
Proceedings of NAACL-HLT 2019, pages 1734–1744
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

1734

Pun Generation with Surprise

He He1∗ and Nanyun Peng2∗ and Percy Liang1

1Computer Science Department, Stanford University
2Information Sciences Institute, University of Southern California
{hehe,pliang}@cs.stanford.edu, npeng@isi.edu

Abstract

We tackle the problem of generating a pun sen-
tence given a pair of homophones (e.g., “died”
and “dyed”). Supervised text generation is in-
appropriate due to the lack of a large corpus
of puns, and even if such a corpus existed,
mimicry is at odds with generating novel con-
tent. In this paper, we propose an unsuper-
vised approach to pun generation using a cor-
pus of unhumorous text and what we call the
local-global surprisal principle: we posit that
in a pun sentence, there is a strong associa-
tion between the pun word (e.g., “dyed”) and
the distant context, as well as a strong associa-
tion between the alternative word (e.g., “died”)
and the immediate context. This contrast cre-
ates surprise and thus humor. We instanti-
ate this principle for pun generation in two
ways: (i) as a measure based on the ratio of
probabilities under a language model, and (ii)
a retrieve-and-edit approach based on words
suggested by a skip-gram model. Human
evaluation shows that our retrieve-and-edit ap-
proach generates puns successfully 31% of the
time, tripling the success rate of a neural gen-
eration baseline.

1 Introduction

Generating creative content is a key require-
ment in many natural language generation tasks
such as poetry generation (Manurung et al.,
2000; Ghazvininejad et al., 2016), story gen-
eration (Meehan, 1977; Peng et al., 2018; Fan
et al., 2018; Yao et al., 2019), and social chat-
bots (Weizenbaum, 1966; Hao et al., 2018). In
this paper, we explore creative generation with a
focus on puns. We follow the definition of puns
in Aarons (2017); Miller et al. (2017): “A pun is a
form of wordplay in which one sign (e.g., a word
or a phrase) suggests two or more meanings by
exploiting polysemy, homonymy, or phonological

∗Equal contribution.

Yesterday I accidentally swallowed some food
coloring. The doctor says I'm OK, but I feel like

I've dyed a little inside.

Alternative word: died.Pun word: dyed.

Local context

Global context

Figure 1: An illustration of a homophonic pun. The
pun word appears in the sentence, while the alterna-
tive word, which has the same pronunciation but differ-
ent meaning, is implicated. The local context refers to
the immediate words around the pun word, whereas the
global context refers to the whole sentence.

similarity to another sign, for an intended humor-
ous or rhetorical effect.” We focus on a typical
class of puns where the ambiguity comes from two
(near) homophones. Consider the example in Fig-
ure 1: “Yesterday I accidentally swallowed some
food coloring. The doctor says I’m OK, but I feel
like I’ve dyed (died) a little inside.”. The pun word
shown in the sentence (“dyed”) indicates one in-
terpretation: the person is colored inside by food
coloring. On the other hand, an alternative word
(“died”) is implied by the context for another in-
terpretation: the person is sad due to the accident.

Current approaches to text generation require
lots of training data, but there is no large corpus
of puns. Even such a corpus existed, learning the
distribution of existing data and sampling from
it is unlikely to lead to truly novel, creative sen-
tences. Creative composition requires deviating
from the norm, whereas standard generation ap-
proaches seek to mimic the norm.

Recently, Yu et al. (2018) proposed an unsuper-
vised approach that generates puns from a neural
language model by jointly decoding conditioned
on both the pun and the alternative words, thus in-
jecting ambiguity to the output sentence. How-
ever, Kao et al. (2015) showed that ambiguity
alone is insufficient to bring humor; the two mean-

1735

ings must also be supported by distinct sets of
words in the sentence.

Inspired by Kao et al. (2015), we propose a gen-
eral principle for puns which we call local-global
surprisal principle. Our key observation is that
the strength for the interpretation of the pun and
the alternative words flips as one reads the sen-
tence. For example, in Figure 1, “died” is favored
by the immediate (local) context, whereas “dyed”
is favored by the global context (i.e. “...food color-
ing...”). Our surprisal principle posits that the pun
word is much more surprising in the local context
than in the global context, while the opposite is
true for the alternative word.

We instantiate our local-global surprisal princi-
ple in two ways. First, we develop a quantitative
metric for surprise based on the conditional prob-
abilities of the pun word and the alternative word
given local and global contexts under a neural lan-
guage model. However, we find that this metric is
not sufficient for generation. We then develop an
unsupervised approach to generate puns based on
a retrieve-and-edit framework (Guu et al., 2018;
Hashimoto et al., 2018) given an unhumorous cor-
pus (Figure 2). We call our system SURGEN

(SURprisal-based pun GENeration).
We test our approach on 150 pun-alternative

word pairs.1 First, we show a strong correlation
between our surprisal metric and funniness ratings
from crowdworkers. Second, human evaluation
shows that our system generates puns successfully
31% of the time, compared to 9% of a neural gen-
eration baseline (Yu et al., 2018), and results in
higher funniness scores.

