

node pair by the gradient (Fig. 1, center). The
normalized attention coefficients are used to com-
pute a linear combination of the features in a node
neighborhood N, yielding the equivalent layer-
wise propagation rule:

l+1 Z 041] . 3

JEN;

In terms of Eqn. 5, the fixed weights in the adja-
cency are replaced with learned weights or equiv-
alently hard neighborhood is replaced by soft
neighborhood. Since all edge weights are param-
eterized, a number (= 7") of multiple random ini-
tializations learn different representations, result-
ing in a number of different scalings for multiple
linear combinations. A final result is achieved by
either concatenating or averaging the multiple rep-
resentations as formulated in Eqns. 9 and 10, re-
spectively.

—

EEHl _ Z azjwt}—ig‘l) )
t=1 JEN;

0 (

3.3 Glocal: GAT with Random Walk Scores

In both GCN and GAT, a model with K lay-
ers incorporates the feature for a node up to its
K hop neighbors. Though GAT improves upon
GCN by assigning different importance to nodes
via learned weights as compared to the static edge
weight in GCN, it is still a local computation.
The attention factor, i.e. the scaling coefficients
«;, are the function of pairwise feature interaction
within the local neighborhood and do not account
for node centrality nor the global graph structure.
We fix this with our Glocal model.

Consider the random walk based score gener-
ated for the graph G such that:

Z > ol W' <”) (10)

t=1jeN;

pj = TextRank(i). (11)
We introduce this parameter /3; to the GAT model.
Considering this as the global importance compo-
nent to the node, we obtain two alternative formu-
lations that encode the node importance as either
an additive or a multiplicative form:
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A = & (Z ay Wh + 3 ﬁjw’ﬁy)) (12)

JEN; JEN;

E§l+l> =0 (Z BjaijW]_’Lél)) (13)

JEN;

From Eqns. 12 and 13, we see two scaling factors
«a and (3, which either reinforce or diminish the
other’s effect (Fig. 1, right). Unlike «, 3 is neither
calculated locally nor normalized. Not normaliz-
ing (§ is an essential component for having both
classification and ranking ability. With normaliza-
tion, even in a neighborhood with minimal Tex-
tRank scores, we will get an aggregation of fea-
tures with unit sum weights. While without nor-
malization it would perform almost no feature ag-
gregation from such nodes.

In our experiments, we use the formulation of
Eqn. 13, as a multiplicative formulation easily en-
ables multi-head attention (achieved by multiply-
ing A with B such that B;; = ;). Note that this
modeling applies to GCN as well: the second com-
ponent of the Eqn. 13 actually closely resembles
the GCN formulation for our proposed model.

4 Experiments

’ Dataset \ Total \ Training | Testing
Schutz (2008) 1,323 | 1,058%* 265%
Krapivin (2009) | 2,304 | 1844%* 460%*
SemEval (2010) | 1,095 708 387

Table 1: Number of documents in our keyphrase ex-
traction datasets. ‘*’ denotes that the dataset does not
have an official split; results are based on random splits.

We investigate keyphrase extraction, using the
most commonly reported full-text datasets, as
shown in Table 1. We divide the training data in
80 : 20 fraction for train and validation splits. Our
complete pipeline comprises the following steps:

1. Feature Processing. First we perform
TextRank on the complete text of each docu-
ment, retaining only tokens that are nouns and ad-
jectives, filtering out other words (equivalent to
simplex noun phrases). We use the gensim li-
brary (Rehtifek and Sojka, 2010) to perform Tex-
tRank and compute the scores. This process helps
in two ways — first, it gives us the node importance

value for each keyphrase, needed by Glocal; sec-
ond, it helps to manage the graph size and lessen
the label skew on the minority positive label by re-
moving extraneous tokens. For documents larger
than a max size (1200 tokens) we drop the ex-
tra least scored tokens. We find that the tokens
that have a TextRank score in bottom 50% pos-
sess only 16% of partial or full keyphrases in the
validation dataset. Hence dropping them from the
processing does not affect the recall much. The
nodes of the graph are single tokens and not com-
plete phrases, therefore all the tokens of multi-
token keyphrases are marked as keyphrase dur-
ing learning ion the graph. For the node/keyphrase
representations, we map our vocabulary to GloVe
embeddings using the 2.2 M vocabulary sized, 300
dimension vector variant (Pennington et al., 2014).
For reference, we observe GloVe covers about
90% of the words overall 3 datasets. We then
extract various textual features for the candidate
keyphrases, including their position of the first oc-
currence, tf.idf and n-gram count. These fea-
tures are appended to the word embedding to ob-
tain a final feature vector representing each node.
Rather than discard them, we choose to append the
n-gram features to retain rich lexical signals ob-
tained from the tokens.