2 Problem Statement

We assume access to a large corpus of raw (unhu-
morous) text. Given a pun word wp (e.g., “dyed”)
and an alternative word wa (e.g., “died”) which
are (near) homophones, we aim to generate a list
of pun sentences. A pun sentence contains only
the pun word wp, but both wp and wa should be
evoked by the sentence.

3 Approach

3.1 Surprise in Puns
What makes a good pun sentence? Our key ob-
servation is that as a reader processes a sentence,
he or she expects to see the alternative word at the

1Our code and data are available at https://github.
com/hhexiy/pungen.

pun word position, and are tickled by the relation
between the pun word and the rest of the sentence.
Consider the following cloze test: “Yesterday I
accidentally swallowed some food coloring. The
doctor says I’m OK, but I feel like I’ve a
little inside.”. Most people would expect the word
in the blank to be “died” whereas the actual word
is “dyed”. Locally, “died a little inside” is much
more likely than “dyed a little inside”. However,
globally when looking back at the whole sentence,
“dyed” is evoked by “food coloring”.

Formally, wp is more surprising relative to wa

in the local context, but much less so in the global
context. We hypothesize that this contrast between
local and global surprisal creates humor.

3.2 A Local-Global Surprisal Measure
Let us try to formalize the local-global surprisal
principle quantitatively. To measure the amount of
surprise due to seeing the pun word instead of the
alternative word in a certain context c, we define
surprisal S as the log-likelihood ratio of the two
events:

S(c)
def
= − log

p(wp | c)
p(wa | c)

= − log
p(wp, c)

p(wa, c)
. (1)

We define the local surprisal to only consider con-
text of a span around the pun word, and the global
surprisal to consider context of the whole sen-
tence. Letting x1, . . . , xn be a sequence of tokens,
and xp be the pun word wp, we have

Slocal
def
= S(xp−d:p−1, xp+1:p+d), (2)

Sglobal
def
= S(x1:p−1, xp+1:n), (3)

where d is the local window size.
For puns, both the local and global surprisal

should be positive because they are unusual sen-
tences by nature. However, the global surprisal
should be lower than the local surprisal due to
topic words hinting at the pun word. We use the
following unified metric, local-global surprisal, to
quantify whether a sentence is a pun:

Sratio
def
=

{
−1 Slocal < 0 or Sglobal < 0,

Slocal/Sglobal otherwise.
(4)

We hypothesize that larger Sratio is indicative of
a good pun. Note that this hypothesis is invalid
when either Slocal or Sglobal is negative, in which
case we consider the sentences equally unfunny by
setting Sratio to −1.

https://github.com/hhexiy/pungen
https://github.com/hhexiy/pungen

1736

the man stopped to get a hair cut.

wp =

wa =

hare
hair

the greyhound stopped to get a hare cut.

the man stopped to get a hare cut.

Retrieve using hair

Swap hair → hare

Insert topic man → greyhound

Figure 2: Overview of our pun generation approach.
Given a pair of pun/alternative word, we first retrieve
sentences containing wa from a generic corpus. Next,
wa is replaced by wp to increase local surprisal. Lastly,
we insert a topic word at the beginning of the sen-
tence to create global associations supporting wp and
decrease global surprisal.

3.3 Generating Puns

The surprisal metric above can be used to assess
whether a sentence is a pun, but to generate puns,
we need a procedure that can ensure grammatical-
ity. Recall that the surprisal principle requires (1)
a strong association between the alternative word
and the local context; (2) a strong association be-
tween the pun word and the distant context; and
(3) both words should be interpretable given local
and global context to maintain ambiguity.

Our strategy is to model puns as deviations from
normality. Specifically, we mine seed sentences
(sentences with the potential to be transformed
into puns) from a large, generic corpus, and edit
them to satisfy the three requirements above.

Figure 2 gives an overview of our approach.
Suppose we are generating a pun given wp =
“hare” and wa = “hair”. To reinforce wa =
“hair” in the local context despite the appearance
of “hare”, we retrieve sentences containing “hair”
and replace occurrences of it with “hare”. Here,
the local context strongly favors the alternative
word (“hair cut”) relative to the pun word (“hare
cut”). Next, to make the pun word “hare” more
plausible, we insert a “hare”-related topic word
(“greyhound”) near the beginning of the sentence.
In summary, we create local surprisal by putting
wp in common contexts for wa, and connect wp to
a distant topic word by substitution. We describe
each step in detail below.

Local surprisal. The first step is to retrieve sen-
tences containing wa. A typical pattern of pun
sentences is that the pun word only occurs once
towards the end of the sentence, which separates
local context from pun-related topics at the begin-
ning. Therefore, we retrieve sentences containing
exactly one wa and rank them by the position of wa

in the sentence (later is better). Next, we replace
wa in the retrieved sentence with wp. The pun
word usually fits in the context as it often has the
same part-of-speech tag as the alternative word.
Thus the swap creates local surprisal by putting
the pun word in an unusual but acceptable context.
We call this step RETRIEVE+SWAP, and use it as
a baseline to generate puns.

Global surprisal. While the pun word is locally
unexpected, we need to foreshadow it. This global
association must not be too strong that it elim-
inates the ambiguity. Therefore, we include a
single topic word related to the pun word by re-
placing one word at the beginning of the seed
sentence. We see this simple structure in many
human-written puns as well. For example, “Old
butchers never die, they only meat their fate.”,
where pun words and their corresponding topic
words are underlined.