2. Learning. The second step is to train the
model with the formulated graphs. We use a 2-
layer network with 128 units with ReLU acti-
vations for hidden layers, followed by a simple
2-way softmax classification layer (keyphrase,
—keyphrase). We further employ 8 attention
heads at all layers. We follow Glorot initializa-
tion (Glorot and Bengio, 2010) for all setting ini-
tial parameters weights, use a dropout of 0.5, and
employ a L2 regularization of 0.001. We train
with Adam optimizer on cross-entropy loss and
initial learning rate of 0.01 for 200 epochs using
an early stopping strategy with patience set to 20
epochs. In both evaluation and training, as gold
standard keyphrases have multiple tokens, we use
each token of the gold keyphrase as the true label
for each token.

3. Post-processing. This step reconstructs the
multi-token keyphrase from the probability scores
as generated by the Glocal model. This formation
step then requires a re-ranking (calculating R(p))
of the resultant phrase as:

R(p) =len(p) » Y _ r(w;)

w;Ep

(14)
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[ [ Schutz [ Krapivin [ SemEval ]
Model Fi@5 F,@l10 F,@l5 F;@5 F,@10 F;@15 F1@5 F,;@10 F, @15
tf.adf 11.3 13.7 15.2 6.9 7.3 9.4 9.1 12.2 13.5
TextRank (Mihalcea and Tarau, 2004) 10.2 12.4 14.9 7.6 9.3 9.9 11.2 144 15.2
RNN 32 3.6 4.0 2.6 2.9 3.6 3.0 3.2 3.7
GRU 3.8 3.2 3.9 3.1 3.4 5.1 2.6 2.8 3.9
CopyRNN 5.8 6.2 7.5 6.6 6.9 7.1 5.4 5.6 6.1
COpyRNNf (Meng et al., 2017) 29.3 30.2 32.2 26.2 25.3 271 28.7 29.4 31.1
GCN (Kipf and Welling, 2016) 16.7 17.8 19.2 19.2 19.8 20.9 18.7 19.5 214
GAT (Velickovic et al., 2018) 25.2 28.1 29.3 21.1 23.1 24.2 22.5 26.8 25.9
Glocal 30.7" 303 339 24.7 25.6 27.1 28.9 29.8 3357

Table 2: Main comparative system evaluations on keyphrase extraction.

All figures are F; @K. T uses only ab-

stract, rest all models are trained on full-text, * shows significant improvement over strongest baseline CopyRNN.

The initial rank of each candidate token is in this
case equal to the probability of the keyphrase,
ie, Yw; € p, 7(Wi) = Preyphrase(w;). We also
constrain the process such that the actual word se-
quence must appear in the original text.

An important note that we strictly do not nor-
malize the [3; scores; the re-ranking process and
the preservation of raw scores work in tandem.
Topologically, such graphs generated from tex-
tual data often have a few dense neighborhoods
and many sparse ones, resulting in significant raw
score differences that can benefit from scaling
down the feature appropriately. If normalization is
done in each neighborhood (as done for «;), it will
scale up individual nodes in a sparse neighborhood
and suppress nodes in a dense neighborhood, the
reverse of the intended operation.

5 Results

We compare our Glocal model’s results against
other models on the core task of keyphrase ex-
traction. We select baselines which represent the
related state-of-the-art under particular learning
paradigms: unstructured retrieval-based (¢ f.idf),
unsupervised graph-based (TextRank), supervised
sequence learning (RNN and derivatives) and su-
pervised structured models (GCN and derivatives).
The marked performance differences help us to
ablate and understand the gain brought about by
the supervision directly on the graph over unsu-
pervised graph-based techniques, as well as that
brought by incorporation of the random walk-
based score into the supervised model. We also
report TextRank and ¢ f.idf baselines to measure
ablative effects, as they contribute to Glocal.

For the sake of comparison, we restrict our com-
parison to modeling approaches, deciding to keep
the feature inventory constant; i.e. textual and sta-
tistical features. Closely related work discussed

earlier — such as MIKE (Zhang et al., 2017)
— are not directly comparable, since such works
may use many other orthogonal features. Simi-
larly, many supervised techniques use additional
features. The best reported SemEval-2010 sys-
tems show very close performance to our proposed
model, but they take advantages of other sources
of side information, such as Wikipedia term acqui-
sition, logical section information, bagging, and
ensembles; hence, they are not directly compara-
ble (reported in (Kim et al., 2010)). We argue that
our main contribution is in the capacity of model-
ing; other features utilized in prior work can en-
hance Glocal’s performance and suitable incorpo-
ration is future work. In a similar vein, Position-
Rank (Florescu and Caragea, 2017b) enhances the
random walk itself which can again act as a re-
placement for the TextRank in our model and is
thus not strictly a comparable method.