We define relatedness between two words wi
and wj based on a “distant” skip-gram model
pθ(wj | wi), where we train pθ to maximize
pθ(wj | wi) for all wi, wj in the same sentence
between d1 to d2 words apart. Formally:

i−d2∑
j=i−d1

log pθ(wj | wi) +
i+d2∑
j=i+d1

log pθ(wj | wi).

(5)

We take the top-k predictions from pθ(w | wp),
where wp is the pun word, as candidate topic
words w to be further filtered next.

Type consistent constraint. The replacement
must maintain acceptability of the sentence. For
example, changing “person” to “ship” in “Each
person must pay their fare share” does not make
sense even though “ship” and “fare” are related.
Therefore, we restrict the deleted word in the seed
sentence to nouns and pronouns, as verbs have
more constraints on their arguments and replacing
them is likely to result in unacceptable sentences.

In addition, we select candidate topic words that
are type-consistent with the deleted word, e.g., re-
placing “person” with “passenger” as opposed to

1737

“ship”. We define type-consistency (for nouns)
based on WordNet path similarity.2 Given two
words, we get their synsets from WordNet con-
strained by their POS tags.3 If the path similarity
between any pair of senses from the two respective
synsets is larger than a threshold, we consider the
two words type-consistent. In summary, the first
noun or pronoun in the seed sentence is replaced
by a type-consistent topic word. We call this base-
line RETRIEVE+SWAP+TOPIC.

Improve grammaticality. Directly replacing a
word with the topic word may result in un-
grammatical sentences, e.g., replacing “i” with
“negotiator” and getting “negotiator am just
a woman trying to peace her life back to-
gether.”. Therefore, we use a sequence-to-
sequence model to smooth the edited sentence
(RETRIEVE+SWAP+TOPIC+SMOOTHER).

We smooth the sentence by deleting words
around the topic word and train a model to fill
in the blank. The smoother is trained in a simi-
lar fashion to denoising autoencoders: we delete
immediate neighbors of a word in a sentence, and
ask the model to reconstruct the sentence by pre-
dicting missing neighbors. A training example is
shown below:

Original: the man slowly walked towards
the woods .

Input: <i> man </i> walked towards the
woods .

Output: the man slowly

During training, the word to delete is selected in
the same way as selecting the word to replace in a
seed sentence, i.e. nouns or pronouns at the begin-
ning of a sentence. At test time, the smoother is
expected to fill in words to connect the topic word
with the seed sentence in a grammatical way, e.g.,
“the negotiator is just a woman trying to peace
her life back together.” (the part rewritten by the
smoother is underlined).

4 Experiments

We first evaluate how well our surprisal prin-
ciple predicts the funniness of sentences per-
ceived by humans (Section 4.2), and then com-
pare our pun generation system and its varia-

2 Path similarity is a score between 0 and 1 that is in-
versely proportional to the shortest distance between two
word senses in WordNet.

3 Pronouns are mapped to the synset person.n.01.

tions with a simple retrieval baseline and a neural
generation model (Yu et al., 2018) (Section 4.3).
We show that the local-global surprisal scores
strongly correlate with human ratings of funni-
ness, and all of our systems outperform the base-
lines based on human evaluation. In particular,
RETRIEVE+SWAP+TOPIC (henceforth SURGEN)
achieves the highest success rate and average fun-
niness score among all systems.

4.1 Datasets
We use the pun dataset from 2017 SemEval
task7 (Doogan et al., 2017). The dataset con-
tains 1099 human-written puns annotated with pun
words and alternative words, from which we take
219 for development. We use BookCorpus (Zhu
et al., 2015) as the generic corpus for retrieval and
training various components of our system.

4.2 Analysis of the Surprisal Principle
We evaluate the surprisal principle by analyzing
how well the local-global surprisal score (Equa-
tion (4)) predicts funniness rated by humans. We
first give a brief overview of previous computa-
tional accounts of humor, and then analyze the cor-
relation between each metric and human ratings.

Prior funniness metrics. Kao et al. (2015) pro-
posed two information-theoretic metrics: ambigu-
ity of meanings and distinctiveness of supporting
words. Ambiguity says that the sentence should
support both the pun meaning and the alterna-
tive meaning. Distinctiveness further requires that
the two meanings be supported by distinct sets of
words.

In contrast, our metric based on the surprisal
principle imposes additional requirements. First,
surprisal says that while both meanings are accept-
able (indicating ambiguity), the pun meaning is
unexpected based on the local context. Second,
the local-global surprisal contrast requires the pun
word to be well supported in the global context.

Given the anomalous nature of puns, we
also consider a metric for unusualness based
on normalized log-probabilities under a language
model (Pauls and Klein, 2012):

Unusualnessdef= − 1

n
log

(
p(x1, . . . , xn)/

n∏
i=1

p(xi)

)
.

(6)

Implementation details. Both ambiguity and
distinctiveness are based on a generative model

1738

Type Example SEMEVAL KAO

Count Funniness Count Funniness

Pun Yesterday a cow saved my life—it was bovine intervention. 33 1.13 141 1.09
Swap-pun Yesterday a cow saved my life—it was divine intervention. 33 0.05 0 —

Non-pun The workers are all involved in studying the spread of
bovine TB. 64 -0.34 257 -0.53

Table 1: Dataset statistics and funniness ratings of SEMEVAL and KAO. Pun or alternative words are underlined
in the example sentence. Each worker’s ratings are standardized to z-scores. There is clear separation among the
three types in terms of funniness, where pun > swap-pun > non-pun.

Metric Pun and non-pun Pun and swap-pun Pun

SEMEVAL KAO SEMEVAL SEMEVAL KAO

Surprisal (Sratio) 0.46 p=0.00 0.58 p=0.00 0.48 p=0.00 0.26 p=0.15 0.08 p=0.37
Ambiguity 0.40 p=0.00 0.59 p=0.00 0.18 p=0.15 0.00 p=0.98 0.00 p=0.95
Distinctiveness -0.17 p=0.10 0.29 p=0.00 0.15 p=0.24 0.41 p=0.02 0.27 p=0.00
Unusualness 0.37 p=0.00 0.36 p=0.00 0.19 p=0.12 0.20 p=0.27 0.11 p=0.18

Table 2: Spearman correlation between different metrics and human ratings of funniness. Statistically significant
correlations with p-value < 0.05 are bolded. Our surprisal principle successfully differentiates puns from non-
puns and swap-puns. Distinctiveness is the only metric that correlates strongly with human ratings within puns.
However, no single metric works well across different types of sentences.

of puns. Each sentence has a latent variable z ∈
{wp, wa} corresponding to the pun meaning and
the alternative meaning. Each word also has a
latent meaning assignment variable f controlling
whether it is generated from an unconditional un-
igram language model or a unigram model condi-
tioned on z. Ambiguity is defined as the entropy
of the posterior distribution over z given all the
words, and distinctiveness is defined as the sym-
metrized KL-divergence between distributions of
the assignment variables given the pun meaning
and the alternative meaning respectively. The gen-
erative model relies on p(xi | z), which Kao et al.
(2015) estimates using human ratings of word re-
latedness. We instead use the skip-gram model
described in Section 3.3 as we are interested in a
fully-automated system.

For local-global surprisal and unusualness, we
estimate probabilities of text spans using a neural
language model trained on WikiText-103 (Merity
et al., 2016).4 The local context window size (d in
Equation (2)) is set to 2.

Human ratings of funniness. Similar to Kao
et al. (2015), to test whether a metric can differen-
tiate puns from normal sentences, we collected rat-
ings for both puns from the SemEval dataset and
non-puns retrieved from the generic corpus con-
taining either wp or wa. To test the importance of

4https://dl.fbaipublicfiles.com/
fairseq/models/wiki103_fconv_lm.tar.bz2.

surprisal, we also included swap-puns where wp is
replaced by wa, which results in sentences that are
ambiguous but not necessarily surprising.

We collected all of our human ratings on Ama-
zon Mechanical Turk (AMT). Workers are asked
to answer the question “How funny is this sen-
tence?” on a scale from 1 (not at all) to 7 (ex-
tremely). We obtained funniness ratings on 130
sentences from the development set with 33 puns,
33 swap-puns, and 64 non-puns. 48 workers each
read roughly 10–20 sentences in random order,
counterbalanced for sentence types of non-puns,
swap-puns, and puns. Each sentence is rated by
5 workers, and we removed 10 workers whose
maximum Spearman correlation with other people
rating the same sentence is lower than 0.2. The
average Spearman correlation among all the re-
maining workers (which captures inter-annotator
agreement) is 0.3. We z-scored the ratings of
each worker for calibration and took the average z-
scored ratings of a sentence as its funniness score.

Table 1 shows the statistics of our annotated
dataset (SEMEVAL) and Kao et al. (2015)’s dataset
(KAO). Note that the two datasets have different
numbers and types of sentences, and the human
ratings were collected separately. As expected,
puns are funnier than both swap-puns and non-
puns. Swap-puns are funnier than non-puns, pos-
sibly because they have inherit ambiguity brought
by the RETRIEVE+SWAP operation.

https://dl.fbaipublicfiles.com/fairseq/models/wiki103_fconv_lm.tar.bz2
https://dl.fbaipublicfiles.com/fairseq/models/wiki103_fconv_lm.tar.bz2

1739

Automatic metrics of funniness. We analyze
the following metrics: local-global surprisal
(Sratio), ambiguity, distinctiveness, and unusual-
ness, with respect to their correlation with hu-
man ratings of funniness. For each metric, we
standardized the scores and outliers beyond two
standard deviations are set to +2 or −2 accord-
ingly.5 We then compute the metrics’ Spear-
man correlation with human ratings. On KAO,
we directly took the ambiguity scores and dis-
tinctiveness scores from the original implementa-
tion which requires human-annotated word relat-
edness.6 On SEMEVAL, we used our reimplemen-
tion of Kao et al. (2015)’s algorithm but with the
skip-gram model.

The results are shown in Table 2. For puns
and non-puns, all metrics correlate strongly with
human scores, indicating all of them are useful
for pun detection. For puns and swap-puns, only
local-global surprisal (Sratio) has strong correla-
tion, which shows that surprisal is important for
characterizing puns. Ambiguity and distinctive-
ness do not differentiate pun word from the alter-
native word, and unusualness only considers prob-
ability of the sentence with the pun word, thus they
do not correlate as significantly as Sratio.