We argued earlier that the recently proposed
supervised encoder—decoder based CopyRNN
(Meng et al., 2017) deep learning models trained
using word embedding do not scale well to the
full-text setup. In their work, they only report
results for extracting (and generating) keyphrases
from abstracts. For direct comparison, we have
retrained these models in the full-text scenario to
validate our claim that these models have diffi-
culty with scaling. Further, we still compare with
the abstract-only trained model for CopyRNN to
benchmark both approaches.

The results are reported in '} @K where F} =
2 % precision * recall / (precision + recall) and
K is the number of keyphrases generated by the
model. Table 2 shows that our Glocal model
outperforms both GCN and GAT; and that no
other text-only based model shows comparable
performance. In the full-text scenario, sequen-
tial neural models fare comparably to TextRank,
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Text example from SemEval: Edge Indexing in a Grid for Highly Dynamic Virtual Environments. Newly emerging game-
based application systems such as Second Life provide 3D virtual environments where multiple users interact with each
other in real-time. They are filled with autonomous, mutable virtual content which is continuously augmented by the

Gold annotations (Author-assigned): 3d object stream, object pop problem, spatial index, visibl model
Gold annotations (Reader-assigned): edg index, dynam virtual environ, game-base applic, mutabl virtual content, spatial
databas, spatial index method, real-time visibl test,object-initi view model, object pop, 3d spatial extens

TextRank: virtual environ, applic, user, interac, system
GAT: environ, method, databas, model, user
Glocal: dynam virtual environ, real, edg index, game, applic

Text example from Schutz: Debugging Larch Shared Language Specifications. The checkability designed into the LSL
(Larch shared language) is described, and two tools that help perform the checking are discussed. LP (the Larch power) is
the principal debugging tool. Its design and development have been motivated primarily by work on LSL, but it also has
other uses (e.g., reasoning about circuits and concurrent algorithms). Because of these other uses, and because they also
tend to use LP to analyze Larch interface specifications, the authors have tried not to make LP too LSL-specific......

Gold annotations: debugging, formal specification, parallel programming, inference mechanisms, consistency, design, pro-
gram debugging, larch power, larch shared language specifications, checkability, concurrent algorithms, development, static
semantics, theory containment

TextRank: larch, programming, program, language, algorithm

GAT: parallel, parallel programming, language, larch, interface
Glocal: larch shared, parallel programming, design, program debugging, programming

Figure 2: Examples from the SemEval and Schutz datasets. Full matches are bolded; partial matches, italicized.
Output from SemEval dataset are stemmed before evaluation

but the recent graphical deep learning models rep-
resented by GCN and GAT outperforms it eas-
ily. Further, notice that TextRank alone performs
weakly in comparison to GAT, but does syner-
gize well with the base GAT in our Glocal sys-
tem yielding state-of-the-art performance over all
three datasets. These results are consistent micro-
scopically as well. Fig. 2 gives two illustrations
of keyphrases generated by TextRank, GAT, and
Glocal, which show the ability of Glocal to pull
out a larger ratio of exact keyphrase matches.

We drill down on SemEval dataset for a closer
look, as in Table 3, which has the highest posi-
tive label ratio at 14.8 keyphrases per document on
average. Keyphrases in SemEval are further clas-
sified as either author- or reader-annotated. De-
spite the task being difficult (15% of the reader-
and 19% of the author-assigned keyphrases are not
in the text) Glocal’s performance edge holds out
well, and the results are consistent on both forms
of assigned keyphrases.

We experiment with adding the neighborhood
normalization for 3; which resulted in a signifi-
cant decrease in performance of the Glocal model.
To further explore this issue of whether normaliza-
tion thus formed classification model has any ben-
efit over GCN and GAT, we experiment with the
Cora and Citeseer scientific document classifica-
tion tasks (as reported in (Kipf and Welling, 2016)

[ Model | Author Reader |
KP-Miner 17.1% 21.5%
Maui 16.2% 16.1%
TextRank 14.5% 15.1%
GAT 25.5% 26.0%
Glocal 32.2% 34.5%

Table 3: Summary of the fine-grained F; @15 on Se-
mEval. We compare with other state-of-the-art Se-
mEval systems using text-only feature-based models.

and (Veli¢kovi¢ et al., 2018)) which assigns a doc-
ument into one of six or seven topical categories.
We find that the incorporation of global random
walk information does not influence topical cate-
gorization much (with a minor gain in the case of
Cora dataset), and hence Glocal’s performance is
almost identical to the less expressive GAT model
in terms of classification.