Within puns, only distinctiveness has significant
correlation, whereas the other metrics are not fine-
grained enough to differentiate good puns from
mediocre ones. Overall, no single metric is ro-
bust enough to score funniness across all types of
sentences, which makes it hard to generate puns
by optimizing automatic metrics of funniness di-
rectly.

There is slight inconsistency between results on
SEMEVAL and KAO. Specifically, for puns and
non-puns, the distinctiveness metric shows a sig-
nificant correlation with human ratings on KAO

but not on SEMEVAL. We hypothesize that it is
mainly due to differences in the two corpora and
noise from the skip-gram approximation. For ex-
ample, our dataset contains longer sentences with
an average length of 20 words versus 11 words for
KAO. Further, Kao et al. (2015) used human anno-
tation of word relatedness while we used the skip-
gram model to estimate p(xi | z).

5Since both Sratio and distinctiveness are unbounded,
bounding the values gives more reliable correlation results.

6https://github.com/amoudgl/pun-model

Method Success Funniness Grammar

NJD 9.2% 1.4 2.6
R 4.6% 1.3 3.9
R+S 27.0% 1.6 3.5
R+S+T+M 28.8% 1.7 2.9
SURGEN 31.4% 1.7 3.0

Human 78.9% 3.0 3.8

Table 3: Human evaluation results of all sys-
tems. We show average scores of funniness
and grammaticality on a 1-5 scale and success
rate computed from yes/no responses. We com-
pare with two baselines: NEURALJOINTDECODER
(NJD) and RETRIEVE (R). R+S, SURGEN, and
R+S+T+M are three variations of our method:
RETRIEVE+SWAP, RETRIEVE+SWAP+TOPIC, and
RETRIEVE+SWAP+TOPIC+SMOOTHER, respectively.
Overall, SURGEN performs the best across the board.

4.3 Pun Generation Results
Systems. We compare with a recent neural pun
generator (Yu et al., 2018). They proposed an un-
supervised approach based on generic language
models to generate homographic puns.7 Their
approach takes as input two senses of a tar-
get word (e.g., bat.n01, bat.n02 from WordNet
synsets), and decodes from both senses jointly by
taking a product of the probabilities conditioned
on the two senses respectively (e.g., bat.n01 and
bat.n02), so that both senses are reflected in the
output. To ensure that the target word appears
in the middle of a sentence, they decode back-
ward from the target word towards the beginning
and then decode forward to complete the sen-
tence. We adapted their method to generate ho-
mophonic puns by considering wp and wa as two
input senses and decoding from the pun word. We
retrained their forward / backward language mod-
els on the same BookCorpus used for our sys-
tem. For comparison, we chose their best model
(NEURALJOINTDECODER), which mainly cap-
tures ambiguity in puns.

In addition, we include a retrieval baseline
(RETRIEVE) which simply retrieves sentences
containing the pun word.

For our systems, we include the entire pro-
gression of methods described in Section 3
(RETRIEVE+SWAP, RETRIEVE+SWAP+TOPIC,
and RETRIEVE+SWAP+TOPIC+SMOOTHER).

Implementation details. The key components
of our systems include a retriever, a skip-gram

7Sentences where the pun word and alternative word have
the same written form (e.g., bat) but different senses.

https://github.com/amoudgl/pun-model

1740

Aspect SURGEN v.s. NJD SURGEN v.s. Human
win % lose % win % lose %

Success 48.0 5.3 6.0 78.7
Funniness 56.7 25.3 10.7 85.3
Grammar 60.7 30.0 8.0 82.0

Table 4: Pairwise comparison between SURGEN and
NEURALJOINTDECODER (NJD), and between SUR-
GEN and human written puns. Win % (lose %) is
the percentage among the human-rated 150 sentences
where SURGEN achieves a higher (lower) average
score compared to the other method. The rest are ties.

model for topic word prediction, a type consis-
tency checker, and a neural smoother. Given an
alternative word, the retriever returned 500 candi-
dates, among which we took the top 100 as seed
sentences (Section 3.3 local surprisal). For topic
words, we took the top 100 words predicted by the
skip-gram model and filtered them to ensure type
consistency with the deleted word (Section 3.3
global surprisal). The WordNet path similarity
threshold for type consistency was set to 0.3.

The skip-gram model was trained on BookCor-
pus with d1=5 and d2=10 in Equation (5). We
set the word embedding size to 300 and trained
for 15 epochs using Adam (Kingma and Ba, 2014)
with a learning rate of 0.0001. For the neural
smoother, we trained a single-layer LSTM (512
hidden units) sequence-to-sequence model with
attention on BookCorpus. The model was trained
for 50 epochs using AdaGrad (Duchi et al., 2010)
with a learning rate of 0.01 and a dropout rate of
0.1.

Human evaluation. We hired workers on AMT
to rate outputs from all 5 systems together with
expert-written puns from the SemEval pun dataset.
Each worker was shown a group of sentences gen-
erated by all systems (randomly shuffled) given
the same pun word and alternative word pair.
Workers were asked to rate each sentence on three
aspects: (1) success (“Is the sentence a pun?”),8

(2) funniness (“How funny is the sentence?”), and
(3) grammaticality (“How grammatical is the sen-
tence?”). Success was rated as yes/no, and fun-
niness and grammaticality were rated on a scale
from 1 (not at all) to 5 (very). We also included
a N/A choice (does not make sense) for funniness
to exclude cases where the sentence are not under-
standable. Workers were explicitly instructed to
try their best to give different scores for sentences

8They were shown the definition from Miller et al. (2017).

14%

38%

32%

8%
6%

28%

A	breakdown	of	error	types

topic	not	fit pun	word	not	fit
topic-pun	word	not	related grammar	error
fail	to	generate bad	seed	sentence

Figure 3: Error case breakdown shows that the main
issues lie in finding seed sentences that accommodates
both the pun word and the topic word (topic not fit +
pun word not fit + bad seed sentence).

in the same group.
We evaluated 150 pun/alternative word pairs.

Each generated sentence was rated by 5 workers
and their scores were averaged. N/A ratings were
excluded unless all ratings of a sentence were N/A,
in which case we set its score to 0. We attracted
65, 93, 66 workers for the success, funniness, and
grammaticality surveys respectively, and removed
3, 4, 4 workers because their maximum Spear-
man correlation with other workers was lower than
0.2. We measure inter-annotator agreement using
average Spearman correlation among all workers,
and the average inter-annotator Spearman correla-
tion for success, funniness, and grammaticality are
0.57, 0.36, and 0.32, respectively.

Table 3 shows the overall results. All 3 of our
systems outperform the baselines in terms of suc-
cess rate and funniness. More edits (i.e. swap-
ping, inserting topic words) made the sentence less
grammatical, but also much more like puns (higher
success rate). Interestingly, introducing the neural
smoother did not improve grammaticality and hurt
success rate slightly. Manual inspection shows
that ungrammaticality is often caused by improper
topic word, thus fixing its neighboring words does
not truly solve the problem. For example, filling
“drum” (related to “lute”) in “if that was it
was likely that another body would turn up soon,
because someone probably wouldn’t want to share
the lute.”. In addition, when the neural model is
given a rare topic word, it tends to rewrite it to
a common phrase instead, again showing that su-
pervised learning is against the spirit of generat-
ing novel content. For example, inserting “gentle-
woman” to “ not allow me to ...” produces
“these people did not allow me to ...”. Overall, our

1741

Method Example Rating
1. Pun/alternative word pair: butter – better

NJD He is going to come up with the butter a ‘very good’ approach to the world’s economic crisis, the
world’s biggest economic climate.

1

SURGEN Well, gourmet did it, he thought, it’d butter be right. 2
Human Why did the dairy churn? The less said, the butter... 1.5

2. Pun/alternative word pair: peace – piece

NJD Further, he said, at the end of the peace, it’s not clear that it will be a good example. 1
SURGEN That’s because negotiator got my car back to me in one peace. 1.5
Human Life is a puzzle; look here for the missing peace. 3

3. Pun/alternative word pair: flour – flower

NJD Go, and if you are going on the flour. 1
SURGEN Butter want to know who these two girls are, the new members of the holy flour. 1.5
Human Betty crocker was a flour child. 4.5

4. Pun/alternative word pair: wait – weight

NJD Gordon Brown, Georgia’s prime minister, said he did not have to wait, but he was not sure whether he
had been killed.

0

SURGEN Even from the outside, I could tell that he’d already lost some wait. 2
Human Patience is a virtue heavy in wait. 3

Table 5: Examples of generated puns with average human ratings of funniness (1-5). 0 means that all ratings are
N/A (does not make sense).

SURGEN performs the best and tripled the success
rate of NEURALJOINTDECODER with improved
funniness and grammaticality scores. Neverthe-
less, there is still a significant gap between gen-
erated puns and expert-written puns across all as-
pects, indicating that pun generation remains an
open challenge.

Table 4 shows the pairwise comparison results
among our best model SURGEN, NEURALJOINT-
DECODER, and expert-written puns. Given the
outputs of two systems, we decided win/lose/tie
by comparing the average scores of both outputs.
We see that SURGEN dominates NEURALJOINT-
DECODER with > 50% winning rate on funni-
ness and grammaticality. On success rate, the two
methods have many ties since they both have rel-
atively low success rate. Our generated puns were
rated funnier than expert-written puns around 10%
of the time.

4.4 Error Analysis

In Table 5, we show example outputs of our SUR-
GEN, the NEURALJOINTDECODER baseline, and
expert-written puns. SURGEN sometimes gen-
erates creative puns that are rated even funnier
than human-written puns (example 1). In con-
trast, NEURALJOINTDECODER at best generates
ambiguous sentences (example 2 and 3) and some-
times the sentences are ungrammatical (example
1) or hard to understand (example 4). The exam-
ples also show the current limitation of SURGEN.

In example 3, it failed to realize that “butter” is not
animate thus cannot “want” since our type consis-
tency checker is very simple.