6 Discussion

We now discuss three aspects of the model with
respect to the task of keyphrase extraction.

1. Feature versus Scaling. TextRank scores
are used in supervised classifiers, traditionally in-
corporated as a feature. How well would just in-
corporating TextRank as an additional feature to
GAT work? While it does help to improve perfor-
mance, it does not incorporate the ranking compo-
nent element in the model; i.e. even nodes with
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very low centrality can positively contribute to its
neighbors’ scores. Glocal’s tight integration is
beneficial as it allows further gradient optimiza-
tion, rather than just simply adding a new feature
dimension. Our experiment with adding TextRank
as an additional feature show =~ 2% performance
gain for GCN and < 0.5% performance gain for
GAT on average as compared to Glocal showing
gain of 5% on average. The behavior is consis-
tent with that of the classification model as in the
absence of 3, the GAT model is inherently a clas-
sification model.

As an example (¢f. Fig. 1, right), consider a
neighboring Node hj5 to the prospective keyphrase
represented by Node h;. Node hs has a low simi-
larity with the target (low «5), but if a prominent
node in the graph will be accorded a higher 5. In
this way, such a node channels more to its neigh-
bor, exerting comparatively steeper gradients to
less essential nodes, hence giving a larger chance
for Node h; to be considered a keyphrase. How-
ever, without Glocal’s scaling mechanism, such
modeling is not captured and essentially unlearn-
able. We further elaborate on this point next,
which shows how our scaling is equivalent to
known embedding aggregation techniques (in con-
trast to adding an extra feature dimension).

2. TextRank Averaged Node Embedding.
Kipf and Welling argue that GCN is analo-
gous with node embedding approach with the
Weisfeiler-Lehman algorithm for graph isomor-
phism. Namely, for every node ¢ in V/, and scalar
feature h;, the algorithm repeats for & steps or until
convergence:

ﬁi < hash Z Ej
JEN;

(15)

In case f_ij is a scalar this as well represents the
TextRank.

Comparing with layer-wise propagation rules
for GAT, GCN, and Glocal, we find a common
structure among the methods for incorporating
features. Eqn. 16b (representative of GAT) con-
verts a constant aggregation of Eqn. 16a (repre-
senting GCN) to be a locally learnable paramet-
ric scaling. Eqn. 16¢c (Glocal) further factorizes
the scaling with one locally learnable paramet-
ric and one global random walk score. In short,
our means of generating node representations (i.e.,
the post-training embedding) weights the repre-
sentations for each node/candidate keyphrase by

its random walk score. Such a procedure generates
stable representations, similar to tf.idf weighted
word embeddings used for sentence representa-
tion. Such techniques have shown better perfor-
mance as compared against complex aggregators
(like LSTMs) on tasks with insufficient data to
train end-to-end models.

R o (Z cijﬁ_g”w> : (16a)

JEN;

JEN;

R o (Z aijEy)W) , (16b)

Y o (Z ﬁjaijﬁ§l>w> : (16¢)
JEN;

3. Generating Longer Keyphrases. The
re-ranking trick for promoting the generation of
longer keyphrases — discussed earlier and in the
final step of our pipeline — is fielded in many sys-
tems (Zhang et al., 2017). This is a difficult re-
quirement to incorporate directly into the model,
relegating such techniques to post-processing by
default. A nice offshoot effect of our model is that
it implicitly favors generating longer keyphrases,
due to the inherent nature of the graph convolu-
tion operator in aggregating neighboring nodes’
features. This, compounded with a high ran-
dom walk score for the prospective keyphrase
node, results in a higher fraction of features prop-
agating from such nodes being included to its
neighboring nodes. In turn, this favors dense lo-
cal keyphrase neighborhoods of highly weighted
keyphrases, making the re-ranking step easier.

7 Conclusion

We have presented Glocal, a global plus local
graph convolution model for incorporating the
global importance of the node within the lo-
cal convolution operation for supervised learn-
ing on graphs. We argue both theoretical and
validate empirically that such a model has ben-
efits in strengthening the graph node ranking
component, particularly helpful in tasks such as
keyphrase extraction. On our detailed experiments
on keyphrase extraction on 3 real-world full-text
datasets, our model achieves better performance
than traditional, graph-based unsupervised graph-
based ranking models and bests sequential super-
vised classifiers as well. The specific compo-
nent of incorporating global importance further
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improve the performance by up to 8.0% abso-
lute F} on different evaluation criteria on full-text
setup as compared to GAT and up to 2% absolute
gain as compared to CopyRNN.
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