To gain further insights on the limitation of
our system, we randomly sampled 50 unsuccess-
ful generations (labeled by workers) to analyze
the issues. We characterized the issues into 6
non-exclusive categories: (1) weak association be-
tween the local context and wa (e.g., “...in the form
of a batty (bat)”); (2) wp does not fit in the lo-
cal context, often due to different POS tags of wa

and wp (e.g., “vibrate with a taxed (text)”); (3)
the topic word is not related to wp (e.g., “pagan”
vs “fabrication”); (4) the topic word does not fit
in its immediate context, often due to inconsistent
types (e.g., “slider won’t go...”), (5) grammatical
errors; and (6) fail to obtain seed sentences or topic
words. A breakdown of these errors is shown in
Figure 3. The main issues lie in finding seed sen-
tences that accommodate both the pun word and
the topic word. There is also room for improve-
ment in predicting pun-related topic words.

5 Discussion and Related Work

5.1 Humor Theory

Humor involves complex cognitive activities and
many theories attempt to explain what might be
considered humorous. Among the leading theo-
ries, the incongruity theory (Tony, 2004) is most
related to our surprisal principle. The incongruity

1742

theory posits that humor is perceived at the mo-
ment of resolving the incongruity between two
concepts, often involving unexpected shifts in per-
spectives. Ginzburg et al. (2015) applied the in-
congruity theory to explain laughter in dialogues.
Prior work (Kao et al., 2015) on formalizing in-
congruity theory for puns focuses on ambiguity
between two concepts and the heterogeneity na-
ture of the ambiguity. Our surprisal principle fur-
ther formalizes unexpectedness (local surprisal)
and incongruity resolution (global association).

The surprisal principle is also related to stud-
ies in psycholinguistics on the relation between
surprisal and human comprehension (Levy, 2013;
Levy and Gibson, 2013). Our study suggests
it could be a fruitful direction to formally study
the relationship between human perception of sur-
prisal and humor.

5.2 Humor generation
Early approaches to joke generation (Binsted,
1996; Ritchie, 2005) largely rely on templates
for specific types of puns. For example,
JAPE (Binsted, 1996) generates noun phrase puns
as question-answer pairs, e.g., “What do you call
a [murderer] with [fiber]? A [cereal] [killer].”
Petrovic and Matthews (2013) fill in a joke tem-
plate based on word similarity and uncommon-
ness. Similar to our editing approach, Valitutti
et al. (2013) substitutes a word with a taboo
word based on form similarity and local coher-
ence to generate adult jokes. Recently, Yu et al.
(2018) generates puns from a generic neural lan-
guage model by simultaneously conditioning on
two meanings. Most of these approaches leverage
some assumptions of joke structures, e.g., incon-
gruity, relations between words, and word types.
Our approach also relies on specific pun struc-
tures; we have proposed and operationalized a
local-global surprisal principle for pun generation.

5.3 Creative text generation
Our work is also built upon generic text genera-
tion techniques, in particular recent neural gen-
eration models. Hashimoto et al. (2018) devel-
oped a retrieve-and-edit approach to improve both
grammaticality and diversity of the generated text.
Shen et al. (2017); Fu et al. (2018) explored ad-
versarial training to manipulate the style of a sen-
tence. Our neural smoother is also closely related
to Li et al. (2018)’s delete-retrieve-edit approach
to text style transfer.

Creative generation is more challenging as
it requires both formality (e.g., grammaticality,
rhythm, and rhyme) and novelty. Therefore, many
works (including us) impose strong constraints
on the generative process, such as Petrovic and
Matthews (2013); Valitutti et al. (2013) for joke
generation, Ghazvininejad et al. (2016) for poetry
generation, and Yao et al. (2019) for storytelling.

6 Conclusion

In this paper, we tackled pun generation by de-
veloping and exploring a local-global surprisal
principle. We show that a simple instantia-
tion based on only a language model trained on
non-humorous text is effective at detecting puns
(though is not fine-grained enough to detect the
degree of funniness within puns). To gener-
ate puns, we operationalize the surprisal princi-
ple with a retrieve-and-edit framework to create
contrast in the amount of surprise in local and
global contexts. While we improve beyond current
techniques, we are still far from human-generated
puns.

While we believe the local-global surprisal prin-
ciple is a useful conceptual tool, the principle it-
self is not quite yet formalized in a robust enough
way that can be be used both as a principle for
evaluating sentences and can be directly optimized
to generate puns. A big challenge in humor, and
more generally, creative text generation, is to cap-
ture the difference between creativity (novel but
well-formed material) and nonsense (ill-formed
material). Language models conflate the two, so
developing methods that are nuanced enough to
recognize this difference is key to future progress.

Acknowledgments

This work was supported by the DARPA CwC
program under ISI prime contract no. W911NF-
15-1-0543 and ARO prime contract no. W911NF-
15-1-0462. We thank Abhinav Moudgil and Jus-
tine Kao for sharing their data and results. We
also thank members of the Stanford NLP group
and USC Plus Lab for insightful discussions.

Reproduciblility

All code, data, and experiments for
this paper are available on the CodaLab
platform: https://worksheets.
codalab.org/worksheets/
0x5a7d0fe35b144ad68998d74891a31ed6.

https://worksheets.codalab.org/worksheets/0x5a7d0fe35b144ad68998d74891a31ed6
https://worksheets.codalab.org/worksheets/0x5a7d0fe35b144ad68998d74891a31ed6
https://worksheets.codalab.org/worksheets/0x5a7d0fe35b144ad68998d74891a31ed6

1743

References
D. Aarons. 2017. Puns and tacit linguistic knowledge.

The Routledge Handbook of Language and Humor,
Routledge, New York, NY, Routledge Handbooks in
Linguistics.

K. Binsted. 1996. Machine Humour: An Implemented
Model of Puns. Ph.D. thesis, University of Edin-
burgh.

S. Doogan, A. Ghosh, H. Chen, and T. Veale. 2017. Id-
iom savant at SemEval-2017 task 7: Detection and
interpretation of English puns. In The 11th Interna-
tional Workshop on Semantic Evaluation.

J. Duchi, E. Hazan, and Y. Singer. 2010. Adaptive sub-
gradient methods for online learning and stochastic
optimization. In Conference on Learning Theory
(COLT).

A. Fan, M. Lewis, and Y. Dauphin. 2018. Hier-
archical neural story generation. arXiv preprint
arXiv:1805.04833.

Z. Fu, X. Tan, N. Peng, D. Zhao, and R. Yan. 2018.
Style transfer in text: Exploration and evaluation. In
Association for the Advancement of Artificial Intel-
ligence (AAAI).

M. Ghazvininejad, X. Shi, Y. Choi, and K. Knight.
2016. Generating topical poetry. In Empir-
ical Methods in Natural Language Processing
(EMNLP).

J. Ginzburg, E. Breithholtz, R. Cooper, J. Hough, and
Y. Tian. 2015. Understanding laughter. In Proceed-
ings of the 20th Amsterdam Colloquium.

K. Guu, T. B. Hashimoto, Y. Oren, and P. Liang. 2018.
Generating sentences by editing prototypes. Trans-
actions of the Association for Computational Lin-
guistics (TACL), 0.

F. Hao, C. Hao, S. Maarten, C. Elizabeth, H. Ari,
C. Yejin, S. N. A, and O. Mari. 2018. Sounding
board: A user-centric and content-driven social chat-
bot. arXiv preprint arXiv:1804.10202.

T. Hashimoto, K. Guu, Y. Oren, and P. Liang. 2018.
A retrieve-and-edit framework for predicting struc-
tured outputs. In Advances in Neural Information
Processing Systems (NeurIPS).

J. T. Kao, R. Levy, and N. D. Goodman. 2015. A com-
putational model of linguistic humor in puns. Cog-
nitive Science.

D. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

R. Levy. 2013. Memory and surprisal in human sen-
tence comprehension. In Sentence Processing.

R. Levy and E. Gibson. 2013. Surprisal, the PDC, and
the primary locus of processing difficulty in relative
clauses. Frontiers in Psychology, 4.

J. Li, R. Jia, H. He, and P. Liang. 2018. Delete, retrieve,
generate: A simple approach to sentiment and style
transfer. In North American Association for Compu-
tational Linguistics (NAACL).

H. Manurung, G. Ritchie, and H. Thompson. 2000. To-
wards a computational model of poetry generation.
The University of Edinburgh Technical Report.

J. R. Meehan. 1977. TALE-SPIN, an interactive pro-
gram that writes stories. In International Joint Con-
ference on Artificial Intelligence (IJCAI).

S. Merity, C. Xiong, J. Bradbury, and R. Socher. 2016.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843.

T. Miller, C. Hempelmann, and I. Gurevych. 2017.
SemEval-2017 task 7: Detection and interpretation
of English puns. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation.

A. Pauls and D. Klein. 2012. Large-scale syntactic
language modeling with treelets. In Association for
Computational Linguistics (ACL).

N. Peng, M. Ghazvininejad, J. May, and K. Knight.
2018. Towards controllable story generation. In
NAACL Workshop.

S. Petrovic and D. Matthews. 2013. Unsupervised joke
generation from big data. In Association for Com-
putational Linguistics (ACL).

G. Ritchie. 2005. Computational mechanisms for pun
generation. In the 10th European Natural Language
Generation Workshop.

T. Shen, T. Lei, R. Barzilay, and T. Jaakkola. 2017.
Style transfer from non-parallel text by cross-
alignment. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

V. Tony. 2004. Incongruity in humor: Root cause or
epiphenomenon? Humor: International Journal of
Humor Research, 17.

A. Valitutti, H. Toivonen, A. Doucet, and J. M. Toiva-
nen. 2013. “let everything turn well in your wife:
Generation of adult humor using lexical constraints.
In Association for Computational Linguistics (ACL).

J. Weizenbaum. 1966. ELIZA–a computer program
for the study of natural language communication be-
tween man and machine. Communications of the
ACM, 9(1):36–45.

L. Yao, N. Peng, R. Weischedel, K. Knight, D. Zhao,
and R. Yan. 2019. Plan-and-write: Towards better
automatic storytelling. In Association for the Ad-
vancement of Artificial Intelligence (AAAI).

Z. Yu, J. Tan, and X. Wan. 2018. A neural approach to
pun generation. In Association for Computational
Linguistics (ACL).

1744

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Ur-
tasun, A. Torralba, and S. Fidler. 2015. Aligning
books and movies: Towards story-like visual ex-
planations by watching movies and reading books.
arXiv preprint arXiv:1506.06724.

